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Abstract

Nuclear magnetic resonance spectroscopy (NMR) provides robust readouts of many metabolic parameters in one
experiment. However, identification of clinically relevant markers in 1H NMR spectra is a major challenge.
Association of NMR-derived quantities with genetic variants can uncover biologically relevant metabolic traits.
Using NMR data of plasma samples from 1,757 individuals from the KORA study together with 655,658 genetic
variants, we show that ratios between NMR intensities at two chemical shift positions can provide informative and
robust biomarkers. We report seven loci of genetic association with NMR-derived traits (APOA1, CETP, CPS1, GCKR,
FADS1, LIPC, PYROXD2) and characterize these traits biochemically using mass spectrometry. These ratios may now
be used in clinical studies.

Background
Identification of the genetic and environmental determi-
nants of human metabolism is key to the understanding of
complex disorders. Metabolic profiling of blood samples
from cohort studies is a major tool in the discovery of
new disease relevant biomarkers and the metabolic indivi-
duality in the general population. Two major techniques
are generally used: mass spectrometry (MS) and nuclear
magnetic resonance spectroscopy (NMR). At the basis,
both platforms are complementary in many regards. For
instance, MS is more sensitive and allows obtaining more
detailed information while using small sample volume, but
is also quite sensitive to changing experimental conditions,
and sample preparation is more demanding. NMR-based
measurements, on the other hand, require higher sample
volumes and the interpretation of the raw spectra is not
always straightforward. Still, the strongest advantages of
NMR are simplicity of sample preparation and excellent
reproducibility of quantitative metabolic readouts. It has

previously been shown that the stability of NMR measure-
ments is to some extend independent of the NMR plat-
forms and laboratory practices [1,2]. Therefore, NMR
spectrometry is predestined for routine clinical applica-
tions as it generates datasets that are comparable between
clinics and over time.
Previously, we and others have shown the potential of

MS-based and NMR-based metabolomics in discovery
studies such as the KORA study [3-7]. Using a genome-
wide association approach with metabolite concentra-
tions, so-called ‘genetically influenced metabotypes’
(GIM) have been discovered. These GIMs, which define
the genetic basis of human metabolic individuality, have,
in many cases, been linked to clinically relevant end-
points. For instance, polymorphisms in the fatty acid
desaturase 1 (FADS1) locus are associated with Crohn’s
disease [8] and are furthermore suspected to play a role
in cardiovascular disorders through association with
cholesterol and triglycerides [9]. As further examples,
the glucokinase regulator (GCKR) gene is a risk locus
for several diabetes-relevant traits [10], and genetic var-
iants at the carbamoyl-phosphatase 1 (CPS1) locus are
associated with risk factors for chronic kidney disease
[11].
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Up to now, GWAS using metabolic traits mainly
focused on metabolites that were identified by the anno-
tation of MS and NMR spectra using reference spectra
in existing databases.
Here, we address the question of whether known clini-

cally relevant GIMs can be derived from raw NMR
spectra in blood plasma without prior annotation. We
take a hypothesis-free approach to identify genetically
influenced NMR features and investigate whether speci-
fic ratios between NMR intensities at two chemical
shifts can provide informative and robust biomarkers.
Finally, we interpret our findings using correlations to
MS determined metabolite concentrations.
With the KORA F4 study cohort, we have unique

access to a large number of samples of the general
population, which are metabolically deeply characterized
both using MS and NMR methods. In previous studies
based on these data, we showed that using ratios
between metabolite concentrations can strengthen geno-
type-metabotype associations. In such cases, the ratios
often reflect educt-product pairs of enzymatic reactions
[12]. Based on this idea, we here conduct a genome-
wide association study (GWAS) on the binned NMR
spectra, in combination with testing ratios between pairs
of intensity values at different chemical shift positions.
We then confront our results with findings from pre-
vious GWAS with MS based metabolomics [4,5] and
NMR derived lipid subclasses [13]. Finally, we interpret
the results in the light of the existing MS determined
metabolite concentrations and data originating from
clinical biochemistry measurements.

Methods
Study population
The KORA study is an independent population-based
survey from the general population living in the region
of Augsburg, Germany. The KORA S4 study was con-
ducted in 1999-2001 and comprises a total of 4,261 par-
ticipants [14]. Between 2006 and 2008, a total of 3,080
subjects participated in a follow-up examination, KORA
F4, which is the basis for the results presented here. All
participants gave their signed informed consent and the
local ethics committee approved the studies.

Blood sampling
Blood samples for metabolic analysis and DNA extrac-
tion were collected as part of the KORA F4 follow-up
study. To avoid variation due to circadian rhythm, blood
was drawn in the morning between 08:00 and 10:30 after
overnight fasting. A part of the blood was drawn into
serum gel tubes, gently inverted twice, and then allowed
to rest for 30 min at room temperature (18-25°C) to
obtain complete coagulation. The material was then cen-
trifuged for 10 min (2,750 g at 15°C). Serum was divided

into aliquots and kept for a maximum of 6 h at 4°C, after
which it was frozen at -80°C until final analysis. Another
part of the blood was drawn into ethylene diaminetetraa-
cetic acid (EDTA) tubes, gently inverted twice, and left
on the Sarstedt Universal mixer <5 min to avoid mechan-
ical hemolysis, followed by centrifugation at 15°C for
10 min at 2,750 g. Thereafter, plasma was separated,
divided into 200 mL aliquots and kept at 4°C, after which
it was deep-frozen to -80°C. Within 2 weeks, plasma was
stored in the gaseous phase of liquid nitrogen at -196°C.

Genotyping
For all individuals profiled from the KORA study, gen-
ome-wide single nucleotide polymorphism (SNP) data
were already available. These data have been used and
described extensively in the past in the context of sev-
eral GWAS (for example, [4,5]). Therefore, we summar-
ize only the essential details here. For genotyping, 1,814
randomly selected participants of KORA F4 were
included. These samples were genotyped using the Affy-
metrix Human SNP Array 6.0 (sample call rate >93%).
Genotypes were determined using the Birdseed2 cluster-
ing algorithm. For quality assurance, the criteria of SNP
call rate >95%, minor allele frequency >1%, and P
(Hardy-Weinberg) >10-6 were applied as filters. In total,
655,658 autosomal SNPs satisfied these criteria.

Metabolomics measurements
Metabolic analyses were conducted using clinical bio-
chemistry methods, two distinct MS-based platforms
(targeted and non-targeted), and NMR spectrometry
(lipid classes and binned spectral data). For the joint
analysis, metabolomics and genotype data were available
for a total of 1,757 individuals. All metabolite measure-
ments have been reported before. We therefore only
summarize here the points that are essential for the pre-
sent study.
Clinical biochemistry
The following serum lipids were measured on fresh sam-
ples using the Dimension RxL (Dade Behring). TC was
determined by cholesterol esterase method (CHOL Flex,
Dade-Behring, CHOD-PAP method), HDL-C using the
AHDL Flex (Dade-Behring, CHOD-PAP method after
selective release of HDL-C), LDL-C using the ALDL Flex
(Dade Behring, CHOD-PAP method after colorless usage
of all non-LDL-C), and TG was measured using a TGL
Flex (Dade Behring, enzymatic colorimetric test, GPO-
PAP method).
Targeted metabolomics
The Biocrates AbsoluteIDQ p150 kit was used for abso-
lute quantification of a defined set of serum metabolites.
Sample analyses were done on an API 4000 Q TRAP LC/
MS/MS system (Applied Biosystems) equipped with a
Schimadzu Prominence LC20AD pump and a SIL-20AC
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autosampler. The complete analytical process was per-
formed using the MetIQ software package, which is an
integral part of the AbsoluteIDQ kit. In total, we detected
163 different metabolites. The metabolomics dataset con-
tains 14 amino acids, hexose (H1), free carnitine (C0), 40
acylcarnitines (Cx:y), hydroxylacylcarnitines (C(OH)x:y),
and dicarboxylacylcarnitines (Cx:y-DC), 15 sphingomye-
lins (SM Cx:y) and N-hydroxylacyloylsphingosylphospho-
choline (SM(OH) Cx:y), 77 phosphatidylcholines (PC,
aa = diacyl, ae = acyl-alkyl) and 15 lyso-phosphatidylcho-
lines. Lipid side chain composition is abbreviated as Cx:y,
where x denotes the number of carbons in the side chain
and y the number of double bonds. For further details on
this dataset and the coefficients of variation (CVs) of
metabolite quantification see [4].
Non-targeted metabolomics
Metabolon, a commercial supplier of metabolic analyses,
developed a platform that integrates the chemical analysis,
including identification and relative quantification, data-
reduction, and quality-assurance components of the pro-
cess. The analytical platform incorporates two separate
ultrahigh-performance liquid chromatography/tandem
mass spectrometry (UHPLC/MS/MS2) injections and one
gas chromatography/mass spectrometry (GC/MS) injec-
tion per sample. The UHPLC injections were optimized
for basic and acidic species. The LC/MS portion of the
platform was based on a Waters ACQUITY UPLC and a
Thermo-Finnigan LTQ mass spectrometer, which con-
sisted of an electrospray ionization (ESI) source and a lin-
ear ion-trap (LIT) mass analyzer. For GC/MS, the samples
were analyzed on a Thermo-Finnigan Trace DSQ fast-
scanning single-quadrupole mass spectrometer using elec-
tron impact ionization. A total of 295 serum metabolites
were measured, spanning several relevant classes (amino
acids, acylcarnitines, sphingomyelins, glycerophospholi-
pids, carbohydrates, vitamins, lipids, nucleotides, peptides,
xenobiotics, and steroids). The detection of the entire
panel was carried out with 24 min of instrument analysis
time (two injections at 12-min each), while maintaining
low median process variability (<12% across all com-
pounds). The resulting MS/MS2 data were searched
against a standard library generated by Metabolon that
included retention time, molecular mass to charge ratio
(m/z), preferred adducts and in-source fragments as well
as their associated MS/MS spectra for all molecules in the
library. The library allowed for the identification of the
experimentally detected molecules on the basis of a multi-
parameter match without the need for additional analyses.
For further details on this dataset and the coefficients of
variation (CVs) of the metabolite measurements see [5].
NMR-derived lipid classes
NMR spectra measurements were carried out at
numares (formerly LipoFIT), Regensburg. The blood
plasma spectra were recorded on a Bruker 600 MHz

Avance IIplus spectrometer. The spectra were phased
and baseline corrected. Since no reference compound
was added, all spectra were horizontally aligned to the
prominent lactate signals at 1.36 and 1.37 ppm. Based
on a proprietary approach that uses complex deconvolu-
tion algorithms on the spectral regions between 0.6 and
1.5 ppm, a set of 15 lipoprotein subfractions was derived
from the spectra. These fractions correspond to HDL
(small = L1, medium = L2, large = L3, very large = L4),
LDL (very small = L5, small = L6, medium = L7, large =
L8, very large = L9), IDL (L10), VLDL (small = L11,
large = L12), remnants (L13), and chylomicrons (small =
L14, large = L15). For further details on this dataset see
[13].
NMR binned data
For the purpose of this study, the spectra were limited
to a range from 0 to 9 ppm and divided into 10,000
bins of equal width (0.001 ppm). Spectral binning is a
standard procedure in NMR-based metabolomics studies
that reduces the data complexity and compensates for
slight jitter of the signals’ chemical shifts [15]. The
intensity values were log10-transformed prior to analysis.
To diminish the effect of outliers, for each bin individual
intensity values more than three times the standard
deviation away from the mean were excluded. Also, the
spectral region affected by the water peak (δ = 4.6-5
ppm) was excluded from further analysis.

Statistical analysis
To test for associations between genetic polymorphisms
and individual NMR signal bins, we created age- and gen-
der-adjusted linear additive models using PLINK (Version
1.07) [16]. Testing all possible ratios between NMR signals
all over the spectrum would not be feasible due to the
huge amount of computational time that would be needed.
Therefore, we performed a simple feature selection. In
most cases SNPs do not associate with only one NMR sig-
nal bin but with a number of adjacent bins. Thus, we per-
formed a search for local minima on the pseudo-spectra
(chemical shift vs. strength of association) resulting from
the first GWAS run to pick the positions on the spectra
which show the strongest associations. We then used the
500 best-scoring NMR signal positions to compute pair
wise ratios (124,750 in total). As before, we used age- and
gender-adjusted linear additive models in PLINK to test
for associations.
We applied a conservative Bonferroni correction to

control for false-positive error rates resulting from multi-
ple testing. We corrected for tests on 655,658 SNPs and
133,350 NMR features at a nominal significance level of
5%, thus obtaining an adjusted P value of 0.05/655,658/
133,350 = 5.72 × 10-13.
Spearman correlations between biochemically and MS

determined metabolite concentrations and NMR signal
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intensities were calculated using the statistical analysis
system R (Version 2.15.1). To avoid false-positive asso-
ciations due to small sample sizes, only metabolic traits
with at least 300 non-missing values were included.
Furthermore, metabolite concentrations that were more
than three times the standard deviation away from the
mean were excluded.

Results
Seven genetic associations identified
We adopted a two-stage approach to detect associations
between genetic variants and NMR signals. In the first
step, we performed a GWAS using the NMR intensity
readouts of the 1H-NMR spectra from 1,757 plasma sam-
ples. To this end, we binned the spectral region ranging
from 0 to 9 ppm at a high resolution of 0.001 ppm. The
region surrounding the water peak (δ = 4.6-5 ppm) was
discarded. NMR intensities were log10-scaled and extreme
outliers were removed (see Methods). Usually, NMR-
based GWAS either use a selection of chemical shifts or
perform spectral annotation to reduce the NMR data to
the underlying metabolite concentrations (for example,
[6,7,17]). In contrast, our approach uses the signal intensi-
ties at almost all chemical shift positions of the NMR
spectra.
In the second step, we selected the 500 bins in the NMR

spectrum that exhibited the strongest signal of association.
In cases where neighboring bins all displayed associations
of comparable strength to the same single nucleotide poly-
morphism (SNP), the bin with the lowest P value was
selected. In a second GWAS, we then tested all possible
ratios between the intensities at these 500 chemical shift
positions for associations with all genetic variants. To our
knowledge, this is the first GWAS that uses a ratio-based,
hypothesis-free approach with raw NMR spectral data as a
phenotype. For both GWAS, age and gender were used as
covariates. In the subsequent analysis, we considered only
robust associations of frequent SNPs with minor allele fre-
quencies (MAF) >10%.
In total, seven loci (LIPC, CETP, FADS1, GCKR,

APOA1, CPS1, PYROXD2) displayed a signal of associa-
tion that attained the genome-wide level of significance
(P < 5.72 × 10-13) after Bonferroni correction for 655,658
tested SNPs and 133,350 NMR traits (133,350 = 500*499/
2 ratios + 8,600 chemical shifts). Table 1 lists the loci
with significant associations to NMR features, the lead
SNPs showing the strongest associations within the loci,
respectively, and the strength of association. Additional
file 1 provides regional association plots, boxplots, and
quantile-quantile plots for all associations listed in Table
1. All loci were previously reported in the same KORA
F4 dataset using MS [3-5], with the exception of the
PYROXD2 locus, which has been reported by Nicholson
et al. in 2011 [6].

Overlap with NMR-derived lipid subclasses
Recently, Petersen et al. reported an association study
with NMR-derived lipoprotein subclasses [13]. Their
analysis is based on the same NMR data as used in this
study. In contrast to our non-targeted approach, they
used a targeted approach that derives 15 different lipo-
protein subclasses from the spectral region between 0.6
ppm and 1.5 ppm. The authors tested 101 SNPs in
known lipid loci for associations with these lipoprotein
subclasses. As a result, they identified eight loci that
associated specifically with one or more of these sub-
classes. Of the eight loci reported by Petersen et al., we
identified five (LIPC, CETP, FADS1, GCKR, APOA1) in
association with NMR intensities at single chemical shift
positions (NMR bins) in our genome-wide approach.
Note that in comparison, the strength of association is
generally weaker when testing NMR bins instead of lipid
subclasses, as one would expect when using a less aggre-
gated parameter. However, in the GWAS with ratios of
chemical shift pairs (NMR ratios), we observe a strong
increase in the strength of association for four loci
(LIPC, CETP, FADS1, GCKR), resulting in P values that
are between 9 and 89 orders of magnitude lower than
the values reported by Petersen et al. for the associa-
tions with lipid subclasses (Table 2). In these four cases,
the ratios represent stronger readouts of metabolic phe-
notypes that are modified by the genetic variant than do
either the binned NMR intensities or the NMR-derived
lipid subclasses. These ratios are thus worthy of further
investigation (see below).

Strong correlations of NMR signals to MS-based and
further metabolite concentrations
A 1H-NMR spectrum of a biological sample is the super-
position of the resonance spectra of all individual metabo-
lites measured in that sample. The signals of different
metabolites thus overlap in the NMR spectrum. Identifica-
tion and annotation of individual metabolites is a challen-
ging task. Here we compute ‘correlation spectra’ to
visualize the degree of correlation between NMR bins and
MS-derived or biochemically determined metabolite con-
centrations. Note that all measurements (NMR, MS, clini-
cal biochemistry) were performed on blood samples from
the same draw and subject. Correlation spectra thus link
the chemical identity of the metabolites detected by other
platforms to chemical shifts in the NMR spectra, where
the chemical shifts may correspond to the same metabo-
lite, but also to a metabolite on a related biochemical path-
way. As an example, Figure 1 shows the correlation
spectrum for MS determined glycine. We also observed a
number of correlations with phosphatidylcholines (PCs)
(Figure 2), and with parameters that were determined
independently using standard clinical biochemistry meth-
ods, namely triglycerides (TG), high-density lipoproteins
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Table 1 Genetic associations with NMR intensities and ratios between NMR intensities.

Locus SNP CHRa POSa Aa Ba MAF Chemical shift(ppm) n Beta’b P value Chemical shifts for ratios (ppm) n Beta’ ratiosb P value ratios Pgainc

GCKR rs780094 2 27,594,741 T C 41.4% 1.370 1,688 0.0413 1.2x10-10 3.286/1.370 1,667 -0.0407 2.8x10-15 4.3x104

CPS1 rs2216405 2 211,325,139 C T 19.3% 3.599 1,719 0.0456 4.5x10-14 3.599/2.475 1,718 0.0459 1.8x10-19 2.5x105

PYROXD2 rs4488133 10 100,149,126 A T 34.3% 2.757 1,735 -0.0190 7.3x10-12 2.757/2.755 1,734 -0.0123 2.9x10-94 2.5x1082

FADS1 rs174547 11 61,327,359 C T 30.0% 2.801 1,733 -0.0408 4.0x10-35 2.801/2.017 1,724 -0.0449 1.1x10-94 3.8x1059

APOA1 rs3741298 11 116,162,771 C T 21.4% 2.038 1,724 0.0363 8.4x10-11 4.162/4.082 1,715 -0.0138 1.8x10-14 4.6x103

LIPC rs4775041 15 56,461,987 C G 28.5% 1.283 1,671 0.0320 1.4x10-10 1.068/1.029 1,664 -0.0056 3.6x10-21 4.0x1010

CETP rs247617 16 55,548,217 A C 31.3% 3.259 1,705 0.0529 7.6x10-15 2.211/2.011 1,695 -0.0124 1.1x10-18 6.8x103

The locus name indicates the gene that most likely hosts the causative SNP.

A/B: minor/major allele; MAF: minor allele frequency; n: number of samples where genetic and NMR data are jointly available; ppm: parts per million.
aChromosomal location (CHR, POS), minor (effect, A) and major (B) alleles are reported with respect to the positive strand of the human genome (NCBI build 36.1).
bBeta’: relative effect size, defined as beta’ = (10beta- 1), where beta is the slope in the linear model (using log10-scaled traits) and genotype is coded as 0-1-2 (major-hetero-minor genotype). Beta’ represents the
relative difference per copy of the minor allele for the unscaled metabolic trait (NMR bin or NMR ratio) compared to the estimated mean of the major allele homozygote group (intercept of the linear model).
cThe P gain is defined as min(p(S1)/p(S1/S2), p(S2)/p(S1/S2)), where p(S1), p(S2), and p(S1/S2) denote the P values of association of two log-scaled NMR intensities at chemical shift S1 and S2, and of their ratio S1/S2,
respectively.
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Table 2 Comparison with association data from previous studies on the same specimen.

Locus Mass spectrometry Targeted,
quantitative [3,4]

Mass spectrometry Non-targeted, semi-quantitative [5] NMR Lipid
subclasses [13]

NMR Ratios between chemical shifts
(this study)

GCKR Trait Pc ae C34:2/Pc aa C32:2 Glucose/Mannose L10 3.286 ppm/1.370 ppm

SNP rs1260326, LD r2 = 0.93 rs780094 rs1260326, LD r2 =
0.93

rs780094

P
value

P = 3.8x10-8 P = 4.9x10-32 P = 3.7x10-6 P = 2.8x10-15

CPS1 Trait Glycine/PC aa C38:2 Asparagine/Glycine 3.599 ppm/2.475 ppm

SNP rs2216405 rs2216405 (locus not reported) rs2216405

P
value

P = 1.9x10-30 P = 9.8x10-21 P = 1.8x10-19

PYROXD2 Trait Saccharin/Threonine 2.757 ppm/2.755 ppm

SNP (locus not reported) rs4488133 (locus not reported) rs4488133

P
value

P = 0.00021 P = 2.9x10-94

FADS1 Trait PC aa C36:3/PC aa C36:4 1-arachidonoylglycero-phosphoethanolamine/1-linoleoylglycero-
phosphoethanolamine

L4 2.801 ppm/2.017 ppm

SNP rs174547 rs174547 rs174546, LD r2 = 1.0 rs174547

P
value

P = 6.5x10-179 P = 1.2x10-80 P = 1.4x10-5 P = 1.1x10-94

APOA1 Trait PC aa C36:2/PC aa C38:1 1-oleoglycerol/Oleamide L8 4.162 ppm/4.082 ppm

SNP rs964184, LD r2 = 0.61 rs3741298 rs964184, LD r2 =
0.61

rs3741298

P
value

P = 1.8x10-10 P = 4.3x10-7 P = 4.8x10-12 P = 1.8x10-14

LIPC Trait PCaa C38:6 1-palmitoylglycero-phosphoethanolamine L5 1.068 ppm/1.029 ppm

SNP rs4775041 rs4775041 rs1532085, LD r2 =
0.55

rs4775041

P
value

P = 9.7x10-8 P = 8.7x10-7 P = 5.3x10-11 P = 3.6x10-21

CETP Trait Guanosine/Phenylacetylglutamine L3 2.211 ppm/2.011 ppm

SNP (locus not reported) rs247617 rs3764261, LD r2 =
1.0

rs247617

P
value

P = 0.00039 P = 3.6x10-7 P = 1.1x10-18

Association data from previous GWAS for the loci reported in this study are reported either on the same SNP, or, if a different SNP was reported, the correlation with the SNP in linkage disequilibrium (r2 LD) is given
(based on HapMap, release #27, phases I, II, III, CEU population).
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(HDL), low-density lipoproteins (LDL), total cholesterol
(TC), and glucose (Figure 3), and a number of other meta-
bolites. Most of the correlations we observed are positive,
meaning that a stronger NMR signal at the given chemical
shift goes with a higher concentration of the correlated
metabolite, as one would expect in cases where MS and
NMR are targeting identical or closely-related metabolites.
In a few cases, we also observe negative correlations
between NMR bins and MS-determined metabolites. This
may indicate cases where the NMR signal is indirectly
related to a MS-measured metabolite. It could, for instance,

correspond to the product or substrate of a metabolite
quantified on the MS platform.
In the case of correlation with lipid-related parameters,

the correlation spectra generally show wider areas of the
NMR spectrum corresponding to these metabolites (for
example, PCs in Figure 2, triglyceride levels in Figure 3).
In contrast, correlations with non-lipid metabolites are
visible as individual, sharp peaks (for example, glycine in
Figure 1 and glucose in Additional file 2). These peaks
correlate, among others, with the concentrations of glu-
cose, lactate, proline, and glycine with squared Spearman
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Figure 1 Association at the CPS1 locus. Top: The red line indicates the strength of association (-log10(P value)) of SNP rs2216405to the
chemical shifts. The strongest association can be observed with the NMR signals at δ = 3.599 ppm (P <4.5 × 10-14). Middle: The blue line gives
the squared Spearman correlation coefficient (rs

2) for MS determined glycine and the NMR signals. The highest correlation (rs
2 = 0.21) can be

observed as a sharp peak at δ = 3.599 ppm. Bottom: The plot shows the NMR spectra of two samples, where one was spiked with glycine
(green spectral line). The inset shows a magnification of the spectral region around δ = 3.6 ppm. This experiment confirms that the signal
intensities at δ = 3.599 ppm are indeed driven by glycine.
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correlation coefficients (rs
2) up to 0.61. In most cases, we

can verify the validity of the correlations using experi-
mental spectra of pure compounds from HMDB [18].
For glycine, we conducted an additional spiking

experiment to confirm that the NMR signal at δ = 3.599
ppm indeed is driven by glycine. However, since many
metabolites are by nature interlinked in metabolic net-
works, some signal correlations do not reflect just a
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Figure 2 Association at the FADS1 locus. SNPrs174547 associates most strongly with the NMR signal at chemical shift δ = 2.801 ppm (P = 3.7
× 10-35) (top). When ratios between NMR intensities are tested, the strength of association increases by 59 orders of magnitude for the ratio
between NMR intensities at 2.801 ppm and 2.017 ppm (P = 1.1×10-94) (Table 1). A similar increase in the strength of association has been
observed in previous GWAS for this locus with ratios between phospholipids containing C20:3 and C20:4 fatty acids, such as PC aa C36:3 and PC
aa C36:4 [3]. The FADS1 codes for a delta-5 fatty acid desaturase; C20:3 and C20:4 fatty acids are their substrate-product pair. The correlation plot
between these lipid species and the NMR intensities (bottom) indicates that the region around δ = 2.801 ppm correlates more strongly with
C20:4 fatty acid-containing lipids, while the region around δ = 2.017 ppm more with C20:3 lipids (bottom insets). The ratio between intensities at
δ = 2.801 ppm and δ = 2.017 ppm is therefore a likely proxy for the ratio between three- and four-fold desaturated log chain fatty acids.
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fasting glucose and triglyceride levels (TG). We observe a genome-wide significant association (P = 2.8x10-15) at this locus with the ratio of
intensities at δ = 3.286 ppm and δ = 1.370 ppm (dashed lines) (Table 1). The correlation spectra for glucose and TG (both parameters were
determined by clinical biochemistry) show that the association signal at δ = 3.286 ppm is mainly driven by glucose and that at δ = 1.370 ppm
by TG. The ratio of these two NMR intensities is thus a likely proxy for a diabetes-relevant composite readout on the GCKR pathway.

Raffler et al. Genome Medicine 2013, 5:13
http://genomemedicine.com/content/5/2/13

Page 8 of 15



single compound but a mixture of co-regulated (and
therefore auto-correlated) metabolites. Also, due to over-
lapping signals in NMR spectra, there may be multiple,
non-related metabolites showing correlations at the same
chemical shift position.
Additional file 3, Table S1 lists all metabolites that

correlate with NMR signals at rs
2 = 0.20 (or above) and

the chemical shift where the correlation coefficient is
highest. The corresponding correlation spectra are pro-
vided in Additional file 2.
For all associations between NMR bins and genetic loci,

we report the best correlating biochemically or MS-
determined metabolite at the given chemical shift posi-
tion (Table 3). In case of NMR ratios, we report either
the correlations with single metabolite concentrations or,
if stronger, the correlations with ratios of metabolite con-
centrations. The rationale behind this procedure is that
two different chemical shifts might be representative for
two specific pairs of metabolites and a strong correlation
would indicate a potential biochemical match between
NMR chemical shifts and the biochemically or MS-
derived metabolites.

Discussion
In this study, we perform a GWAS with binned NMR
spectra and ratios between pairs of chemical shifts in a
hypothesis-free approach without prior annotation of
NMR features. In total, we identify seven genetic loci.
Four of these associations (LIPC, PYROXD2, GCKR,
APOA1) only reach a genome-wide significance level
when ratios between the signal intensities at two different
chemical shift positions are tested. Five of the seven loci
(LIPC, CETP, FADS1, GCKR, APOA1) are also known
lipid risk loci, and all have previously been identified in
GWAS with metabolic traits. There is thus no doubt
about the functional role of these genetic loci in inducing

a metabolic phenotype. Moreover, correlating NMR fea-
tures to known metabolic phenotypes determined on
other platforms can help in the interpretation of the
observed genetic associations for various loci and the
characterization of the associated NMR trait, as shown in
this study for the CPS1, FADS1, and GCKR loci.
Given the fact that these loci have already been largely

studied for their interest from a biomedical point of view,
we focus here on aspects that highlight NMR-specific
features of the associations. The features presented in
this work may now be used in future studies with clinical
disease endpoints or may potentially be established as
biomarkers. In the following, we focus on four of the loci,
each of them highlighting a different situation.

Singular NMR intensities (peaks) correlate with MS-based
glycine measurements and provide comparable genetic
associations (CPS1 locus)
The carbamoyl-phosphate synthase 1 (CPS1) controls the
first step in the urea cycle. Klaus et al. report two muta-
tions of the CPS1 gene that contribute to the onset of
CPS1 deficiency, an inborn error of metabolism that
causes hyperammonemia [19]. In 2010, Illig et al.
reported an association of SNP rs2216405 with glycine
concentrations at a nominal P value of 2.59×10-26 [4].
Glycine is metabolically related to carbamoyl phosphate,
which in turn is the product of CPS1. Thus, Illig et al.
presented a genetically influenced metabotype that might
represent a mild form of CPS1 deficiency.
Here, we find an association of the same SNP with the

NMR signals at δ = 3.599 ppm (P = 4.46×10-14). The
correlation between MS determined glycine and the
NMR signals at that chemical shift is rs

2 = 0.22.
Although this correlation is modest, the correlation
spectrum for glycine shows a distinct peak at δ = 3.599
ppm (Figure 1). A reference spectrum for glycine taken

Table 3 Spearmancorrelations between NMR intensities and metabolic traits determined by MS and clinical
biochemistry.

Locus SNP Chemical shift
(ppm)

Metabolite rs
2 Chemical shifts for ratios

(ppm)
Metabolite or Metabolite ratios rs

2

GCKR rs780094 1.370 Triglyceride 0.62 3.286/1.370 Glucose/Triglyceride 0.42

CPS1 rs2216405 3.599 Glycine 0.22 3.599/2.475 Glycine/Tryptophan 0.29

PYROXD2 rs4488133 2.757 Total
cholesterol

0.64 2.757/2.755 Total cholesterol/Triglyceride 0.26

FADS1 rs174547 2.801 PC aa C38:5 0.48 2.801/2.017 PC aa C38:5/
PC aa C36:3

0.45

APOA1 rs3741298 2.038 Triglyceride 0.73 4.162/4.082 Lactate/Triglyceride 0.60

LIPC rs4775041 1.283 PC aa C36:1 0.42 1.068/1.029 4-methyl-2-oxopentanoate/Total
cholesterol

0.21

CETP rs247617 3.259 HDL
cholesterol

0.55 2.211/2.011 HDL cholesterol 0.68

The ‘Metabolite’ and ‘Metabolite ratios’ columns list the MS and biochemically determined metabolites (or ratios thereof) that correlate best at the chemical shift
positions (or ratios) identified in the GWAS.

ppm: parts per million.
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from HMDB [18] shows a single peak at δ = 3.54 ppm.
While the spectra used in this study were referenced to
lactate and the sample pH was 7.4, the HMDB spectrum
was referenced to 4,4-dimethyl-4-silapentane-1-sulfonic
acid (DSS) and the sample pH was 7.0. Thus, the 0.06
ppm distance between the putative glycine peak in this
study and the HMDB glycine peak can be explained by
different experimental conditions. In a separate spiking
experiment comparing two spectra with and without
addition of glycine, we confirmed that the signal at δ =
3.599 ppm indeed corresponds with glycine.
Thus, in this case we find that information obtained

from a GWAS with NMR data provides comparable
results to what was obtained with MS, albeit the
strength of the association observed with NMR data is
weaker in this case. The NMR chemical shift δ = 3.599
ppm could potentially be used as a marker for mild
forms of perturbations in the ammonia metabolism
caused by genetic variations in the CPS1 locus.

Associations with ratios between NMR intensities indicate
spectral regions which are representative of triple and
quadruple fatty acid desaturation (FADS1 locus)
The fatty-acid desaturase 1 (FADS1) gene product cata-
lyzes the desaturation reaction of 8,11,14-eicosatrienoyl-
CoA to arachidonoyl-CoA (C20:3 ® C20:4). Genetic var-
iants in this locus have been linked to Crohn’s disease [8]
and risk factors for cardiovascular disorders, namely cho-
lesterol and triglyceride levels [9]. Recently, two indepen-
dent studies showed that dietary intake of long-chain
polyunsaturated fatty acids (for example, C20:3 and
C20:4) modulates the association between genetic varia-
tion in FADS1 and serum lipid levels, and thereby poten-
tially also modifies the risk of cardiovascular disease
[20,21]. In their previous GWAS, Gieger et al. [3] and
Illig et al. [4] identified strong associations of SNP
rs174547 (intronic region of FADS1) with a number of
glycerophospholipids, many containing lipid side chains
with C20:3 and C20:4 polyunsaturated omega-3 and
omega-6 fatty acids (PUFAs). The authors observed an
exceptionally large increase in the strength of the associa-
tion when ratios between phospholipids containing
PUFAs with <4 double bonds and ≥4 double bonds were
testedin pairs [4]. This observation can be explained by
the fact that ratios between substrate: product pairs
approximate the underlying enzymatic reaction rate and
also because ratios between related metabolites reduce
the overall variance that is observed between individuals
with different levels of overall blood PUFA concentra-
tions [12].
In our data, the correlation spectra for glycerophospholi-

pid levels show distinct differences depending on whether
the degree of saturation of the side chains is below four
double bonds (precursor of substrates of FADS1 enzymatic

reaction) or equal or above four double bonds (products
downstream of FADS1) (Figure 2). When testing binned
NMR intensities for association, SNP rs174547 displays
associations at a wider range of chemical shifts, with the
strongest signal at δ = 2.801 ppm (P = 3.96×10-35). Interest-
ingly, when using ratios between the NMR intensities at
δ = 2.801 ppm and 2.017 ppm, the strength of association
increases by nearly 60 orders of magnitude (P = 1.1×10-94),
similar to the MS-based case. The NMR ratio δ = 2.801
ppm/δ = 2.017 ppm is therefore a likely proxy for the ratio
between three- and four-fold desaturated long chain fatty
acids. As a metabolic marker, this ratio might be a readout
for the efficacy of the FADS1 enzymatic reaction in the
context of dietary intake of PUFAs.

A ratio between NMR intensities in the triglyceride and in
the glucose range of the spectrum constitutes an
integrated pleiotropic diabetes risk marker (GCKR locus)
The product of the glucokinase regulator (GCKR) gene
both transports and regulates glucokinase, a key enzyme
of glucose metabolism [22]. GCKR is a genetic risk
locus for diabetes-related traits [10].
In our study, SNP rs780094 (intronic region of GCKR)

associates with NMR intensities at δ = 1.370 ppm. At this
spectral position, we observe a high correlation between
NMR signals and TG levels (rs

2 = 0.61) (Figure 3). How-
ever, this association is not of genome-wide significance
(P = 1.2×10-10). When testing ratios for association, the
strength of association increases by five orders of magni-
tude, with a P value of 2.8×10-15 for the association of
SNP rs780094 to the NMR ratio δ = 1.370 ppm/δ = 3.286
ppm. The correlation spectrum with glucose shows a dis-
tinct signal at δ = 3.286 ppm (rs

2 = 0.28). This chemical
shift is indeed located within a known glucose-related
spectral region. Furthermore, this NMR ratio correlates
with the triglyceride/glucose ratio (rs

2 = 0.42). Interest-
ingly, GCKR is a diabetes risk locus that inversely modu-
lates triglyceride and fasting glucose levels [4,23-26].
Thus, the combination of these two chemical shifts

likely provides a combined measure of two main dia-
betes-risk readouts that have been independently asso-
ciated with the GCKR locus before. We suggest that this
ratio therefore may constitute an integrated biomarker
for the pleiotropic biological processes related to pertur-
bations in the GCKR pathway.

Ratios between neighboring NMR intensities act as a
local baseline correction and strengthen the genetic
association (PYROXD2 locus)
PYROXD2 is a probable pyridine nucleotide-disulphide
oxidoreductase gene. Nicholson et al. recently found
this locus to be associated with dimethylamine concen-
trations in plasma, also using NMR spectrometry [6]. At
the time when our study was conducted, metabolomics
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information was only accessible using NMR methods.
Meanwhile, an association with an MS determined, bio-
chemically non-identified metabolite has been found,
thus replicating this GIM on a different metabolomics
platform [27]. However, a link of this metabotype to a
phenotype of clinical relevance has not been reported
so far.
We find an association between rs4488133 in PYR-

OXD2 and the signal intensities at δ = 2.757 ppm. With
a P value of 7.3×10-12, this association only slightly
misses the threshold for genome-wide significance. At
the given chemical shift, we do not find any noteworthy
correlation to one of the known MS determined meta-
bolites. Most interestingly, similar to the FADS1 case,
this locus displays an exceptionally increase in strength
of associations when using ratios (>80 orders of magni-
tude). However, as opposed to the FADS1 locus, the
ratio here is between two chemical shift positions in
direct neighborhood (δ = 2.757 ppm and 2.755 ppm).
An inspection of the detailed spectrum differentiated by
genotype reveals that only the signal at δ = 2.757 ppm
actually shows clear genotype dependence, with a peak
only detected in the major allele homozygote group

(Figure 4). This peak is located on the shoulder of a
much larger underlying NMR signal that correlates with
cholesterol levels. We argue that in this case the ratio
between signals at two neighboring chemical shifts, one
of them in a localized peak, is equivalent to applying a
local baseline correction, thus elevating the peak out of
the background noise. Wei et al. have described this
effect in a recent publication where they present a ratio-
based approach that effectively raises the signal-to-noise
ratio in NMR spectra [28].
Since PYROXD2 is a relatively uncharacterized genetic

locus, combining the NMR ratio presented here with
findings from other studies and platforms could be used
to further investigate its biological function.

Conclusions
In this study, we identify seven ratios of NMR signal
intensities at different chemical shift positions that
associate with genetic loci at a genome-wide significance
level. Compared to the genetic associations to signal
intensities at individual chemical shift positions, the
strength of association increased in the case of CEPT,
GCKR, CPS1, and APOA1 by at least three orders of

Figure 4 Association at the PYROXD2 locus. SNP rs4488133 associates with the ratio between two neighboring chemical shifts (δ = 2.757
ppm and δ = 2.755 ppm; P = 2.9x10-94), displaying an exceptionally strong increase in the strength of association when using ratios of over 82
orders of magnitude. This figure presents the median NMR signal intensities, differentiated by the genotype of SNP rs4488133 (color-coded). A
peak at δ = 2.757 ppm is only present in major allele homozygotes (inset). This peak is located on the shoulder of a much larger underlying
NMR signal. We argue that in this case the ratio between signals at two neighboring chemical shifts, one of them in a localized peak, is
equivalent to applying a local baseline correction, effectively elevating the peak out of the background noise.
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magnitude. In the case of FADS1 and PYROXD2 it even
increased by 60 and 80 orders of magnitude (Table 1).
There are different reasons for this increase in the
strength of association: In the case of the FADS1 and
GCKR loci, the signal ratios most likely represent the
ratio between two distinct metabolites or metabolite
classes, while in the case of PYROXD2, ratios may com-
pensate for overlapping NMR signals originating from
other metabolites, thereby acting as a local baseline
correction.
More generally, we have shown that the use of signal

ratios is a simple method to derive genetically validated
bi-variate measures or biomarkers from NMR spectra.
This approach could potentially be generalized to the
multi-variate case, again using genetic association as a
criterion for feature selection.
When we compare our findings to association data

that could be obtained by other techniques on the same
samples, an increased strength of association was found

in four out of seven cases (Table 2 and Figure 5). In the
other three cases (FADS1, GCKR, and CPS1), the MS-
based techniques clearly outperform our approach,
showing again the complementary character of both
platforms. However, since NMR is in general more
adapted to clinical application, and also since the com-
putation of ratios from NMR spectra is easy and
straightforward, the ratios we identify here have the
potential of representing easy-to-use disease biomarkers
for tests in future clinical studies. Also, our approach to
annotate NMR signals using correlations with MS deter-
mined metabolite concentrations could be used to trans-
fer knowledge between different platforms.

Additional material

Additional file 1: Regional association plots, box plots, histograms,
and quantile-quantile plots for the genetic associations and NMR
traits reported in Table 1. Top: Regional association plots based on the

Figure 5 Strength of association with metabolic traits obtained using different methods and technologies. Samples from identical blood
draws were analyzed using different methods. Identical genotype data were used and the number of samples is the same (except for minor
differences due to missing data); height of the colored bars represents the strength of association for the different methods as reported in Table
2 (grey: targeted MS [3,4], green: non-targeted MS [5], blue: NMR lipid classes [13], yellow: NMR chemical shifts (bins), and red: NMR ratios (this
work)).
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SNPs that were used in our GWAS. Gene annotations and SNP positions
are based on human genome hg18 (NCBI 36.1); linkage equilibrium
correlation coefficients (r2) are based on Hapmap, release 21. Bottom left:
Box plots of NMR signal intensities or NMR ratios for each genotype (in
order major allele homozygotes, heterozygotes, minor allele homozygotes).
The number of samples per group is indicated below the plot. Data are
presented on a log10-normal scale. Bottom center: Histograms for NMR
signal intensities or NMR ratios. The blue line and blue boxes indicate the
distribution of the log10-scaled data, the red line indicates a normal
distribution with the same mean and standard deviation as found in the
log10-scaled data. Bottom right: Q-Q plots showing the observed versus
the theoretically expected distribution of the associations’ P values for all
tested SNPs to the given NMR bin or NMR ratio.

Additional file 2: Spearman correlation plots between NMR
chemical shifts and metabolite concentrations. The plots correspond
to the correlations between metabolites and chemical shifts reported in
Additional file 3, Table S1. For some metabolites, reference NMR spectra
of the pure compound wereavailable as Free Induction Decay (FID) files
from HMDB [18]. In these cases, the reference spectra are plotted below
the corresponding correlation spectra. Note that in comparison with the
correlation spectra, the peaksin the HMDB spectra may be shifted due to
different experimental conditions such as sample pH and calibration to a
different reference compound.

Additional file 3: Table S1. Spearman correlations between NMR
intensities and metabolite concentrations measured on different
platforms. The ‘Chemical Shift’ column lists the position of the signal
intensities that show the best correlation (for rs

2≥0.20) with the chemical
compound noted in the ‘Metabolite’ column. ‘▲’ ‘indicates positive
correlation, ‘▼’ anticorrelation. ‘N’ is the number of samples used for
calculating the correlations where valid NMR data points and metabolite
concentrations were jointly available.’CV’ gives the coefficient of variation
in the quality control samples, where available. Chemical shifts are
reported in parts per million (ppm).Table S2. Non-parametric tests for
genetic associations with NMR bins and NMR ratios. All associations
listed in Table 1 were tested separately using a non-parametric test. To
test for associations between a SNP and an NMR trait (individual
chemical shift or ratio between intensities at two different chemical
shifts), Spearman’s rho statistic was used; the resulting P values are given
as ps. For comparison, the P values of the age- and gender-corrected
linear models are given as plm. Chemical shifts are reported in parts per
million (ppm). See Table 1 for details about the SNPs and the number of
tested traits for each variant.
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