AEM Accepted Manuscript Posted Online 3 November 2021 Appl Environ Microbiol doi:10.1128/AEM.01841-21 Copyright © 2021 Dershwitz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

- 1 Revised manuscript: AEM01841-21
- 2 MbnC is not required for the formation of the N-terminal oxazolone in the methanobactin
- 3 from *Methylosinus trichosporium* **OB3b**.
- 4 Philip Dershwitz^{1,Ψ}, Wenyu Gu^{2Ψ‡}, Julien Roche¹, Christina S. Kang-Yun^{2†}, Jeremy D. Semrau²,
- 5 Thomas A. Bobik¹, Bruce Fulton¹, Hans Zischka³, and Alan A. DiSpirito^{1*}
- ⁶ ¹Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology. Iowa State
- 7 University, Ames, IA 50011-3260, USA
- 8 ²Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, MI,
- 9 48109-2125, USA
- 10 ³Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Münich, German
- 11 Research Center and Environmental Health, Ingolsteadter Landstrasse, Germany and Technical
- 12 University Münich, School of Medicine, Institute of Toxicology and Environmental Hygiene,
- 13 Biedersteiner Strasse 29, D-80802 Munich, Germany.
- $14 \quad {}^{\Psi}$ Co-first authors
- 15 [‡]Current address: Department of Civil & Environmental Engineering, Stanford University,
- 16 Stanford, CA, 94305, USA
- 17 ⁺Current address: Biosciences and Biotechnology Division, Lawrence Livermore National
- 18 Laboratory, Livermore, CA, 94550-9698, USA
- ¹⁹ *To whom correspondence should be addressed: Email: <u>aland@iastate.edu</u>; Phone: 1-515-294-
- 20 2944; Fax: 1-515-294-0453
- 21 Running title: Role of MbnC in Methanobactin Biosynthesis
- 22

23	ABSTRACT Methanobactins (MBs) are ribosomally synthesized and post-translationally
24	modified peptides (RiPPs) produced by methanotrophs for copper uptake. The post-
25	translational modification that define MBs is the formation of two heterocyclic groups with
26	associated thioamines from X-Cys dipeptide sequences. Both heterocyclic groups in the MB
27	from Methylosinus trichosporium OB3b (MB-OB3b) are oxazolone groups. The precursor gene
28	for MB-OB3b, <i>mbnA</i> , which is part of a gene cluster that contains both annotated and
29	unannotated genes. One of those unannotated genes, <i>mbnC</i> , is found in all MB operons, and in
30	conjunction with <i>mbnB</i> , is reported to be involved in the formation of both heterocyclic groups
31	in all MBs. To determine the function of <i>mbnC</i> , a deletion mutation was constructed in <i>M</i> .
32	trichosporium OB3b, and the MB produced from the Δmbn C mutant was purified and
33	structurally characterized by UV-visible absorption spectroscopy, mass spectrometry and
34	solution NMR spectroscopy. MB-OB3b from $\Delta mbnC$ was missing the C-terminal Met and also
35	found to contain a Pro and a Cys in place of the pyrrolidiny-oxazolone-thioamide group. These
36	results demonstrate MbnC is required for the formation of the C-terminal pyrrolidinyl-
37	oxazolone-thioamide group from the Pro-Cys dipeptide, but not for the formation of the N-
38	terminal 3-methylbutanol-oxazolone-thioamide group from the N-terminal dipeptide Leu-Cys.
39	
40	IMPORTANCE A number of environmental and medical applications have been proposed for
41	MBs, including bioremediation of toxic metals, nanoparticle formation, as well as for the
42	treatment of copper- and iron-related diseases. However, before MBs can be modified and
43	optimized for any specific application, the biosynthetic pathway for MB production must be

defined. The discovery that mbnC is involved in the formation of the C-terminal oxazolone

- 45 group with associated thioamide but not for the formation of the N-terminal oxazolone group
- 46 with associated thioamide in *M. trichosporium* OB3b suggests the enzymes responsible for
- 47 post-translational modification(s) of the two oxazolone groups are not identical.
- 48
- 49 KEYWORDS methanobactin chalkophore• methanotroph aerobic methane oxidation •
- 50 ribosomally synthesized and posttranslational modified peptide

terminal oxazolone group with a C2-associated thioamide and by the presence of an N-terminal
oxazolone, imidazolone or pyrazinedione group with an associated thioamide. Some MBs also
contain a sulfate group in-place of the hydroxyl group on a Tyr adjacent to the C-terminal
oxazolone group. The best characterized MB is from Methylosinus trichosporium OB3b and the
post-translational modifications for this MB involves: (1) deamination of the N-terminal Leu, (2)
conversion of the N-terminal Leu-Cys dipeptide to 1-(N-(mercapto-(5-oxo-2- (3-
methylbutanoyl)oxazol-(Z)-4-ylidene)methyl), (3) conversion of the C-terminal Pro-Cys
dipeptide into pyrrolidin-2-yl-(mercapto-(5-oxo-oxazol-(Z)-4- ylidene)methyl); and (4) cleavage
of the leader sequence (2, 4, 5, 8-11).
The gene encoding the MB precursor peptide, <i>mbnA</i> , (5, 10) is found in a gene cluster
that contains both genes of known function such as <i>mbnB</i> (5, 11), <i>mbnN</i> (9), <i>mbn</i> T (12) as well
as unannotated genes such as <i>mbnC</i> (5, 10, 11, 13, 14). MbnB is a member of TIM barrel family
as well as the DUF692 family of diiron enzymes (11, 14). In heterologous expression studies in
Escherichia coli, MbnBC was shown to catalyze a dioxygen-dependent four electron oxidation of
Pro-Cys in MbnA (11, 14, 15). The role(s) of MbnB and MbnC could not be separately
determined as attempts to separately purify these gene products in <i>E. coli</i> failed (11). From
these data, it has been argued that MbnBC must act in concert and by doing so create both
heterocyclic groups in MBs (11). Such conclusions, however, appear to be premature for several
reasons. First, the reported spectra (11) only shows the presence of the C-terminal oxazolone

Methanobactins (MBs) are low molecular mass (<1,300 Da), post-translationally modified

copper acquisition system (1-7). Structurally MBs are characterized by the presence of a C-

copper binding peptides excreted by some methanotrophs as the extracellular component of a

Microbiology	

group, not the N-terminal oxazolone group as the 394 nm absorption maximum is missing.
Second, the absorption maximum at 302 nm, diagnostic for the presence of N-terminal
oxazolone group was absent (5, 8, 16). Third, no structural data was provided to support the
presence of both oxazolone groups. To examine if MbnBC act in concert and are involved in the
formation of both oxazolone groups in *M. trichosporium* OB3b, a deletion mutation for MnbC
was constructed (Δ*mbn*C). The results show MbnC is required for the formation of the Cterminal oxazolone group, but not for the formation of the N-terminal oxazolone group.

80

81 **RESULTS**

82 Generation of Δ*mbn*C

83 The $\Delta mbnAN$ strain previously constructed whereby *mbnABCMN* were deleted using a sucrose 84 counter selected technique (9), was back complemented with mbnABMN through selective 85 amplification and ligation of *mbnAB* with *mbnMN*, deleting *mbnC*, and inserting this ligation product into pTJS140, creating pWG104 (Table 1). Successful removal of mbnC from this 86 87 product was confirmed via sequencing (data not shown). The native σ^{70} -dependent promoter 88 upstream of *mbnA* was also incorporated into pWG104, and expression of *mbnABMN* but not 89 mbnC (from pWG104), as well as mbnPH (from the chromosome) was confirmed via RT-PCR 90 (Figs. S1 and S2).

91

UV-visible absorption and mass spectrometry of metal-free MB from M. trichosporium

- 92 **OB3b** Δ*mbnC* Comparison of the UV-visible absorption spectra of MB from *M. trichosporium*
- 93 OB3b Δ mbnC to wildtype MB-OB3b suggested the of presence of the N-terminal oxazolone
- 94 group, but the absence of C-terminal oxazolone (Figs. 1 and S3). The molecular mass of native,

95	full length MB-OB3b is 1154 Da, and MB-OB3b lacking the C-terminal Met is 1023 Da. It should
96	be noted that both forms of MB-OB3b are present in most MB-OB3b preparations (2, 5, 17).
97	The molecular mass of Δ MbnC was 1,018Da as determined by electrospray ionization (ESI)
98	MS/MS (Fig. 2), which was within 1Da of the predicted molecular mass of MB-OB3b in which
99	only one oxazolone group was formed. Taken together, the UV-visible absorption spectra and
100	molecular mass data suggest Δmbn C lacked the C-terminal Met as well as the N-terminal
101	oxazolone group with a 1-(<i>N</i> -[mercapto-(5-oxo-2-(3-methylbutanoyl)oxazol-(<i>Z</i>)-4-
102	ylidene)methyl]-GSCYPCSC predicted structure (Fig. 3B). In contrast to wild-type MB-OB3b, the
103	C-terminal Met was never observed in MbnC.
104	Chamical Structure of motal free AmhaC as determined by NNAD exectsoremy. Matal
104	chemical Structure of metal free Amone as determined by NMR spectroscopy. Metal-
104	free MB has multiple conformations, making structural studies of MBs via solution NMR or
104 105 106	free MB has multiple conformations, making structural studies of MBs via solution NMR or crystallography difficult (Fig. S4). In prior structural studies of MB, the addition of Cu ²⁺ (which is
104 105 106 107	free MB has multiple conformations, making structural studies of MBs via solution NMR or crystallography difficult (Fig. S4). In prior structural studies of MB, the addition of Cu ²⁺ (which is bound and reduced to Cu ¹⁺ by native MB-OB3b) stabilizes MB-OB3b into one conformation,
104 105 106 107 108	free MB has multiple conformations, making structural studies of MBs via solution NMR or crystallography difficult (Fig. S4). In prior structural studies of MB, the addition of Cu ²⁺ (which is bound and reduced to Cu ¹⁺ by native MB-OB3b) stabilizes MB-OB3b into one conformation, allowing for crystal formation and NMR characterization (Fig. S4) (2-5, 8, 18). Our initial efforts
104 105 106 107 108 109	free MB has multiple conformations, making structural studies of MBs via solution NMR or crystallography difficult (Fig. S4). In prior structural studies of MB, the addition of Cu^{2+} (which is bound and reduced to Cu^{1+} by native MB-OB3b) stabilizes MB-OB3b into one conformation, allowing for crystal formation and NMR characterization (Fig. S4) (2-5, 8, 18). Our initial efforts to investigate the structure of the MB intermediate produced by the $\Delta mbnC$ strain via NMR
104 105 106 107 108 109 110	free MB has multiple conformations, making structural studies of MBs via solution NMR or crystallography difficult (Fig. S4). In prior structural studies of MB, the addition of Cu^{2+} (which is bound and reduced to Cu^{1+} by native MB-OB3b) stabilizes MB-OB3b into one conformation, allowing for crystal formation and NMR characterization (Fig. S4) (2-5, 8, 18). Our initial efforts to investigate the structure of the MB intermediate produced by the $\Delta mbnC$ strain via NMR were unsuccessful. In contrast to native MB, the MB intermediate from the $\Delta mbnC$ strain
104 105 106 107 108 109 110 111	free MB has multiple conformations, making structural studies of MBs via solution NMR or crystallography difficult (Fig. S4). In prior structural studies of MB, the addition of Cu^{2+} (which is bound and reduced to Cu^{1+} by native MB-OB3b) stabilizes MB-OB3b into one conformation, allowing for crystal formation and NMR characterization (Fig. S4) (2-5, 8, 18). Our initial efforts to investigate the structure of the MB intermediate produced by the $\Delta mbnC$ strain via NMR were unsuccessful. In contrast to native MB, the MB intermediate from the $\Delta mbnC$ strain bound, but did not reduce Cu^{2+} to Cu^+ , resulting in peak broadening from paramagnetic Cu^{2+} .
104 105 106 107 108 109 110 111 112	free MB has multiple conformations, making structural studies of MBs via solution NMR or crystallography difficult (Fig. S4). In prior structural studies of MB, the addition of Cu^{2+} (which is bound and reduced to Cu^{1+} by native MB-OB3b) stabilizes MB-OB3b into one conformation, allowing for crystal formation and NMR characterization (Fig. S4) (2-5, 8, 18). Our initial efforts to investigate the structure of the MB intermediate produced by the $\Delta mbnC$ strain via NMR were unsuccessful. In contrast to native MB, the MB intermediate from the $\Delta mbnC$ strain bound, but did not reduce Cu^{2+} to Cu^+ , resulting in peak broadening from paramagnetic Cu^{2+} . This necessitated a different strategy. Substituting other metals with similar binding behavior
104 105 106 107 108 109 110 111 112 113	free MB has multiple conformations, making structural studies of MBs via solution NMR or crystallography difficult (Fig. S4). In prior structural studies of MB, the addition of Cu ²⁺ (which is bound and reduced to Cu ¹⁺ by native MB-OB3b) stabilizes MB-OB3b into one conformation, allowing for crystal formation and NMR characterization (Fig. S4) (2-5, 8, 18). Our initial efforts to investigate the structure of the MB intermediate produced by the $\Delta mbnC$ strain via NMR were unsuccessful. In contrast to native MB, the MB intermediate from the $\Delta mbnC$ strain bound, but did not reduce Cu ²⁺ to Cu ⁺ , resulting in peak broadening from paramagnetic Cu ²⁺ . This necessitated a different strategy. Substituting other metals with similar binding behavior for copper, Au ³⁺ , Zn ²⁺ , Co ²⁺ and Ni ²⁺ also failed to produce well-behaved complexes. Therefore,

115	At standard temperature and pressure, $\Delta mbnC$ undergoes exchange between multiple
116	conformations on an intermediate time scale, leading to excessive line broadening (Fig. S5). In
117	order to slow down the rate of exchange and reduce line broadening, we sampled various
118	temperature and hydrostatic pressure conditions. We found that 2D 1 H- 15 N NMR spectra of
119	Δmbn C recorded at high pressure (3000 bar) and low temperature (265 K) (18,19) show
120	significantly reduced line broadening and gave excellent spectra in the absence of copper (Fig.
121	4).

122 A series of NMR experiments were conducted on $\Delta mbnC$, including homonuclear 123 correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), rotating-frame nuclear Overhauser effect spectroscopy (ROESY), ¹H-¹⁵N and ¹H-¹³C heteronuclear single-quantum 124 125 correlation spectroscopy (HSQC), and heteronuclear multiple-bond correlation spectroscopy (HMBC). These experiments enabled assigning all non-hydroxyl ¹H, non-conjugated ¹³C, and all 126 ¹⁵N resonances (Table 2 and Figs.4 and S6). The assigned chemical shifts show that the MB from 127 128 ΔmbnC contains 8 amino acids - 3Cys, 2Ser, 1Gly, 1Tyr and 1Pro and 1 oxazolone group (Fig. 4). The 1D ¹⁵N experiment showed a peak at 109ppm that was absent from the [¹H, ¹⁵N]-HSQC 129 130 spectra and was assigned to proline. However, the glycine nitrogen peak was especially broad, and could only be assigned with the ¹H-¹⁵N-HSQC. Finally, while the 1D ¹⁵N experiment had 131 132 several resonances around 180ppm - likely due to hydrolysis and deprotonation - only one of them had a correlation with ¹H in the ¹H-¹⁵N-HSQC indicating a single oxazolone group. The 133 134 NMR results are consistent with the UV-visible absorption spectra, and the ESI-MS results and 135 with the structure shown in Fig. 3B.

136 **DISCUSSION**

137	Due to the variability in the core sequences of structurally characterized MBs, it is
138	difficult to use <i>mbnA</i> to screen the potential ability of microbes to produce MB. Instead, <i>mbnB</i>
139	and <i>mbn</i> C sequences are commonly used as they are found in all known <i>mbn</i> gene clusters (5,
140	13). All known MBs contain two heterocyclic rings, with the N-terminal ring found to be either
141	an oxazolone, pyrazinedione or imidazolone ring, while the C-terminal ring always found to be
142	an oxazolone. Given these data, it could be presumed that MbnBC is involved in the formation
143	of the C-terminal oxazolone group along with an associated thioamide, while the N-terminal
144	oxazolone groups is formed via a different process such as the involvement of an
145	aminotransferase as concluded earlier (5, 9, 10, 13).
146	Other researchers have attempted to elucidate the role of MbnB and MbnC in
147	methanobactin maturation (11). These individuals were unable to separately heterologously
148	express soluble protein from either MbnB or MbnC , but were able to co-heterologously
149	expressed MbnBC as a heterodimeric complex. In studies where the MbnA precursor
150	polypeptide was incubated with this MbnBC complex, the authors conclude that MbnBC was
151	involved in the formation of both oxazolone groups and the associated thioamides of MB-OB3b.
152	It should be noted, however, that in this study, no structural evidence (i.e., solution NMR data)
153	was provided to definitively show the presence of either ring, rather such conclusions were
154	largely based on mass spectral analyses of MbnA after incubation with the MbnBC complex.
155	Further, the authors assumed that since their construct did not contain the N-terminal
156	aminotransferase, MbnN, the extended conjugation resulting from this reaction would result in
157	both oxazolone groups having identical absorption maxima. The idea that the extended

< 70	160	(5). Kenny <i>et al</i> . used this theory to bolster their claim that both oxazolone groups were
spte	161	present in the product from their heterologous system, with both oxazolone groups showing
Acce	162	the identical absorption spectra (11). The evidence to support this claim came from their
	163	△mbnN strain in M. trichosporium OB3b. MbnN is responsible for the deamination of the N-
	164	terminal Leu in <i>M. trichosporium</i> OB3b extending the conjugation one additional double bond.
	165	In this study the authors claim they can stabilize the MB produced by the $\Delta mbnN$ strain by the
	166	addition of copper before purification. UV-visible absorption spectra of copper containing-
ental	167	Δ MbnN suggest the possible presence of two-oxazolone groups but additional evidence no
vironm logy	168	additional evidence was provided supporting this claim.
and En icrobio	169	This observation was surprising as the MB produced by <i>AmbnN</i> strain in our laboratory
plied o M	170	showed similar UV-visible absorption spectra throughout the growth cycle suggesting the
Αþ	171	absence of the N-terminal oxazolone group (Fig. S7). In addition, the UV-visible absorption
	172	spectra, LC-MS/MS, FT-ICR-MS, amino acid analysis, number of thiol groups, copper binding
	173	properties, and pattern of acid hydrolysis demonstrate the absence of the N-terminal
	174	oxazolone group in Δ MbnN (9).

159

Additional evidence that the bathochromic shift in MBs with two oxazolone groups is
unlikely to solely arise from the addition of one double bond following deamination of the Nterminal amine comes from examination of the group I MB from *Methylocystis parvus* OBBP.
Acid hydrolysis of the MB from *M. parvus* OBBP shows a similar hydrolysis pattern to that
observed with the MB from *M. trichosporium* OB3b, demonstrating the presence of two

conjugation of the N-terminal oxazolone could be responsible for the bathochromic shift was

first proposed as a possible reason for the 50nm shift in the absorption maxima by Krentz et al.

180	oxazolone groups, with absorption maxima at 340 and 390nm (Fig. S8). However, both MB
181	operons from <i>M. parvus</i> OBBP lack <i>mbnN</i> and without deamination of the N-terminal Phe, the
182	conjugation around the N-terminal oxazolone group would not be extended. It is possible that
183	another aminotransferase in the <i>M. parvus</i> OBBP genome may catalyze deamination of the N-
184	terminal Phe. However, this appears unlikely as deamination of the N-terminal amino acid has
185	never been observed in structurally characterized MBs from operons lacking mbnN (3, 5). The
186	results suggest deamination of the N-terminal amino acid is not solely responsible for the 40 –
187	50nm absorption maxima difference between oxazolone groups in MBs. The absence of either
188	the N-terminal or C-terminal oxazolone group in a small (0.5-2%) fraction of most MB-OB3b
189	preparations (Fig. S3) also questions the suggestion that the absorption maxima difference
190	between the N-terminal and C-terminal oxazolone groups is due solely to extending the
191	conjugation of an additional double bond introduced following the deamination reaction.
192	The results presented here confirms MbnC is required for the formation of the C-
193	terminal oxazolone group (Fig. 5). However, the results presented here also demonstrates
194	MbnC is not required for the formation of the N-terminal oxazolone group in <i>M. trichosporium</i>
195	OB3b suggesting the formation of the two hetercyclic groups with associated thioamides from
196	XC dipeptides do not utilize the same enzyme(s). Future studies will determine if MbnB is
197	involved in the formation of the N-terminal oxazolone, pyranzinedione or imidazolone groups.
198	Resolution of the pathway and enzymes responsible for the post-translational modifications
199	required for the synthesis of MB in methanotrophic bacteria will aid in the production of MBs
200	derivatives with pharmacological properties specific for different metal-related diseases (19-24)
201	as well as for environmental applications(10, 25).

AEM

202

203 MATERIALS AND METHODS

204 Bacterial strains, growth media, and culture conditions.

205	Plasmid construction was accomplished using Escherichia coli strain TOP10 (Invitrogen, Carlsbad,
206	CA) as described previously (9). Plasmids used and constructed during this study are shown in
207	Table 1. The donor strain for conjugation of plasmids into Methylosinus trichosporium OB3b
208	was <i>E. coli</i> S17-1 (26). <i>E. coli</i> strains were cultivated at 37°C in Luria broth medium (Dot
209	scientific, Burton, MI). Methanotrophic strains (i.e., <i>M. trichosporium</i> OB3b wildtype, <i>M.</i>
210	trichosporium OB3b Δ mbnAN, M. trichosporium OB3b Δ mbnC, Methylocystis sp. strain SB2,
211	and Methylocystis parvus OBBP) were cultivated at 30°C on nitrate mineral salts (NMS) medium
212	(27), either in 250 ml flasks with side-arms at 200 rpm or in a 15-liter New Brunswick Bioflow
213	310 fermenter (Eppendorf, Hauppauge, NY,USA) using methane as the sole carbon and energy
214	source. Where necessary, filter-sterilized solutions of copper (as $CuCl_2$) and spectinomycin were
215	added to culture media aseptically. A working concentration of 20 μ g \bullet ml ⁻¹ spectinomycin was
216	used for maintaining pWG104 in the <i>M. trichosporium</i> OB3b \triangle <i>mbn</i> AN deletion mutant (i.e., M.
217	<i>trichosporium</i> OB3b Δ <i>mbnC</i>). Chemicals were purchased from Fisher Scientific (Waltham, MA)
218	or Sigma Aldrich (St. Louis, MO) with American Chemical Society reagent grade or better.
219	For 15 N NMR, K 14 NO ₃ in NMS media was replaced with K 15 NO ₃ (Cambridge Isotope
220	Laboratories, Cambridge, MA, USA).
221	

222 General DNA Methods, transformation and conjugation.

223	DNA purification and plasmid extraction were performed using QIAquick and QIAprep kits from
224	Qiagen following the manufacturer's instruction. DNA cloning, preparation of chemically
225	competent cells, and plasmid transformation with <i>E. coli</i> were performed according to (28).
226	Enzymes used for restriction digestion and ligation were purchased from New England Biolabs
227	(Ipswich, MA). PCR of DNA for cloning purposes was accomplished using iProof-High Fidelity
228	polymerase (Bio-Rad, Hercules, CA, USA). PCR for general purposes was accomplished using
229	GoTaq DNA polymerase (Promega, Fitchburg, WI, USA). PCR programs were set according to
230	manufacturers' suggestion. Plasmid pWG104 was conjugated into M. trichosporium OB3b
231	$\Delta mbnAN$ with <i>E. coli</i> S17.1 as the donor strain as described by Martin and Murrell (29).
232	
233	Construction of <i>M. trichosporium</i> OB3b Δ <i>mbnC</i> strain
233 234	Construction of <i>M. trichosporium</i> OB3b <i>A mbnC</i> strain Previously a mutant of <i>M. trichosporium</i> was constructed where <i>mbnABCMN</i> was deleted using
233 234 235	Construction of M. trichosporium OB3b △ mbnC strain Previously a mutant of M. trichosporium was constructed where mbnABCMN was deleted using a counter-selection technique (9). To characterize the function of mbnC, a △ mbnC mutant was
233234235236	Construction of M. trichosporium OB3b △ mbnC strain Previously a mutant of M. trichosporium was constructed where mbnABCMN was deleted using a counter-selection technique (9). To characterize the function of mbnC, a △ mbnC mutant was constructed by introducing pWG104 expression vector into the △ mbnAN mutant. pWG104 was
 233 234 235 236 237 	Construction of M. trichosporium OB3b △ mbnC strain Previously a mutant of M. trichosporium was constructed where mbnABCMN was deleted using a counter-selection technique (9). To characterize the function of mbnC, a △ mbnC mutant was constructed by introducing pWG104 expression vector into the △ mbnAN mutant. pWG104 was constructed by cloning two separate DNA fragments, one being a 1.9-kb DNA fragment of
 233 234 235 236 237 238 	Construction of M. trichosporium OB3b △ mbnC strain Previously a mutant of M. trichosporium was constructed where mbnABCMN was deleted using a counter-selection technique (9). To characterize the function of mbnC, a △ mbnC mutant was constructed by introducing pWG104 expression vector into the △ mbnAN mutant. pWG104 was constructed by cloning two separate DNA fragments, one being a 1.9-kb DNA fragment of mbnAB (created via use of primers mbnANf and mbn66) and the other being a 2.5 DNA
 233 234 235 236 237 238 239 	Construction of M. trichosporium OB3b △ mbnC strain Previously a mutant of M. trichosporium was constructed where mbnABCMN was deleted using a counter-selection technique (9). To characterize the function of mbnC, a △ mbnC mutant was constructed by introducing pWG104 expression vector into the △ mbnAN mutant. pWG104 was constructed by cloning two separate DNA fragments, one being a 1.9-kb DNA fragment of mbnAB (created via use of primers mbnANf and mbn66) and the other being a 2.5 DNA fragment of mbnMN (create via use of primers mbn70 and mbnANr), leaving out mbnC. These
 233 234 235 236 237 238 239 240 	 Construction of <i>M. trichosporium</i> OB3b <i>AmbnC</i> strain Previously a mutant of <i>M. trichosporium</i> was constructed where <i>mbnABCMN</i> was deleted using a counter-selection technique (9). To characterize the function of <i>mbnC</i>, a <i>AmbnC</i> mutant was constructed by introducing pWG104 expression vector into the <i>AmbnAN</i> mutant. pWG104 was constructed by cloning two separate DNA fragments, one being a 1.9-kb DNA fragment of <i>mbnAB</i> (created via use of primers mbnANf and mbn66) and the other being a 2.5 DNA fragment of <i>mbnMN</i> (create via use of primers mbn70 and mbnANr), leaving out <i>mbnC</i>. These two fragments were amplified with BamHI restriction sites as indicated in Fig S2. These were
 233 234 235 236 237 238 239 240 241 	Construction of M. trichosporium OB3b △mbnC strain Previously a mutant of M. trichosporium was constructed where mbnABCMN was deleted using a counter-selection technique (9). To characterize the function of mbnC, a △mbnC mutant was constructed by introducing pWG104 expression vector into the △mbnAN mutant. pWG104 was constructed by cloning two separate DNA fragments, one being a 1.9-kb DNA fragment of mbnAB (created via use of primers mbnANf and mbn66) and the other being a 2.5 DNA fragment of mbnMN (create via use of primers mbn70 and mbnANr), leaving out mbnC. These two fragments were amplified with BamHI restriction sites as indicated in Fig S2. These were then ligated together and cloned into the broad host range vector pTJS140 at the KpnI site.

Extraction of RNA and reverse transcription-PCR (RT-PCR) 243

244	To check the expression of genes restored to the <i>M. trichosporium</i> OB3b Δ <i>mbnC</i> mutant (e.g.
245	mbnA, B, M and N), genes associated with MB remaining in the chromosome (mbnPH), as well
246	as the absence of <i>mbnC</i> , RNA from the Δ <i>mbnC</i> mutant was collected, purified, and reverse
247	transcribed to cDNA to perform RT-PCR. Total RNA was isolated as described earlier (9). Briefly,
248	the $\Delta mbnC$ mutant was grown to the exponential phase, and RNA extracted using a phenol-
249	chloroform method modified from Griffiths et al. (30). Collected RNA was purified and removal
250	of DNA confirmed by the absence of 16S rRNA PCR product from PCR reactions. The same
251	amount of RNA (500ng) was used for reverse transcription by SuperScript III reverse
252	transcriptase (Invitrogen, Carlsbad, CA) for all reactions. RT-PCR analyses were performed to
253	confirm the expression of <i>mbnABMNPH</i> as well as the absence of <i>mbnC</i> using primers listed in
254	Table 1.
255	
256	Isolation of MB from M. trichosporium OB3b, Methylocystis strain SB2, Methylocystis
257	<i>parvaus</i> OBBP and $\Delta mbnC$. MBs from all three methanotrophs were purified as previously
258	described (31).
259	UV-visible absorption spectra. UV-visible absorption spectra of MbnC ⁻ , HPLC fractions
260	from MB preparations from <i>M. trichosporium</i> OB3b and <i>Methylocystis strain</i> SB2 and from the
261	MB from <i>M. parvus</i> OBBP were determined as previously describes (32, 33). Acid hydrolysis of
262	the oxazolone groups in the MB from <i>M. parvus</i> OBBP was carried out in 85μ M acetic acid as
263	previously described (32)
264	Structural Characterization of Δ MbnC. UV-visible spectroscopy was recorded on a Cary
265	50 (Agilent, Santa Clara, CA, USA). Electrospray ionization (ESI)MS/MS was performed on an

266	Agilent LC using a Thermo Scientific Q Exactive Hybrid Quadrupole-Orbitrap Mass Spectrometer
267	(Waltham, MA, USA) with an HCD fragmentation cell and an Agilent 1260 Infinity Capillary
268	Pump with an Agilent Zorbax SB-C18, 0.5mm x 150mm, 5 micron, using 0.1% formic acid/water
269	and 0.1% formic acid/acetonitrile as buffers A and B, respectively. NMR experiments were
270	performed on a Bruker Advance 700 (Bruker Allentown PA, USA) with a Bruker 5 mm TCI 700
271	H/C/N cryoprobe or on a Bruker Advance 800 with a Bruker 5 mm TCI 800 H/C/N cryoprobe.
272	NMR solutions were made using 15-40mg uniformly 15 N-MB-OB3b in a 90:10 H ₂ 0:D ₂ O mixture
273	at pH 6.5. Unless otherwise specified, all experiments were run at 265 K and 3 kbar. Samples
274	were placed in 3 kbar-rated sapphire NMR tubes (Daedalus Innovations LLC, Beverdam, VA, USA)
275	and high pressure was generated by an Xtreme 60 (Daedalus Innovations). Analysis was
276	performed in Mnova (Mestrelab Research, Escondido, CA, USA).
277	
278	ACKNOWLEDGEMENTS
279	Funding: This research was supported by the U.S. Department of Energy Office of Science

(Grants #DE-SC0018059 and DE-SC0020174; JDS and AAD), the National Science Foundation

and the ISU Bailey Research and Career Development (TAB). Use of the Bruker Advance 800 was

(Grant #1912482; JDS), the Roy J. Carver Charitable Trust (Muscatine, IA, USA) (JR)

made possible through a generous gift from the Roy J. Carver Charitable Trust.

Competing interests: Authors declare they have no competing interests.

285

280

281

282

283

284

286 **REFERENCES**

287	1.	DiSpirito AA, Semaru JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S. 2016.
288		Methanobactin and the link between copper and bacterial methane oxidation. Microbiol
289		Mol Biol Rev 80:387-409.
290	2.	El Ghazouani A, Basle A, Firbank SJ, Knapp CW, Gray J, Graham DW, Dennison C.
291		2011. Copper-binding properties and structures of methanobactins from Methylosinus
292		trichosporium OB3b. Inorg Chem 50:1378-91.
293	3.	El Ghazouani A, Basle A, Gray J, Graham DW, Firbank SJ, Dennison C. 2012.
294		Variations in methanobactin structure influences copper utilization by methane-oxidizing
295		bacteria. Proc Natl Acad Sci U S A 109:8400-4.
296	4.	Kim HJ, Graham DW, DiSpirito AA, Alterman MA, Galeva N, Larive CK, Asunskis D,
297		Sherwood PM. 2004. Methanobactin, a copper-acquisition compound from methane-
298		oxidizing bacteria. Science 305:1612-5.
299	5.	Krentz BD, Mulheron HJ, Semrau JD, DiSpirito AA, Bandow NL, Haft DH, Vuilleumier
300		S, Murrell JC, McEllistrem MT, Hartsel SC, Gallagher WH. 2010. A comparison of
301		methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain SB2
302		predicts methanobactins are synthesized from diverse peptide precursors modified to
303		create a common core for binding and reducing copper ions. Biochemistry 49:10117-
304		10130.
305	6.	Semau JD, DiSpirito AA, Obulisamy PK, Kang CS. 2020. Methanobactin from
306		methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol
307		Lett 367:feaa045.
308	7.	Semrau JD, DiSpirito AA, Gu W, Yoon S. 2018. Metals and Methanotrophy. Appl
309		Environ Microbbiol 84:e02289-17.

310	8.	Behling LA, Hartsel SC, Lewis DE, DiSpirito AA, Choi DW, Masterson LR, Veglia G,
311		Gallagher WH. 2008. NMR, mass spectrometry and chemical evidence reveal a different
312		chemical structure for methanobactin that contains oxazolone rings. J Am Chem Soc
313		130:12604-5.
314	9.	Gu W, Baral BS, DiSpirito AA, Semrau JD. 2017. An aminotransferase is responsible for
315		the deamination of the N-terminal leucine and required for formation of oxazolone ring A
316		in Methanobactin of Methylosinus trichosporium OB3b. Appl Environ Microbiol
317		82:e01619-16.
318	10.	Semrau JD, DiSpirito AA, Obulisamy PK, Kang-Yun CS. 2020. Methanobactin from
319		methanotrophs: genetics, structure, function and potential applications. FEMS Microbiol
320		Lett 367:fnaa045.
321	11.	Kenney GE, Dassama LMK, Pandelia M-E, Gizzi AS, Martinie RJ, Gao P, DeHart CJ,
322		Schachner LF, Skinner OS, Ro SY, Zhu X, Sadek M, Thomas PM, Almo SC, Bollinger
323		MJ, Krebs C, Kelleher NL, Rosenzweig AC. 2018. The biosynthesis of methanobactin.
324		Science 359:1411-1616.
325	12.	Gu W, Farhan U-HM, Baral BS, Turpin EA, Bandow NL, DiSpirito AA, Lichtmannegger
326		J, Kremmer E, Zischka H, Semaru JD. 2016. A TonB dependent transporter is
327		responsible for methanobactin uptake by Methylosinus trichosporium OB3b. Appl
328		Environ Microbiol 82:1917-1923.
329	13.	Kenney GE, Rosenzweig AC. 2013. BMC Biol 11:17.
330	14.	Chou JC-C, Strafford VE, Kenny GE, Dassama LMK. 2021. The enzymology of
331		oxazolone and thioamide synthesis in Methanobactin. Meth Enzymol 656:341-373.

332	15.	Choi DW, Do YS, Zea CJ, McEllistrem MT, Lee SW, Semrau JD, Pohl NL, Kisting CJ,
333		Scardino LL, Hartsel SC, Boyd ES, Geesey GG, Riedel TP, Shafe PH, Kranski KA,
334		Tritsch JR, Antholine WE, DiSpirito AA. 2006. Spectral and thermodynamic properties
335		of Ag(I), Au(III), Cd(II), Co(II), Fe(III), Hg(II), Mn(II), Ni(II), Pb(II), U(IV), and Zn(II)
336		binding by methanobactin from Methylosinus trichosporium OB3b. J Inorg Biochem
337		100:2150-61.
338	16.	Eckert P, Jobs A, Semaru JD, DiSpirito AA, Richards J, Sarangi R, Herndon E, Gi B,
339		Pierce EM. 2021. Spectroscopic and computational investigations of organometallic
340		complexation of group 12 transition metals by methanobactins from <i>Methylocystis</i> sp.
341		SB2. J Inorgan Biochem https://doi.org/10.1016/j.jinorgbio.2021.111496.
342	17.	Bandow NL, Gallagher WH, Behling L, Choi DW, Semrau JD, Hartsel SC, Gilles VS,
343		Dispirito AA. 2011. Isolation of methanobactin from the spent media of methane-
344		oxidizing bacteria. Meth Enzymol 495:259-69.
345	18.	Kenney GE, Goering AW, Ross MO, DeHart CJ, Thomas PM, Hoffman BM, Kelleher
346		NL, Rosenzweig AC. 2016. Characterization of methanobactin from Methylosinus sp.
347		SW4. J Am Chem Soc 138:11124 - 11127.
348	19.	Zischka H, Lichmannnegger J, DiSpirito AA, Semrau JD. 2020. Methods and Means of
349		Treating Copper Related Diseases. International.
350	20.	Zischka H, Lichtmannegger J, Schmitt S, Jagemann N, Schulz S, Wartini D, Jennen L,
351		Rust C, Larochette N, Galluzzi L, Chajes V, Bandow N, Gilles VS, DiSpirito AA,
352		Esposito I, Goettlicher M, Summer KH, Kroemer G. 2011. Liver mitochondrial
353		membrane crosslinking and destruction in a rat model of Wilson disease. J Clin Invest
354		121:1508-18.

355	21.	Lichmannegger J, Leitinger C, Winner R, Schmitt S, Schulz S, Kabiri Y, Eberhagen C,
356		Rieder T, Janik D, Neff F, Aichler M, DiSpirito AA, Bandow NL, Baral BS, Flatler A,
357		Kremmer E, Denk G, Hohenester S, Eckardt-Schupp F, Dencher N, Adamski J, Merle U,
358		Gotthardt DN, Kroemer G, Weiss KH, Zischka H. 2016. Methanobactin: a new effective
359		treatment strategy against acute liver failure in a Wilson disease rat model. J Clin Inves
360		126:2721-2735.
361	22.	Choi DW, Semrau JD, Antholine WE, Hartsel SC, Anderson RC, Carey JN, Dreis AM,
362		Kenseth EM, Renstrom JM, Scardino LL, Van Gorden GS, Volkert AA, Wingad AD,
363		Yanzer PJ, McEllistrem MT, de la Mora AM, DiSpirito AA. 2008. Oxidase, superoxide
364		dismutase, and hydrogen peroxide reductase activities of methanobactin from types I and
365		II methanotrophs. J Inorg Biochem 102:1571-80.
366	23.	Summer KH, Lichtmannegger J, Bandow N, Choi DW, DiSpirito AA, Michalke B. 2011.
367		The biogenic methanobactin is an effective chelator for copper in a rat model for Wilson
368		disease. J Trace Elem Med Biol 25:36-41.
369	24.	Mullert J-C, Lichtmannegger J, Zischka H, Sperling M, Karst U. 2018. High spatial
370		resolution of LA-ICP-MS demonstrates massive liver copper depletion in Wilson disease
371		rats upon methanobactin treatmenty. J Trace Elem Med Biol 49:119-127.
372	25.	Lu X, Gu W, Zhao L, Fagan UHM, DiSpirito AA, Semrau JD, Gu B. 2017.
373		Methylmercury uptake and degradation by methanotrophs. Science Adv 3:e1700041.
374	26.	Simon R. 1984. High frequency mobilization of gram-negative bacterial replicons by the
375		in vitro constructed Tn5-Mob transposon. Mol Gen Genet 196:413-420.
376	27.	Whittenbury R, Phillips KC, Wilkinson JF. 1970. Enrichment, isolation and some
377		properties of methane-utilizing bacteria. J Gen Microbiol 61:205-18.

378	28.	Sambrook J, Russell DW. 2001. Molecular cloning: a laboratory manual 3rd edition.
379		Coldspring-Harbor Laboratory Press, UK.
380	29.	Martin H, Murrell JC. 1995. Methane monooxygenase mutants of Methylosinus
381		trichosporium constructed by marker-exchange mutagenesis. FEMS Lett 127:243 - 248.
382	30.	Griffiths RI, Whiteley AS, O'Donnell AG, Bailey MJ. 2000. Rapid method for
383		coextraction of DNA and RNA from natural environments for analysis of ribosomal
384		DNA-and rRNA-based microbial community composition. Appl Environ Microbiol
385		66:5488-5491.
386	31.	Dershwiz P, Bandow NL, Yang J, Semaru JD, McEllistrem MT, Heinze RA, Fonseca M,
387		Ledesma JC, Jennett JR, D'iSpirito AM, Athwal NS, Hargrove MS, Bobik TA, Zischka
388		H, DiSpirito AA. 2021. Oxygen generation via water splitting by a novel biogenic metal
389		ion binding compound. Appl Environ Microbiol 87:eoo286-21.
390	32.	Bandow N, Gilles VS, Freesmeier B, Semrau JD, Krentz B, Gallaghe W, McEllistrem
391		MT, Hartse SC, Cho DW, Hargrove MS, Heard TM, Chesner LM, Braunreiter KM, Cao
392		BV, Gavitt MM, Hoopes JZ, Johnson JM, Polster EM, Schoenick BD, A.M. U, DiSpirito
393		AA. 2012. Spectral and copper binding properties of methanobactin from the facultative
394		methanotroph Methylocystis strain SB2. J Inorgan Biochem 110:72 - 82.
395	33.	Choi DW, Zea CJ, Do YS, Semrau JD, Antholine WE, Hargrove MS, Pohl NL, Boyd ES,
396		Geesey GG, Hartsel SC, Shafe PH, McEllistrem MT, Kisting CJ, Campbell D, Rao V, de
397		la Mora AM, Dispirito AA. 2006. Spectral, kinetic, and thermodynamic properties of
398		Cu(I) and Cu(II) binding by methanobactin from Methylosinus trichosporium OB3b.
399		Biochemistry 45:1442-53.

400	34.	Smith TJ, Slade SE, Burton NP, Murrell JC, Dalton H. 2002. Improved system for
401		protein engineering of the hydroxylase component of soluble methane monooxygenase.
402		Applied and environmental microbiology 68:5265-5273.
403	35.	Semrau JD, Jagadevan S, DiSpirito AA, Khalifa A, Scanlan J, Bergman B, Freemeir BC,
404		Baral BS, Bandow NL, Vorobev A, Haft DH, Vuilleumier S, Murrell JC. 2013.
405		Methanobactin and MmoD work in concert to act as the "copper switch" in
406		methanotrophs. Environ Microbiol 15:3077 - 3086.
407		

409 Figure Legends

410	Fig. 1. UV-visible absorption spectra of MB-OB3b (blue) and Δ MbnC (red). Abbreviations; OxaA,
411	oxazolone A or the N-terminal oxazolone group; OxaB, oxazolone B or the C-terminal
412	oxazolone group.
413	Fig. 2. LC-ESI-MS of methanobactin from $\Delta mbnC$.
414	
415	Fig 3 (A) Structure of wild-type MB-OB3b, with the labile terminal methionine in gray. (B)
416	Proposed structure of Δ MbnC based on UV-visible absorption spectra, LC-MS and NMR
417	analysis, the differences between MB-OB3b-Met and Δ MbnC are highlighted in red. C.
418	Amino acid sequence of (a) wild-type MB-OB3b minus the C-terminal Met and (b) Δ MbnC.
419	
420	Fig. 4. 800 MHz (1 H, 15 N)-HSQC spectrum of uniformly 15 N-labeled Δ MbnC in 90% 9 mM
421	phosphate buffer, pH 6.5, and 10% D_2O at 265K and 3000 bar. The horizontal and vertical
422	1D spectra are ¹ H and ¹⁵ N spectra, respectively.
423	
424	Fig. 5. A. MB-OB3b gene cluster. Genes with known involvement in MB-OB3b synthesis and
425	transport are shown in blue. B. Proposed genes involved in the biosynthesis of the
426	oxazolones rings with associated thioamides from MbnA. Additional, yet to be identified
427	genes may also be involved in the formation of oxazolone groups.
428	

Table 1. Strains, plasmids, and primers used in this study	Table 1.	Strains,	plasmids,	and	primers	used in	this stud	y.
--	----------	----------	-----------	-----	---------	---------	-----------	----

Strains/Plasmids	Description	Restriction site	Reference/Source
Escherichia coli			
TOP10	F– mcrA Δ(mrr-hsdRMS-mcrBC) Φ80lacZΔM15 ΔlacX74 recA1 araD139 Δ(ara leu) 7697 galU galK rpsL (StrR) endA1 nupG		Invitrogen
S17.1 λpir	recA1 thi pro hsdR- RP4-2Tc::Mu Km::Tn7 λpir		(26)
Methylosinus trichosporium			
OB3b	Wild-type strain		
$\Delta mbnAN$	mbnABCMN deleted		(9)
$\Delta mbnC$	$\Delta mbnAN$ carrying pWG104		this study
Plasmids			
pTJS140	Broad-host-range cloning vector; Mob Apr Spr Smr lacZ		(34)
pWG104	pTJS140 carrying mbnABMN with its native promoter		this study
Primers			
mbnANf	ATTTTTggtaccGACGTTCGGGTCTTCTTCGC	KpnI	(9)
mbnANr	ATTTTTggtaccCGCCTCTAGATCATTCCGAC	KpnI	(9)
mbn66	ATTTTTggatccCGAACAATGTGTGCCAGTAG	BamHI	this study
mbn70	ATTTTTggatccGTTCGGCTATTTCCTGACGC	BamHI	this study
qmbnA_FO	TGGAAACTCCCTTAGGAGGAA		(35)
qmbnA_RO	CTGCACGGATAGCACGAAC		(35)
qmbnB_F1	TGGTCCAGCAGATGATCAAAG		this study
qmbnB_R2	TTCCCGAGCTTCTCCAATTC		this study
dmbnC_F	GGGAGAACAACCTCGCTTT		this study

dmbnC_R	CTTCCCAGCACGATCTGAC	this study
qmbnM_F	GCTAGGCTGGCTCCTTTATC	this study
qmbnM_R	GATGTTGACCACAAACCGAAAG	this study
qmbnN_F	CGATTCCATCCTTTCCGATGT	this study
qmbnN_R	CACTTTCGAAGACAAGGAGAGA	this study
qmbnP_F	AAAGGGAAGCACACACCCAT	this study
qmbnP_R	GTCGTGTTCTTGGCCGGATT	this study
qmbnH_F	ACTTACCGAAATACATCCCGC	this study
qmbnH_R	CGGAGAGGCGCTTATCGTAG	this study
431 432		
433		

	Chemical Shifts (ppm)					Chemical Shifts (ppm)			
Residue	Atom	<u>¹Н</u>	¹³ C	¹⁵ N	Residue	Atom	^{1}H	¹³ C	¹⁵ N
3-Methyl-	C		174.6		Tyr ⁴	H [™]	7.44		
butanoyl	C ²		50.5			Η ^α	2.96		
	C ³		38.0			Η ^β	2.79		
	C^4		19.6			H ^β	1.20		
	C⁵		19.6			H ^{2,6}	6.11		
	H ²	4.15				H ^{3,5}	6.45		
	H ³	2.17			Pro⁵	N ¹			109.6
	H ³	2.72				C ²		67.3	
	H^4	1.88				C ³		21.1	
	H⁵	1.80				C^4		39.5	
Oxazolone	Ν			180.1		C ⁵		55.2	
	Η ^N	7.61				H ²	3.67		
Gly ¹	Ν			125.1		H ³	1.06		
	С					H ³	2.13		
	C^{α}		26.6			H^4	1.28		
	H^N	9.57				H^4	2.29		
	H ^α	1.46				Η ⁵	2.79		
Ser ²	N			114.3		H⁵	2.96		
	С		181.6		Cys ⁶	N			127.9
	Cα		72		-	С		136.3	
	C ^β					C ^α		53.3	
	H ^ℕ	8.19				C^{β}		49.3	
	H ^α	4.14				Η ^N	8.43		
	H ^β	3.98				H ^α	3.96		
	H ^β	1.41				H ^β	3.23		
Cvs ³	N			118.1		H ^β	1.38		
	С		173.0		Ser ⁷	N	-		117.5
	C ^α		71.2			С			
	C^{β}		35.6			Cα		51.6	
	H^N	7.93				C ^β		45.0	
	H ^α	3.96				Н ^N	8.90		

435 **Table 2.** ¹H, ¹³C, and ¹⁵N resonances for metal free Δ MbnC.

AEM

	H ^β	3.23				H ^α	4.19		
	H ^β	1.37				H ^β	3.25		
Tyr ⁴	Ν			121.5		H ^β	1.48		
	С				Cys ⁸	Ν			112.4
	C^{α}		48.9			С		172.6	
	C^{β}		35.6			Cα		42.3	
	C^1					C ^β		21.1	
	C ^{2,6}					Η ^N	8.47		
	C ^{3,5}		135.4			Η ^α	3.69		
	C^4					H ^β	3.55		
						H ^β	0.97		

436

Applied and Environmental Microbiology

		Chemical Shifts (ppm)			_		Chemical Shifts (ppm)		
Residue	Atom	<u>¹Н</u>	<u>¹³C</u>	¹⁵ N	Residue	Atom	<u>¹Н</u>	<u>¹³C</u>	¹⁵ N
3-Methyl-	C1		174.6		Tyr ⁴	H ^N	7.44		
butanoyl	C ²		50.5			H ^α	2.96		
	C ³		38.0			H ^β	2.79		
	C^4		19.6			H ^β	1.20		
	C⁵		19.6			H ^{2,6}	6.11		
	H ²	4.15				H ^{3,5}	6.45		
	H ³	2.17			Pro⁵	N ¹			109.6
	H ³	2.72				C ²		67.3	
	H^4	1.88				C ³		21.1	
	H⁵	1.80				C^4		39.5	
Oxazolone	Ν			180.1		C⁵		55.2	
	H^{N}	7.61				H^2	3.67		
Gly ¹	Ν			125.1		Η ³	1.06		
	С					Η ³	2.13		
	C ^α		26.6			H^4	1.28		
	H^{N}	9.57				H^4	2.29		
	H ^α	1.46				H⁵	2.79		
Ser ²	Ν			114.3		H⁵	2.96		
	С		181.6		Cys ⁶	N			127.9
	C ^α		72			С		136.3	
	C ^β					C ^α		53.3	
	H^N	8.19				C ^β		49.3	
	H ^α	4.14				H ^ℕ	8.43		
	H ^β	3.98				H ^α	3.96		
	H ^β	1.41				H ^β	3.23		
Cys ³	N			118.1		H ^β	1.38		
	С		173.0		Ser ⁷	N			117.5
	C ^α		71.2			С			
	C^{β}		35.6			C ^α		51.6	
	H^{N}	7.93				C^{β}		45.0	
	H ^α	3.96				H^N	8.90		
	H ^β	3.23				H ^α	4.19		

Table 2. $^{1}\text{H},\,^{13}\text{C},\,\text{and}\,\,^{15}\text{N}$ resonances for metal free $\Delta\text{MbnC}.$

-	
2	
Ľ,	
æ	
Ξ	
5	2
Ĕ	6
≥	-
Fi.	. 7
	+
2	÷
5	
0	2
ð	
=	
8	
4	

Tyr ⁴	Ν	12:	1.5	H ^β	1.48		
	С		Cys ⁸	Ν			112.4
	C ^α	48.9		С		172.6	
	C ^β	35.6		Cα		42.3	
	C ¹			C ^β		21.1	
	C ^{2,6}			H ^ℕ	8.47		
	C ^{3,5}	135.4		H ^α	3.69		
	C^4			H ^β	3.55		
				H ^β	0.97		

AEM

Applied and Environmental Microbiology

Cys-3

ň

ÇH2 ,OH

Cys-2

.℃H₂ HO

Ser-2

ÇH₂

C

AEM

AEM

AEM