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Highly accurate filters to flag frequent hitters in 
AlphaScreen assays by suggesting their mechanism 

Dipan Ghosh,[a] Uwe Koch,[a] Kamyar Hadian,[b] Michael Sattler,[b] Igor V. Tetko[b],[c]* 

Abstract: AlphaScreen is one of the most widely used assay 
technologies in drug discovery due to its versatility, dynamic 
range and sensitivity. However, a presence of false positives 
and frequent hitters contributes to difficulties with an 
interpretation of measured HTS data. Although filters do exist 
to identify frequent hitters for AlphaScreen, they are 
frequently based on privileged scaffolds. The development of 
such filters is time consuming and requires deep domain 
knowledge. Recently, machine learning and artificial 
intelligence methods are emerging as important tools to 
advance drug discovery and chemoinformatics, including their 
application to identification of frequent  

hitters in screening assays. However, the relative 
performance and complementarity of the Machine Learning 
and scaffold based techniques has not yet been 
comprehensively compared. In this study, we analyzed filters 
based on the privileged scaffolds with filters built using 
machine learning. Our results demonstrate that machine-
learning methods provide more accurate filters for 
identification of frequent hitters in AlphaScreen assays than 
scaffold-based methods, and can be easily redeveloped once 
new data are measured. We present highly accurate models 
to identify frequent hitters in AlphaScreen assays. 
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1 Introduction 

Machine learning has found numerous applications in the 
field of drug discovery[3-5] and is being constantly expanded, 
both methodologically and regarding applications. One such 
area of application is to build filters using machine learning 
that can identify potential false leads, false positives and 
frequent hitters from High Throughput Screenings (HTS)[2, 6-8]. 
Machine learning methods are of particular interest in such 
cases, because firstly, the models have high accuracy and 
statistical characteristics which frequently outperform other 
methods[6]. Secondly, models can be built from very large 
datasets with relatively little efforts, as compared to other 
methods. Finally, for a machine learning approach, no 
crystallographic or other structural data is necessary, as 
opposed to some other methods such as molecular docking 
or structure-based pharmacophore models. 

AlphaScreen is a very versatile assay technology 
which is commonly used in drug discovery projects[9]. 
The assay relies on the intended biological interaction to 
bring two beads together; a donor and an acceptor bead. 
If a donor-acceptor interaction is present[10], upon 
excitation of the donor bead, singlet oxygens are 
transferred to the acceptor beads, which then emits light 
that is detected.  AlphaScreen is particularly suitable for 
HTS, due to the high signal-to-background ratio, dynamic 
range and sensitivity, together with the homogenous 
assay format and reagent stability. However, there are 
multiple ways ligand molecules can interfere with various 
components of AlphaScreen assay technology. Based on 
the mechanism of action, there are three general 
categories: These are Singlet oxygen quenchers, color 
quenchers or inner filters and light scatterers. Efforts 
have been made to identify such bad actors, and filters 
have been published to isolate them in a high throughput 
screening setting[1, 2, 11]. 

In the previous study[2], we reported two classes of 
interfering compounds, one that interfered with the 
interaction of the protein His-tag moiety to nickel chelate 
(Ni2+-NTA) beads of the AlphaScreen detection system, 
and another generic class of compounds that interfered 
with the assays via unknown mechanisms. In a follow-up 

study[1] we analyzed a class of compounds interfering 
with the interaction of glutathione S-transferase (GST) to 
glutathione (GSH), and thus interfering with AlphaScreen 
assays involving beads containing Glutathione. Scaffolds 
were identified that were over-represented among the 
identified frequent hitters. Such scaffolds were then 
encoded using SMARTS[12] strings, and the ToxAlerts[13] 
platform was used to build a working filter. In this study, 
we used machine learning methods to build models using 
the OCHEM platform[14] from the same data, in order to 
compare the efficacy of machine learning and scaffold-
based approaches.  

 

2 Data 

We already had the in house data that were used to create 
the SMARTS based filter from the previous studies[1, 2]. We 
needed to have a robust test set against which we can 
compare machine learing against scaffold based methods. 

[a] Lead Discovery Center GmbH, Otto-Hahn-
Straße 15,44227 Dortmund, Germany  

[b] Helmholtz Zentrum München - German 
Research Center for Environmental Health 
(GmbH), Institute of Structural Biology, 
Ingolstädter Landstraße 1, D-85764 
Neuherberg, Germany 

[c] BIGCHEM GmbH, Valerystr. 49, D-85716 
Unterschleißheim, Germany 

* Dr. Igor V. Tetko, 

Institute of Structural Biology, Helmholtz 
Zentrum München - German Research 
Center for Environmental Health (GmbH), 
Institute of Structural Biology, Ingolstädter 
Landstraße 1, D-85764 Neuherberg, 
Germany 

itetko@vcclab.org  



Full	Paper		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	     D. Ghosh et al.	
For this, we used publicly available data in PubChem 
BioAssay[15]. We searched for AlphaScreen confirmatory high 
throughput screenings, and then selected 15 HTS campaigns 
with the highest number of actives (see Table S1).  HTS 
campaigns with very small number of actives are statistically 
less useful for identifying frequent hitters.  

From the previous studies, we had two in house 
datasets corresponding to the two types of frequent 
hitters (FH) types identified. However, the identified 
assays from PubChem BioAssay used various 
combinations of donor and acceptor beads (Table S1). In 
order to be directly comparable, we had to identify 
compounds that were interfering with either the Ni-NTA 
beads, or GSH coated beads. However, without counter-
screen information, separating compounds based on 
mode of action (MOA) was not possible. Therefore, we 
merged the various types of FH identified in the previous 
study into one category in order to compare them against 
the generic FH from the PubChem BioAssay sets. 
Although we did not have an external test set for the 
individual classes, we built models for each of the 
different classes, in an effort to provide models that 
could suggest mechanism of action of FHs. Thus, in total, 
we had four different datasets (Table 1). 

Table 1: Descriptions of the datasets used in this study. In the 
PubChem-Combined dataset, we varied selection threshold, 
resulting in a variable number of FH. 

 

Data Set 
abbreviation 

Data 
Sour
ce 

Total 
Compoun
ds 

Active 
Comp
ounds 

FH FH 
specific
ity 

OCHEM-Ni-
NTA 

in 
hou
se 

24988  77 Strepta
vidin-
Ni-
NTA/Hi
s 

OCHEM-
GST 

in 
hou
se 

24988  53 GST/G
SH 

OCHEM-
Combined 

in 
hou
se 

24988  190 - 

PubChem-
Combined 

Pub
Che
m 

489951 5556
0 

Variabl
e* 

- 

*The number of FHs was determined by the enrichment 
threshold used. 

 
For identifying FH, we used statistical analysis of 

compound activity. First, compounds that were tested 
less than five times were omitted. The activity fractions 
associated with low-test count was much higher for such 
compounds and thus such data points would introduce 
noise in the analysis.  For example, if a compound was 
tested once and found to be active, then its activity 
fraction was 1. Such compounds should not be 
considered a FH since it could be just an active one. 

After filtering, we calculated activity fraction Fobs = ni/ki 
for each compound, where a compound i was tested in n 
assays and was active k times. Next, for each assay we 
shuffled the activity labels, keeping the total number of 
active compounds unchanged. This means that per 
compound, the activity was randomized. After this, we 
calculated the activity fraction again. Let us call this Fcalc. 
To obtain a statistically significant result, we repeated 
the randomization and calculated Fcalc 10,000 times, and 
calculated the 95% upper confidence interval Fav(95%).  
Then for each activity fraction, we defined an enrichment 
factor En as the ratio of Fobs to Fav(95%). This enrichment 
factor was the degree of overrepresentation for that 
activity fraction when compared to the one obtained 
randomly. For example, if for activity fraction 0.7 we 
calculated En = 10, then compounds that had an activity 
fraction of 0.7 were observed in the active group 10 
times more, than it would be expected by chance. 
Considering that assays were not related, such 
overrepresentation was related to the non-specific 
activity of compounds, i.e., these compounds were 
frequent hitters (FH). Therefore, this metric served as an 
indicator of FH propensity (Table S2). Of course, only 
compounds with enrichment factor > 1 could be 
considered as FH. 

For identifying FH, we selected a threshold for the 
enrichment. The larger the threshold the higher was 
probability of selected compounds to be FH. If the 
models and methods of prediction were accurate, the use 
of the larger threshold could increase their prediction 
score, i.e., the models should be able to predict 
compounds that are more likely to be frequent hitters 
with higher accuracy. This provided an additional 
measure for comparison of accuracy of the machine 
learning and the scaffold-based methods. Because of 
this reason the FH count for the PubChem-Combined set 
was mentioned to be variable in Table 1. 

3 Methods 

3.1 Machine learning methods 

 Using the freely accessible platform On-line Chemical and 
Modeling Environment (OCHEM), we performed 
comprehensive modeling for all three datasets. We applied 
different machine learning algorithms available in OCHEM, 
such as Associative Neural Network (ASNN)[16],  Deep Neural 
Network (DNN)[17], Least Square Support Vector Machine 
(LSSVM)[18] for training the models. We also applied the 
newly proposed Transformer-CNN[19] method that uses the 
SMILES representation of molecules. The models were 
developed with default parameters of the methods as 
specified on the OCHEM web site and described at 
http://docs.ochem.eu.  

We have used stratified cross-validation (CV) and 
stratified Bagging for developing our models. Both of 
these methods are used for internal validation or scoring 
of the model during the training phase. In cross-
validation, the training data is randomly subdivided into n 
bins. One of the bins is used as a test set, and others 
are combined to form the training set. OCHEM by default 
uses 5-fold cross-validation, meaning the data is 
subdivided into 5 bins. Bootstrap aggregating[20] 
(bagging) is a variation of machine-learning ensemble 



Full	Paper		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	     D. Ghosh et al.	
meta-algorithm that relies on building multiple 
classification or regression models and averaging the 
results (for regression tasks) or voting on the result (for 
classification tasks) to obtain the final prediction. Due to 
this sample and ensemble approach, there is a good 
chance that each molecule in the training data will 
appear in one of the validation sets, thus providing better 
performance metric for the model. However, this also 
means that multiple models will have to be created and 
averaged, which increases the computational cost and 
size of such models significantly.  

The term stratified, which can be applied both to CV 
and Bagging, indicates that the bins or the bootstrap 
samples were created to over-represent the smallest 
class to have the equal number of samples of each class 
in the respective training sets. Therefore, this can only 
be done in classification tasks.  

3.2 Molecular descriptors 

A variety of descriptors available within the OCHEM 
environment were used to develop the models.  

ALogPS calculates two descriptors provided by the 
ALOGPS[21] program, which determine the water/octanol 
partition coefficient (logPcalc), and water solubility 
coefficient (logScalc)[22]. 

alvaDesc[23] is a relatively recent software package 
that calculates over 5000 descriptors that are divided in 
33 logical blocks. Additionally, it also calculates different 
molecular fingerprints.  

CDDD, which stands for Continuous and Data-Driven 
Descriptors[24] are descriptors derived from a molecular 
representation using a pre-trained deep learning model. 
The model that generates the descriptor uses the ability 
of deep neural networks to learn a feature representation 
from low-level encodings of molecules as SMILES. 

CDK (3D) or the Chemistry Development Kit is an 
open source chemoinformatics project[25]. There are 
several types of descriptors available from the package 
that are integrated into the OCHEM environment. 
Descriptors calculated with the recently released 2.3 
version of CDK were used in this study[26]. 

ChemAxon Descriptors (3D) are a set of descriptors 
provided by the ChemAxon company[27]. The available 
descriptors are subdivided into seven categories, namely 
Elemental Analysis, Charge, Geometry, Partitioning, 
Protonation, Isomers, and Others. Descriptors that return 
a Boolean or Numerical value were implemented into 
OCHEM. 

Dragon[28] (3D) is a well-known software package, for 
the calculation of molecular descriptors, developed by 
the Milano Chemometrics and QSAR Research Group of 
Prof. R. Todeschini. It comprises perhaps one of the 
largest and most comprehensive molecular descriptor 
libraries available, with a total of 5,270 descriptors 
available. The descriptors are divided into 30 discrete 
blocks, such as Topological, Constitutional, Drug-like 
indices, etc. Dragon version 6 was used. 

GSFRAG[29] belongs to the category of 2D fragment 
descriptors.  It calculates the occurrence numbers of 
certain special fragments from k = 2 to 10 vertices in a 
molecular graph G that can be used as molecular 
descriptors in quantitative structure-property/activity 
studies. 

MAP4[30] or MinHashed Atom Pair fingerprint of radius 
2, is a fingerprint based on the topological distance 
between all atom pairs in a circular substructure within a 
given radius of the molecule. The original implementation 
sets the radius to be 2, but it can be customized for 
different purposes. If the radius is 2, the fingerprint is 
known as MAP4, which is used in his study. 

MORDRED[31] is a python based open source 
descriptor package that can calculate more than 1800 
two- and three-dimensional descriptors. The Mordred 
package is easy to install in any environment, and can 
be deployed as a webserver. It also has pre-processing 
built-in to ensure correctness of the descriptors. 

RDKit[32] is a very popular python library for 
Cheminformatics. It offers ~40 2D descriptors, ~15 3D 
descriptors, and 8 fingerprints. These descriptors can be 
used from within OCHEM, and 2D descriptors can be 
used independently of 3D descriptors, which allows for 
comparison between the two. 

PyDescriptor[33] is designed to be a PyMol plugin that 
calculates descriptors. The package calculates >16k  
descriptors, ranging from simple properties such as 
molecular weight to complex topological fingerprints that 
are based on the 3D structure of the molecule. 

ISIDA descriptors are part of the ISIDA project, which 
stands for In-SIlico Design and data Analysis[34]. These 
fragment-like 2D descriptors are calculated from 
molecular graphs using three different methods, namely 
paths, trees, and neighbours. The descriptors are 
generated from the fragments by using different atom 
and bond labeling methods. 

Mera and Mersy[35] (3D) are two related groups of 
descriptors. Mera provides a group of descriptors that 
deal with molecular area and surface. Mersy is 
abbreviated as Mera Symmetry, and the descriptors are 
calculated using 3D representations of molecules in the 
framework of the MERA algorithm. 

Spectrophores[36] are 1D descriptors that encode the 
property fields surrounding the molecules. This provides 
a chemical-class-independent descriptor that can be 
used to build models.  

QNPR (Quantitative Name Property Relationship) are 
1D descriptors that are directly based on the SMILES 
representation of the molecules. The descriptors are 
calculated by splitting the respective string into all 
possible continuous substrings with a specified maximum 
length[37]. 

ToxAlert’s[13] Extended Functional Group (EFG)[38] 
category are descriptors based on classification initially 
provided by the CheckMol software[39]. The coverage 
was extended to include new groups, particularly 
heterocycles[38]. ToxAlert covers total of 583 functional 
groups. 

The assumption was that by using a different 
representation of chemical structures we could develop 
models covering different molecular aspects responsible 
for the FH activity of molecules. 

3.3 Statistical coefficients 

For internal validation of the generated models, we used 5-
fold stratified cross validation[40]. Accuracy was defined as the 
percentage of correctly classified samples, given by the 
formula  

ACC = (TP + TN) / (TP + FP + TN + FN)   (1) 
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where TP, TN, FP and FN were the number of True Positive, 
True Negative, False Positive and False Negative, 
respectively. Due to the large imbalance of the active and the 
inactive populations, high ACC, e.g., ACC=0.993 for 
OCHEM-Combined, could be calculated for models without 
any prediction power, which predicted all compounds as non 
FHs. Therefore, instead of ACC we used Balanced Accuracy 
(BA) for determining the quality of the models. It was defined 
as: 

BA = 0.5*(TP/P +TN/N)     (2) 
where P=TP + FN and N = TN+FP were the numbers of 
positive and negative samples, respectively. 

 Since we analyzed extremely unbalanced datasets, it 
was important to optimize the thresholds that were used 
to classify the predictions from the machine learning 
models. Usually such threshold is set to be 0.5, but such 
value may not be optimal in particular for models built 
with cross-validation, since such models are biased to 
provide the highest ACC. A selection of an optimal value 
of this threshold could increase BA but did not influence 
the ROC AUC (Receiver Operating characteristic Curve 
– Area Under the Curve) values, which is another 
traditional statistical coefficient to measure performance 
of classification methods. For stratified bagging due to 
bootstrapping, the data were balanced and threshold of 

0.5 was frequently the optional one. OCHEM had a 
support for identifying the optimal threshold to maximize 
Balanced Accuracy: the threshold is changed until 
maximum BA is calculated for the training set. This 
feature was used to identify the optimal threshold to 
calculate the BA reported. 

We also used the ROC-AUC metric from our models. 
ROC-AUC[41] is the area under the receiver operating 
characteristic curve. A receiver operating characteristic 

curve or ROC is a graphical plot that describes the 
variance in the discrimination power of a binary 
classification model. The curve is created by plotting the 
models’ sensitivity against its false positive rate at 
various threshold levels Therefore, the ROC curve 

describes the sensitivity as a function of false positive 
rate. The area under this curve provides a measure for 
model accuracy. ROC-AUC can be used in unbalanced 
datasets. It ranges from 0 to 1, with 1 being perfect 
prediction. 

4 Results 

4.1 Frequent Hitter Analysis 

In order to compare performances of previously developed 
ToxAlert filters[1, 2] and machine-learning model, we used 
independent test sets that were different from those utilized 
to develop the methods. As described in the Data section we 
selected these sets from the PubChem BioAssay[2, 15] and 
identified FHs based on the statistical analysis. If we 
considered compounds with an enrichment value > 10 to be 
a frequent hitter, then we identified 7633 FHs out of  ~350K 
compounds, which is ~2.1%. In comparison, in the in house 
training set there were 190 FH compounds out of 24988, 
which is ~0.7%. The lower number of FHs in in the in house 
library could be due to explicit excluding of potential FHs 
compounds by using filters on reactive and unstable 
compounds available in the ToxAlert platform when selecting 

compounds for the library. While we did not use the PAINS 
filters for the library design, such selection still reduced the 
percentage of FH.  

4.2 Machine-learning Models: 

For determining comparative performance of machine-
learning models against scaffold based FHs, we performed 
comprehensive modeling with the combined in-house data 

using a variety of descriptors in OCHEM (Figure 1).  
We used Least Square SVM, ASNN, and deep 

learning algorithms available in OCHEM. Out of all 
methods, ASNN showed best overall performance, the 
results are summarized in Figure 1. The five best 

Figure 1: Comprehensive modelling with the OCHEM-Combined dataset. The models presented in the chart, with an exception of 
Transformer-CNN, were created with the Associative Neural Network. The Balanced Accuracy scores calculated with stratified 
bagging are plotted. Consensus models were calculated using simple average. Data corresponding to the chart is available in 
Table S3 of the supplementary information. *Models denoted were considered for the general consensus model. #Models were 
used in calculating the 2D only consensus model. 
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performing models were chosen for building the 
consensus model. For this, outputs reported by each 
individual model is averaged and the average score is 
considered as the output of the consensus model. The 
consensus model thus developed were applied to the 
test set. 

 We used a variety of descriptor packages available 
in OCHEM. Some of the descriptors required the 3D 
structure of the molecule, for which the Corina software 
package[42] was used as a part of the modelling pipeline 
in OCHEM. We decided to make one consensus model 
from the best performing models with descriptors that did 
not require 3D structures, and another consensus model 
with the best performing models regardless of the 
descriptor package used. The consensus model using 
2D+3D descriptors outperformed the 2D only consensus 
model, but only by a small margin with an AUC score of 
0.9 for the 2D only model versus 0.91 for the general 

consensus model. A similar trend was also observed 
while modeling with other datasets in the study (Figure 3 
and 4). This indicates that models derived from only the 
2D structure of molecules can be used with almost equal 

effectiveness to models based on 3D structures. As 3D 
structure calculation is computationally expensive, 
models derived from only the 2D structure of molecules 
may be used as a faster and lighter solution. 

We also trained a Transformer-CNN model with this 
data. This method requires no descriptors to be 
calculated, and therefore, is agnostic of any bias that 
may arise from using one descriptor over the other. The 
model is also very lightweight. It required only 8MB of 
disk space, whereas some of the other models that 

depend on large descriptor sets such as Dragon needed 
300MB.  

4.3 Comparison between Scaffold based Filter and 
Machine-learning Models: 

To compare the performance of the developed machine 
learning filter, we applied the general consensus model 
developed from the combined training set to the test set 
collected from PubChem BioAssay data. As discussed in the 
data section, for classifying FH, we used a threshold value for 
the enrichment that we calculated. As we increased this 
threshold, we compared performances for machine learning 
consensus model, the PAINS filter developed by Baell et al[11], 
as well as the combined filter created from previous 
AlphaScreen studies[1, 2] using in house data. 

With a very low enrichment value, the entire library 
was marked as frequent hitters, and therefore, it resulted 

in very poor balanced accuracy from all the methods. As 
the threshold value increased, there was a marked 
increase in the BA for both PAINS and the machine 
learning methods, with PAINS outperforming machine 

learning. However, the balanced accuracy for the 
AlphaScreen FH based on in house data barely 
increased (Figure 2). At an enrichment threshold of >25, 
the consensus machine learning model calculated a BA 
of 64%, and the PAINS filter calculated a BA of 65%. It 
should also be noted that increasing the threshold also 
reduced the number of identified FH significantly. At an 
enrichment threshold of 25, the number of FHs was down 
to 4k from 7.6k compounds calculated for threshold of 10. 

Figure 2: Comparative performance of filters based on the chemical scaffolds groups (Scaffold-based FHs from previous studies[1, 

2]) and machine learning model (ML) developed from the same data across a range of selectivity thresholds. The PAINS filter and a 
combined filter (ML+PAINS) is also shown. Number of compounds identified as FHs in PubChem are shown as char bar diagram for 
the different enrichment thresholds. 
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The reason for the poor performance of the scaffold-

based FHs was the limited nature of the in house dataset. 
A scaffold-based method could be very effective, but the 
scaffolds identified must cover a wide chemical space. 
This was evident from the fact that PAINS, which is also 
a scaffold-based filter, had significantly better 
performance. The PAINS scaffolds were identified from 
six AlphaScreen based assays with a total compound 

pool of 93212. They covered 2062 FH (2.2%) that were 
active in four or more out of the six assays. Compared to 
that, as explained below the in house data had reduced 
fraction (0.9%) of FHs due to the library design. 
Therefore, the scaffold-based filter derived from the in-
house data performed poorly compared to the PAINS 
filters. However, interestingly, the machine-learning 
model developed from such a limited dataset was still 
able to perform almost comparable to the PAINS filter, 
demonstrating the effectiveness of this approach.  

As the machine learning and the PAINS filter both 
performed well and were derived from independent 
datasets, we combined both of them and considered 
compound as a FH when it was predicted by any of the 
approaches. The combined filter improved balanced 
accuracy by ~5 % over the entire range (ML+ PAINS as 
shown in Figure 2) and showed 68.3% balanced 
accuracy at an enrichment threshold of >25. Using 
bootstrapping, we determined that the improvement was 
statistically significant (p<0.05). 

As the performance of the machine-learning model is 
always limited by the training dataset, we wanted to 

explore whether better results can be calculated by 
developing a model with a larger dataset. Therefore we 
developed models using PubChem-Combined and 
applied it to the OCHEM-Combined. The rational was 
that as the PubChem-Combined set was much larger. 
Therefore a model trained with such a set should be able 
to pick up FHs from the comparatively limited OCHEM-
Combined set.  

We performed comprehensive modelling using 
OCHEM (Figure 3), and decided to use 5-fold cross-
validation instead of bagging, since performing bootstrap 
aggregation on such a large dataset contributed very 
large models. For this dataset, the Transformer-CNN 
method contributed the model with the highest AUC-
ROC=0.94 and BA=87%. We built a consensus model 
with the Transformer-CNN model and four other best 
performing model that were built using ASNN. Applied to 
OCHEM-Combined, the consensus model identified 139 
out of 190 frequent hitters, resulting in a sensitivity score 
of 73% and BA of 79% Compared to this, the PAINS filter 
applied to OCHEM-Combined only identified 65 out of 
190 frequent hitters, with a sensitivity score of only 34% 
and BA of 65%. Since both PAINS and consensus model 
were developed with different sets, we cannot compare 
their performances directly. Still, this clearly 
demonstrates that machine learning models, when 
trained with appropriate dataset, could provide very good 
accuracy. 

Figure 3: Comprehensive modelling using PubChem-Combined dataset. The models presented in the chart, with an exception of 
Transformer-CNN, were created with the Associative Neural Network. The ROC-AUC scores calculated using 5-fold cross-
validation are plotted. Consensus models were calculated using simple average. Data corresponding to the chart is available in 
Table S4 of the supplementary information. *Models denoted were considered for the general consensus model. #Models were 
used in calculating the 2D only consensus model. 
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Figure 4: Multiple Single Task learning for predicting frequent hitter and possible Modes of Action. Different datasets were used to 
create the three submodels, as appropriate. For example, OCHEM-GST dataset was used to create the model for predicting 
compounds interfering with GST. The models presented in the chart, with an exception of Transformer-CNN, were created with 
Associative Neural Network. The Balanced Accuracy calculated using 5-fold stratified cross-validation are plotted. Consensus 
models were calculated using simple average. Data corresponding to the chart is available in Table S5 of the supplementary 
information. The  model with best performance that are statistically significantly different from the rest is marked with a large star 
( ).  *Models denoted were considered for the general consensus model. #Models were used in calculating the 2D only consensus 
model. 

4.4 Machine learning models to identify mechanism of 
action of FHs 

 
As machine learning models was determined to be effective, 
we also developed models that could suggest mechanism of 
action (MoA) for FHs (Figure 3). For example, the frequent 
hitters in the OCHEM-Ni-NTA and OCHEM-GST datasets 
(Table 1) interfered with Histidine binding to Ni-NTA and 
interaction of glutathione S-transferase (GST) to glutathione 
(GSH), respectively. Since the machine learning method 
provided better performance compared to scaffold-based 
filters for the combined set, the models developed for each of 
the sets could be more efficient to identify MoA of new FHs. 
Therefore, we joined all datasets and developed a multitask 
model that simultaneously predicts whether a compound is a 

frequent hitter, and its MoA. The training set had 371604 
molecules spanning three different target properties, i.e., one 
for if the molecule is a frequent hitter, and two for the two 
modes of action. We used both a multitask learning 
approach[43], and multiple single task learning approaches 
using stratified cross validation. For this study the combined 
single task learning performed better. Among the three 
properties predicted, PubChem-Combined showed best 
performance, followed by OCHEM-Ni-NTA, and OCHEM-
GST showed worse performance consistently. This is due to 
the amount and nature of data involved. PubChem-Combined 
is a much larger dataset than OCHEM-GST or OCHEM-Ni-
NTA, and this produces a better model. OCHEM-GST has 
fewer compounds marked as active (53 compared to 77). All 
other compounds between the two sets are the same, so the 
lesser number of actives results in worse performance. We 
have built other models from the PubChem-Combined set in 

this study (Figure 3). The performances of the two sets of 
models were very similar (Consensus 0.93 vs 0.94), which is 
expected because of the multiple single task learning 
approach used. The transformer neural network showed the 
best performance amid individual models, with average AUC 
of 0.87 and BA of 84.7% (Figure 4). A consensus model with 
only 2D descriptors improved the AUC and BA score to 0.90. 
Including all types of descriptors in the consensus produced 
the final model, with an AUC of 0.91 and BA of 84.7%. The 
model is publicly available on the OCHEM web site at 
https://ochem.eu/article/125278 
 

We were curious to find out what improvements did 
the model actually achieve, apart from the statistical 
scores. So, we applied this final model to OCHEM-
Combined, and it was able to identify 140 out of 190 

frequent hitters. This is very similar to the performance 
shown by models built from the PubChem-Combined 
dataset (Figure 3), and this is expected. As explained 
previously, the PAINS filter identified only 65 of these 
190 compounds, so we filtered out the 75 compounds 
that our model identified, but PAINS did not. The full list 
of these compounds are presented in the supplementary 
information (Table S6), and a few scaffolds of interest 
are presented in Figure 5. In general, the collection is 
quite heterogeneous, and no prominent scaffold could be 
identified. This is expected, because a well-known 
scaffold-based filter such as PAINS, were not able to 
identify these compounds. There are a few toxoflavines, 
as well as toxoflavin mimics. We also noted the presence 
of multiple condensed polyaromatic moieties, 
cyanodithiines, aminothazoles and picolylamines (Figure 
5). It should be noted here that many of these scaffolds 
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has been identified manually before, and is already 
present in the scaffold-based filter. However, as we have 
discussed in detail, that scaffold-based filter performs 
very poorly against a broad test set. It is able to pick up 
these particular scaffolds, but suffers greatly in overall 
performance. On the other hand, the machine learning 
model was able to identify these scaffolds without being 
exposed to them before, and provides much better 
overall performance as well (79% BA compared to 65% 
of PAINS, when the final model is applied to OCHEM-
Combined). Therefore, in the final model, we are able to 
detect the presence of a frequent hitter with better 
accuracy, we are able to detect scaffolds and 
compounds that a traditional method such as PAINS 
overlooks, and we are also able to comment on a 
possible mode of action. This makes our model an 
excellent tool for filtering frequent hitter compounds in 
AlphaScreen assays. 

 

5 Conclusion: 

In this study, we compared scaffold-based methods and ML 
methods for identifying AlphaScreen frequent hitters. The 
result showed that ML models outperformed scaffold-based 
methods by a large margin, when both approaches originated 
from the same data. We demonstrated that a ML model 
trained on a large dataset collected from PubChem BioAssay 
outperformed PAINS[11] filter for prediction of the public and in 
house data. However, combining PAINS with a ML improved 
the prediction outcome.  We also developed ML models from 
the individual in-house datasets, for which the mechanism of 

action (MoA) was known. These models should be effective 
in identifying compounds that interferes through particular 
MoAs and should have higher accuracy compared to the 
existing scaffold-based filters developed in the previous 
studies[1, 2]. Finally, we also contributed a ML model based on 
the PubChem dataset. As this set was much larger and more 
diverse than the training set used to develop PAINS, it 
provided better coverage of the chemical space, and was 
able to identify frequent hitters in the in-house AlphaScreen 
assays with higher accuracy than the PAINS filter. We also 
demonstrated that the new ML model is able to identify 
scaffolds that are not identified by PAINS, without introducing 
false positives, and thus providing better balanced accuracy 
scores.  

In summary, the scaffold-based methods were limited 
to the identified scaffolds only, and therefore had lower 
accuracy compared to ML when both types of models 
were used to screen large heterogeneous datasets. 
Identifying scaffolds from large data sets, such as the 
PubChem-Combined and after that manually inspecting 
them to develop representative SMARTS patterns, as we 
did in our previous studies1, 2, would be a complicated 
task that would take a very long time. ML on the other 
hand benefited from very large datasets. Re-training the 
models with new datasets is trivial, and adding new 
molecules could further improve the accuracy of the 
model. If a scaffold-based filter is too specific, it is 
ineffective in large sets, if it is too general and has many 
scaffolds, then it may produce too many false positives. 
Machine learning can identify much more sophisticated 
and complex pattern in the data, and therefore provide 
better prediction accuracy. 
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The models developed in this study are freely 

available on the OCHEM platform 
(https://ochem.eu/article/125278). 

6 Acknowledgments 

This study was partially funded by the European Union’s 
Horizon 2020 research and innovation program under the 
Marie Skłodowska-Curie Innovative Training Network 
European Industrial Doctorate grant agreement No. 676434, 
“Big Data in Chemistry”. The authors thank Alvascience Srl, 
ChemAxon and Molecular Networks GmbH for a possibility to 
use descriptors and Corina programs in their study. 
 

7 References 

 
[1] Brenke, J. K.;  Salmina, E. S.;  Ringelstetter, L.;  Dornauer, 

S.;  Kuzikov, M.;  Rothenaigner, I.;  Schorpp, K.;  Giehler, 
F.;  Gopalakrishnan, J.;  Kieser, A.;  Gul, S.;  Tetko, I. V.; 
Hadian, K., J. Biomol. Screen. 2016, 21, 596-607. 

[2] Schorpp, K.;  Rothenaigner, I.;  Salmina, E.;  Reinshagen, 
J.;  Low, T.;  Brenke, J. K.;  Gopalakrishnan, J.;  Tetko, I. 
V.;  Gul, S.; Hadian, K., J. Biomol. Screen. 2014, 19, 715-
26. 

[3] Chen, H.;  Engkvist, O.;  Wang, Y.;  Olivecrona, M.; 
Blaschke, T., Drug Discovery Today 2018. 

[4] Lavecchia, A., Drug Discovery Today 2015, 20, 318-331. 

[5] Baskin, I. I.;  Winkler, D.; Tetko, I. V., Expert Opin. Drug 
Discov. 2016, 11, 785-795. 

[6] Ghosh, D.;  Koch, U.;  Hadian, K.;  Sattler, M.; Tetko, I. V., 
J. Chem. Inf. Model. 2018, 58, 933-942. 

[7] Stork, C.;  Wagner, J.;  Friedrich, N. O.;  de Bruyn Kops, 
C.;  Šícho, M.; Kirchmair, J., ChemMedChem 2017, 13, 
564-571. 

[8] David, L.;  Walsh, J.;  Sturm, N.;  Feierberg, I.;  Nissink, J. 
W. M.;  Chen, H.;  Bajorath, J.; Engkvist, O., 
ChemMedChem 2019, 14, 1795-1802. 

[9] Yasgar, A.;  Jadhav, A.;  Simeonov, A.; Coussens, N. P., 
Methods Mol. Biol. 2016, 1439, 77-98. 

[10] Eglen, R. M.;  Reisine, T.;  Roby, P.;  Rouleau, N.;  Illy, C.;  
Bossé, R.; Bielefeld, M., Current chemical genomics 2008, 
1, 2-10. 

[11] Baell, J. B.; Holloway, G. A., J. Med. Chem. 2010, 53, 
2719-40. 

[12] Mayfield, J. W.; Sayle, R. A., J. Cheminformatics 2017, 9, 
10. 

[13] Sushko, I.;  Salmina, E.;  Potemkin, V. A.;  Poda, G.; 
Tetko, I. V., J. Chem. Inf. Model. 2012, 52, 2310-2316. 

[14] Sushko, I.;  Novotarskyi, S.;  Korner, R.;  Pandey, A. K.;  
Rupp, M.;  Teetz, W.;  Brandmaier, S.;  Abdelaziz, A.;  
Prokopenko, V. V.;  Tanchuk, V. Y.;  Todeschini, R.;  
Varnek, A.;  Marcou, G.;  Ertl, P.;  Potemkin, V.;  Grishina, 
M.;  Gasteiger, J.;  Schwab, C.;  Baskin, I. I.;  Palyulin, V. 
A.;  Radchenko, E. V.;  Welsh, W. J.;  Kholodovych, V.;  
Chekmarev, D.;  Cherkasov, A.;  Aires-de-Sousa, J.;  
Zhang, Q. Y.;  Bender, A.;  Nigsch, F.;  Patiny, L.;  
Williams, A.;  Tkachenko, V.; Tetko, I. V., J. Comput. Aided 
Mol. Des. 2011, 25, 533-54. 

[15] Kim, S.;  Chen, J.;  Cheng, T.;  Gindulyte, A.;  He, J.;  He, 
S.;  Li, Q.;  Shoemaker, B. A.;  Thiessen, P. A.;  Yu, B.;  

Figure 5: Examples of confirmed AlphaScreen frequent hitter compounds identified by the ML filter but not by PAINS. A. Scaffold 
resembling toxoflavin B. Toxoflavin C. cyanodithiine D. aminothazole and E. picolylamine. 



Full	Paper		 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	     D. Ghosh et al.	
Zaslavsky, L.;  Zhang, J.; Bolton, E. E., Nucleic Acids Res. 
2019, 47, D1102-D1109. 

[16] Tetko, I. V., Neural Process. Lett. 2002, 16, 187-199. 
[17] Sosnin, S.;  Karlov, D.;  Tetko, I. V.; Fedorov, M. V., J. 

Chem. Inf. Model. 2019, 59, 1062-1072. 
[18] Suykens, J. A. K.; Vandewalle, J., Neural Processing 

Letters 1999, 9, 293-300. 
[19] Karpov, P.;  Godin, G.; Tetko, I. V., J. Cheminformatics 

2020, 12, 17. 
[20] Breiman, L., Machine Learning 1996, 24, 123-140. 
[21] Tetko, I. V.; Tanchuk, V. Y., J. Chem. Inf. Comput. Sci. 

2002, 42, 1136-1145. 
[22] Tetko, I. V.;  Tanchuk, V. Y.;  Kasheva, T. N.; Villa, A. E. 

P., J. Chem. Inf. Comput. Sci. 2001, 41, 1488-1493. 
[23] Mauri, A., alvaDesc: A Tool to Calculate and Analyze 

Molecular Descriptors and Fingerprints. In Ecotoxicological 
QSARs, Roy, K., Ed. Springer US: New York, NY, 2020; 
pp 801-820. 

[24] Winter, R.;  Montanari, F.;  Noé, F.; Clevert, D.-A., Chem. 
Sci. 2019. 

[25] Steinbeck, C.;  Han, Y.;  Kuhn, S.;  Horlacher, O.;  
Luttmann, E.; Willighagen, E., J. Chem. Inf. Comput. Sci. 
2003, 43, 493-500. 

[26] Willighagen, E. L.;  Mayfield, J. W.;  Alvarsson, J.;  Berg, 
A.;  Carlsson, L.;  Jeliazkova, N.;  Kuhn, S.;  Pluskal, T.;  
Rojas-Chertó, M.;  Spjuth, O.;  Torrance, G.;  Evelo, C. T.;  
Guha, R.; Steinbeck, C., J. Cheminformatics 2017, 9, 33. 

[27] Myrdal, P. B.;  Manka, A. M.; Yalkowsky, S. H., 
Chemosphere 1995, 30, 1619-1637. 

[28] Todeschini, R.; Consonni, V., In Handbook of Molecular 
Descriptors, Wiley-VCH Verlag GmbH: 2000. 

[29] Skvortsova, M. I.;  Baskin, I. I.;  Skvortsov, L. A.;  Palyulin, 
V. A.;  Zefirov, N. S.; Stankevich, I. V., J. Mol. Struct.: 
THEOCHEM 1999, 466, 211-217. 

[30] Capecchi, A.;  Probst, D.; Reymond, J.-L., J. 
Cheminformatics 2020, 12, 43. 

[31] Moriwaki, H.;  Tian, Y.-S.;  Kawashita, N.; Takagi, T., J. 
Cheminformatics 2018, 10, 4. 

[32] Landrum, G. A. RDKit, Open-Source Cheminformatics. 
http://www.rdkit.org. 

[33] Masand, V. H.; Rastija, V., Chemometrics Intellig. Lab. 
Syst. 2017, 169, 12-18. 

[34] Varnek, A.;  Fourches, D.;  Horvath, D.;  Klimchuk, O.;  
Gaudin, C.;  Vayer, P.;  Solov'ev, V.;  Hoonakker, F.;  
Tetko, I. V.; Marcou, G., Curr Comput Aided Drug Des 
2008, 4, 191-198. 

[35] Potemkin, V. A.; Grishina, M. A., J. Comput. Aided Mol. 
Des. 2008, 22, 489-505. 

[36] Gladysz, R.;  Dos Santos, F. M.;  Langenaeker, W.;  Thijs, 
G.;  Augustyns, K.; De Winter, H., J. Cheminformatics 
2018, 10, 9. 

[37] Tetko, I. V.;  M. Lowe, D.; Williams, A. J., J. 
Cheminformatics 2016, 8, 2. 

[38] Salmina, E. S.;  Haider, N.; Tetko, I. V., Molecules 2015, 
21, E1. 

[39] Haider, N., Molecules 2010, 15. 
[40] Tetko, I. V.;  Sushko, I.;  Pandey, A. K.;  Zhu, H.;  Tropsha, 

A.;  Papa, E.;  Oberg, T.;  Todeschini, R.;  Fourches, D.; 
Varnek, A., J. Chem. Inf. Model. 2008, 48, 1733-46. 

[41] Hajian-Tilaki, K., Caspian. J. Intern. Med. 2013, 4, 627-
635. 

[42] Sadowski, J.;  Gasteiger, J.; Klebe, G., J. Chem. Inf. 
Comput. Sci. 1994, 34, 1000-1008. 

[43] Sosnin, S.;  Vashurina, M.;  Withnall, M.;  Karpov, P.;  
Fedorov, M.; Tetko, I. V., Mol. Inform. 2019, 38, e1800108. 

 


