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Inferring the effect of interventions 
on COVID‑19 transmission 
networks
Simon Syga1, Diana David‑Rus2, Yannik Schälte3,4, Haralampos Hatzikirou5 & 
Andreas Deutsch1*

Countries around the world implement nonpharmaceutical interventions (NPIs) to mitigate the 
spread of COVID‑19. Design of efficient NPIs requires identification of the structure of the disease 
transmission network. We here identify the key parameters of the COVID‑19 transmission network 
for time periods before, during, and after the application of strict NPIs for the first wave of COVID‑19 
infections in Germany combining Bayesian parameter inference with an agent‑based epidemiological 
model. We assume a Watts–Strogatz small‑world network which allows to distinguish contacts within 
clustered cliques and unclustered, random contacts in the population, which have been shown to 
be crucial in sustaining the epidemic. In contrast to other works, which use coarse‑grained network 
structures from anonymized data, like cell phone data, we consider the contacts of individual agents 
explicitly. We show that NPIs drastically reduced random contacts in the transmission network, 
increased network clustering, and resulted in a previously unappreciated transition from an 
exponential to a constant regime of new cases. In this regime, the disease spreads like a wave with a 
finite wave speed that depends on the number of contacts in a nonlinear fashion, which we can predict 
by mean field theory.

The SARS-CoV-2 pandemic has dramatic consequences at a global scale. Until herd immunity has been reached 
through vaccination, countries rely on non-pharmaceutical interventions (NPIs) of varying severity, like cance-
ling big events, closing schools, and shutting down businesses to reduce virus transmission. An important goal 
of NPI design is to prevent those contacts in the population which contribute the most to disease spread while 
allowing less dangerous contacts. Since the start of the pandemic, mathematical models have been playing an 
important role in guiding policy makers by developing scenarios for the number of cases, hospitalizations and 
 deaths1,2, and estimating the effects of NPIs on the spreading  dynamics3–6. They are also used to estimate the 
herd immunity  threshold7. However, the effect of NPIs on the transmission network of the disease and the cor-
responding changes in the spreading dynamics are still not fully understood.

In several countries, following the implementations of various NPIs, the curves of cumulative cases left the 
exponential regime and entered an approximately linear one, corresponding to a constant number of daily new 
infections, and an effective reproduction number around one, see Fig. 1a–c. This is remarkable, because these 
countries are heterogeneous regarding their demographics, economic situation and the implemented NPIs. Epi-
demiological models that assume a fully connected transmission network, like compartment models based on 
ordinary differential equations (ODEs), predict this behavior only for a particularly fine-tuned set of parameters, 
which contrasts with the robustness of the decline in the reproduction number observed in  reality8,9, see Fig. 1d–f. 
This is still true for detailed compartment models that incorporate the effect of test–trace–isolate (TTI) efforts, 
asymptomatic spreaders, or age-dependent spreading based on contact  matrices4,10 and for agent-based models 
that rely on coarse-grained contact networks, for example created from anonymized cell phone data, which 
assume a well-mixed situation on a mesoscopic scale of hundreds of  agents5,11,12. Komarova et al.13 discussed 
the power law behavior of the dynamics of COVID-19 spread in the context of a metapopulation model, where 
the population is divided into connected patches assuming a fully connected transmission network within indi-
vidual patches. The power law dynamics during the hard lockdown in Chinese provinces could be explained by 
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a compartment model that assumes that the susceptible population was quarantined on a time scale comparable 
to the infectious period of the disease, so that the epidemic comes to a halt  quickly14. However, this assumption 
is hard to justify for the situation in Western countries like Germany, that did not implement a full lockdown 
but enacted contact restrictions and closure of nonessential businesses so that people were still allowed to leave 
their homes and meet in small groups.

In contrast to models that implicitly assume fully connected transmission networks, network-based epidemio-
logical models allow to consider the effects of heterogeneity with respect to the type and frequency of contacts in 
the population, i.e. how often people meet and whom, by representing all agents as nodes of a network and the 
contacts in the population by links between these  nodes15,16. The heterogeneous topology of real social networks 
is reflected by a small average path length between any two nodes (small world property), a high clustering in 
the network (the probability of two nodes being connected is much larger if they have a neighbor in common) 

Figure 1.  Dynamics of COVID-19 epidemics compared to model dynamics in hypothetical clustered 
and unclustered networks. (a–c) Seven-day rolling average of new cases per million, cumulative cases per 
million and reproduction number in Germany, Italy and the US, aligned to the time point when the 7-day 
rolling average reached one per million. After the implementation of NPIs, case numbers decrease slowly, 
corresponding to effective reproduction numbers of just below one. As an extreme example, in the US, case 
counts stayed almost constant for approximately 2 months, before increasing again. In contrast, in Germany, 
cases decreased by about 90% in 2 months, similar to other Western European countries (gray lines). Case 
counts in Italy, the epicenter of the first wave, are between those of the US and Germany. (d–f) Disease dynamics 
in a random network. The number of new cases and cumulative cases changes exponentially over time, strongly 
depending on the number of contacts and the infection probability. The reproduction number is equal to one 
only for a fine-tuned set of parameters. Black dotted lines correspond to predictions of the respective differential 
equation approximation. (g–i) Disease dynamics in a strongly clustered small-world network ( p ≈ 0 ). After 
an initial exponential increase in cases, the number of new cases is almost constant over time, corresponding 
to a linear increase in cumulative cases and reproduction numbers around one. This behavior is robust against 
changes in the total number of contacts k and the infection probability pI . (d–i) show mean and standard 
deviation of 5 independent simulations per parameter set on Watts–Strogatz networks with n = 105 nodes. The 
data in (a–c) is provided by Johns Hopkins  University28.
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and by a power-law distribution (scale-free property) of the node  degree17,18. The structure of the transmission 
network should be considered in mathematical models, because it can change the observed spreading  dynamics19. 
For example, the spread of diseases is strengthened on scale-free networks so that the epidemic threshold is 
 reduced20–22. Thurner et al.23 suggested that the linear regime of cumulative cases is a consequence of small-world 
transmission networks with high clustering, see Fig. 1g–i. A similar system was studied in a theoretical work on 
epidemic spread with two levels of  mixing24. There, the authors found that transmission within interconnected 
cliques leads to an increase in the effective reproduction number proportional to the number of infected people 
in the cliques. This in turn means that a very small number of links between cliques is enough to enable a large 
outbreak, which corresponds to the exponential regime. A model based on a spatial transmission network with 
a variable interaction range also showed power-law growth of new  cases25. A related model could explain the 
disease dynamics during the SARS outbreak in Hong Kong in  200326.

However, while previous works on network-based models for COVID-19 focus on qualitative aspects of 
certain network ensembles, like power-law  growth19,23,25, we here aim to explicitly infer the time-dependent 
transmission network for COVID-19 in Germany. We argue that during the period of severe NPIs, like contact 
restrictions, the most important feature of real transmission networks is their strong clustering. This means that 
because public places and events are closed, we expect that people focus their contacts on a single group (clique), 
where almost each member of this clique is contact with each other. Typical examples of such cliques include 
households or teams at work. On the other hand, we will neglect the scale-free property of social networks, 
because it requires that there are a few people with a very large number of contacts, for example at events, schools, 
large private gatherings etc., which are the targets of most NPIs. We combine Bayesian parameter  inference27 
with an epidemiological model based on the Watts–Strogatz small-world  network17 that allows to interpolate 
between unclustered and highly clustered transmission networks by varying the fraction of random contacts 
in the population, see Fig. 2, to infer the topology of the transmission network in Germany during three time 
periods in 2020: February 26 until March 15, before serious NPIs were imposed, March 16 until June 6, when 
strict contact restrictions were in place and nonessential businesses were closed, and June 7 until September 
15, when most NPIs were lifted. Random contacts often span a large distance in the transmission network and 
connect different cliques. They include, for example, contacts in public transport, bars and restaurants, but also 
contacts with relatives that live far away. Furthermore, given the nature of random contacts, the probability of 
superspreading events increases when there is a high density of such random contacts, as they enable the disease 
to spread to fully susceptible cliques.

After inferring the model parameters, we perform a parameter scan to identify the transition points between 
the linear and the exponential regime of the dynamics. This allows us to associate the three time periods with 

Figure 2.  Watts–Strogatz small world network. Agents are placed in a ring-like topology and linked to their 
k nearest neighbors (black lines). Next, every link is rewired randomly with a small probability p (cyan lines). 
Every agent has one of four states: susceptible (gray), exposed (gold), infectious (red), or removed (black). 
Infectious agents spread the disease to connected susceptible agents with a probability pI in each time step. The 
size of network nodes is proportional to the node degree. (a) Strongly clustered network. Almost all contacts 
are restricted to neighbors ( p = 0.1 ). (b) Weakly clustered network with a large fraction of random contacts 
( p = 0.5 ). Other parameters are equal in (a) and (b): n = 15 agents, k = 4 average contacts.
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regions in the phase diagram. Next, we derive a mean-field analysis of a simplified model to gain a deeper under-
standing of the dynamics in the linear regime. We end with a critical discussion of our results.

Results
Bayesian parameter inference. We aimed to infer the induced changes in the topology of the COVID-19 
transmission network by Bayesian parameter inference. We expected that NPIs lead to a change in the behavior 
of people and thus in the topology of the corresponding transmission network. We assumed that the transmis-
sion network can be described by the Watts–Strogatz  network17 that can interpolate between a weakly and a 
strongly clustered small-world network, see Fig.  2. Crucially, in this framework, we could distinguish local, 
clustered contacts within cliques, like households, nursing homes, businesses, etc. and random contacts outside 
of these clusters, corresponding to encounters in public transport, with business partners, friends and family that 
live far away and similar. During the construction of the Watts–Strogatz network, n nodes are placed in a ring 
topology and connected to their k = 2, 4, 6, . . . nearest neighbors (local contacts, black lines in Fig. 2). After that, 
each link is rewired with a probability p to another random node (random contacts, cyan lines in Fig. 2). We used 
the SEIR (susceptible-exposed-infectious-removed) epidemiological model for the COVID-19 disease dynam-
ics. Agents in the SEIR model were represented by network nodes such that infectious agents could spread the 
disease with probability pI to the susceptible agents that they are connected to in discrete time steps of single 
days (“Methods” section, Fig. 2, Supplementary Fig. 1).

We inferred the model parameters p, k, pI for the time periods before and after the first NPIs were imple-
mented in Germany, and after most NPIs were lifted again using an approximate Bayesian computation with 
sequential Monte Carlo (ABC-SMC) algorithm (“Methods” section). See Table 1 for an overview of the model 
parameters. We did not infer the mean time periods agents spend in the exposed and infectious states, because 
they were reported in the literature as 3d± 1d (mean ± standard deviation) from exposure to becoming infec-
tious and 10d± 3d of being  infectious29. We kept the number of agents fixed at n = 3× 105 , which we regard 
as a representative sample of the whole population. Note that we do not explicitly account for the quarantine of 
infectious agents, which could be done by a time-dependent removal probability, for example. However, we do 
not do this, because the infection and removal probabilities cannot be determined  independently3 and there is 
no reliable data on the effectiveness of TTI measures to further specify the removal probability.

For the time periods before June 6, for which a large number of infections was undetected, we also inferred 
the initial numbers of exposed and infectious individuals nE(0), nI (0).

Based on Google mobility data and previous work on the inference of change points in the spread of COVID-
193,30 we assumed the critical time point for the effect of NPIs in Germany to be March 15, as from March 16, 
NPIs were synchronized in German states, and schools and nonessential businesses were closed.

We intentionally chose broad, uninformative priors for all parameters, such that we could compare the 
obtained posterior distributions with other data sources as a sanity-check of our approach. To account for the 
weekday-dependent reporting delay, we used a seven-day rolling average of new case reports provided by Johns 
Hopkins  University28, see Fig. 3a. Our parameter inference scheme is based on a minimization of the difference 
between this average and the number of agents becoming infectious in the model on the corresponding day. For 
the initial phase, we base our inference on the absolute number of infections, while we used the relative number 
for the following time periods (Supplementary Information).

First, we inferred the parameters for the time from February 26 to March 15, since daily new cases increased 
rapidly after February 26, while there were almost no cases in the week before. Our analysis of this period revealed 
an almost random transmission network, with a median fraction of random contacts of p = 0.48 (with 95% 
credibility interval, CI [0.23, 0.94]), a large number of contacts k = 26 (CI [22, 32]) and a high infection prob-
ability of pI = 0.035 (CI [0.025, 0.061]). The inference of this unexpectedly high number of contacts could be 
the result of a scale-free degree distribution before NPIs were imposed (Discussion). For the initial condition we 
estimated that 33 (CI [4, 46]) people were exposed and 81 (CI [32, 118]) people were infectious on February 26.

To assess the changes of the transmission network induced by the NPIs in Germany, we next considered the 
time period following March 16. During that time frame, the NPIs were changed several times, however, the 
contact restrictions, which we regard as the most crucial intervention, were only lifted on June 6, which is why 
we chose this date as the endpoint of the time interval. As the total number of cases was computationally intrac-
table, we here used the relative number of new cases as input for this time period (Supplementary Information).

Our Bayesian parameter inference revealed that the NPIs reduced the number of contacts in the transmis-
sion network considerably to k = 6 (CI [4, 10]). They also reduced the infection probability of these contacts to 
pI = 0.02 (CI [0.010, 0.039]), which matches well with an estimation based on the individual-level secondary 
attack rate in the household of 17%31. Crucially, the fraction of random contacts decreased to p = 7× 10−5 
(CI [10−7, 0.12] ), stopping the exponential growth. Additionally, we estimated the number of exposed people 
on March 16 to be nE(March16) = 78 (CI [31, 147]) per million and the number of infectious people to be 
nI (March16) = 452 (CI [301, 656]) per million. The fact that during the week before March 16 there were only 
57 infections per million detected in Germany is a hint that a large fraction of infections went unnoticed at the 
time, which agrees with other  reports32,33.

We also inferred the model parameters for the time period following June 6 when contact restrictions were 
lifted. To this end, we used the final time point of simulation instances from the previous period as initial condi-
tions. For the number of contacts, we obtained a median k = 12 (CI [6, 20]) that matches well with reports of 
the average number of daily contacts in Europe of 13.434. The median fraction of random contacts was estimated 
as p = 0.03 (CI [0.001, 0.6]), which means it was notably smaller than before NPIs had been implemented, but 
larger than in the time period of strict NPIs. Interestingly, we found that the infection probability was as low in 
this time period at pI = 0.02 (CI [0.01, 0.04]) as during the lockdown, which could be the result of a seasonal 
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effect and of people spending more time outside, which hinders the spread of airborne diseases such as COVID-
19. We inferred rather broad parameter posterior distributions for this period, due to the generally low number 
of infections and large localized outbreaks, leading to a large variation in daily case counts. This is also reflected 
in a large variability between single model instances for this time period, see Fig. 3a (gray lines). For the time 
periods without strict NPIs (February 26 to March 15 and June 6 to September 15), for which we inferred a large 
fraction of random contacts, the infection probability pI and the number of contacts k were notably correlated, 
leading to broader posterior distributions. Fig. 3 shows the model fit compared to the daily case counts and the 
corresponding prior and posterior parameter distributions of the network parameters and the infection prob-
ability for the three time periods.

Disease dynamics in the clustered network. To determine the transitions between the linear and 
exponential regimes of the dynamics, we performed a parameter scan varying the network parameters p and k, 

Figure 3.  Inference of key epidemiological parameters before (pre-LD, blue), during (LD, green) and after 
(post-LD, yellow) the lockdown in Germany. (a) Daily case reports (black diamonds), single model instances 
(gray lines) and their mean (black line, error band corresponds to 95% error of the mean). Colors indicate 
the respective time periods, where the color is the same as that of the corresponding posterior parameter 
distributions in (b–d). Model parameters were chosen as the median of the respective posterior distribution. 
(b–d) Kernel density estimates of the posterior parameter distributions. The uniform prior distribution is 
shown in gray. (b) The infection probability pI decreased from pI = 0.035 (CI [0.025, 0.061]) pre-lockdown to 
pI = 0.02 (CI [0.01, 0.04]) during the lockdown. After most restrictions were lifted, the infection probability 
remained almost unchanged at pI = 0.02 (CI [0.01, 0.04]). (c) The fraction of random contacts in the 
transmission network p decreased strongly from p = 0.48 (CI [0.23, 0.94]) to p = 8× 10−5 (CI [10−7, 0.12] ) 
when restrictions were put in place and increased to p = 0.03 (CI [0.001, 0.60]) when they were lifted. (d) The 
total number of contacts k decreased strongly from k = 26 (CI [22, 32]) to k = 6 (CI [4, 10]) during lockdown 
before increasing again to k = 12 (CI [6, 20]) after restrictions were lifted.
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while keeping the disease-specific parameters and the system size fixed at n = 105, pI = 0.02 . Thereby, reducing 
k corresponds to reducing the total number of contacts (local and random), while reducing p does not change 
the number of contacts, but restricts them to locally clustered agents (cliques). We recorded the peak number of 
simultaneously infected people, because a central goal of NPIs is to prevent the overload of the health system, 
and the total number of infected people after 100 days as a measure for the total damage to public health, see 
Fig. 4.

Importantly, the number of infections could be reduced massively by only decreasing the fraction of ran-
dom contacts in the population, while keeping the total number of contacts constant. As we have inferred the 
parameters of the transmission network for different time periods, we could associate them with regions in our 
parameter space. If no NPIs had been implemented and people would not have changed their behavior, more than 
40% of people could have been infected simultaneously and almost everybody would have been infected after 
one year (Fig. 4, blue square). The peak of infections was reduced to 0.0002% by the interventions (Fig. 4a, green 
point). Lifting the NPIs moved the system back into the exponential regime, with a projected peak of infections 
of 1.3% and almost 10% of the population to be infected within one year (Fig. 4, yellow diamond). Reducing 
the total number of contacts can in principle push the system below the epidemiological threshold leading to 
extinction of the disease (see Figs. 1, 4), however the effect is weaker in the regime far away from the threshold 
(see Figs. 1, 4, k = 10, 12, 14 ). On the other hand, in the strongly clustered regime p ≈ 0 , increasing the fraction 
of random contacts has a dramatic effect: both the peak value of infected agents and the total number of infected 
agents increase in a non-linear manner. Preventing most random contacts in the network ( p → 0 ) hinders the 
spread of the disease, so that the effective reproduction number fluctuates around 1, and the cumulative num-
ber of infections increases linearly with time as observed in many countries after the first NPIs were imposed.

Wave speed of infections in the linear regime. We were especially interested in the disease dynamics 
in the regime p → 0 , as this is where traditional epidemiological models that assume a random transmission 
network break down. In the case of only local contacts in the network, the disease spreads like a wave originating 
from the initially infectious agent. This wave-like disease spread was also reported in real networks, such as the 
air traffic  network35. To calculate the speed of the infection wave, we used a mean-field approximation of an SIR-
like agent-based model operating on the Watts–Strogatz network (Supplementary Information). We scaled the 
mean-field equations to continuous time t and space x (where the distance �x is measured as the number of links 
along the ring of nodes), and approximated the dynamics by a set of partial differential equations for the prob-
ability densities of susceptible σ(x, t) , infectious ι(x, t) and removed ρ(x, t) agents (Supplementary Information). 
In particular, we obtained the following equation for the probability density of infectious agents

(1)

∂tt ι(x, t) =
2

τ

{

−∂t ι(x, t)+ κI kσ(x, t)
[

(1− p)(ι(x, t))+ pI(t)
]

− κRι(x, t)
}

+ κI k(1− p)Dkσ(x, t)∂xxι(x, t),

Figure 4.  Model dynamics in dependence on the total number of contacts k and the fraction of random 
contacts p. (a) Number of simultaneously infected people (peak of infections) in percent of population. The 
wave peak can be massively mitigated by decreasing the fraction of random contacts, even while keeping 
the total number of contacts constant. (b) Cumulative number of infections after one year, in percent of the 
population. Similar to the peak of infections, the cumulative number of infections can be limited by reducing 
the fraction of random contacts. Blue square (pre-LD), green point (LD) and yellow diamond (post-LD) 
correspond to the median parameters and 95% CI obtained from Bayesian parameter inference for the time 
periods 26/02–15/03, 16/03–05/06 and 06/06–15/09, respectively, and are shown as a reference. The NPIs after 
March 15 prevented an exponential spread of the disease, but lifting them led to another exponential increase. 
Shown are contour lines of the mean of 20 independent model realizations of each parameter combination 
(p, k), while the other parameters were fixed at n = 105, pI = 0.02.
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where κI is the infection rate, and κR is the removal rate. Here, τ is the short time scale of the local disease dynam-
ics of a single agent, while Dk := �x2 k̃

τ
 , with k̃ := (k/2+ 1)(k + 1)/12 is a constant that determines the disease 

spread in the network on longer time scales. The total number of infectious agents I is defined as I :=
∫

ι dx , 
where the integral represents a nonlocal coupling by random contacts. The equation resembles the Telegrapher’s 
equation but with a nonlocal coupling by random contacts and a nonlinear diffusion term due to local contacts. 
We recover the classical SIR model for p = 1 , as expected. For the regime p = 0 , we obtained the speed of disease 
spread through the network as

Notably, the wave speed depends on k in a nonlinear manner. Comparing our prediction against simulation 
data (Supplementary Information) revealed that the wave speed is proportional to the growth rate of the cumula-
tive infections in the linear regime, see Fig. 5.

Conclusion
We used Bayesian parameter inference to quantify the effects of government interventions in Germany on 
the transmission network of COVID-19 assuming it can be approximated by a Watts–Strogatz network. This 
network captures the key feature of social networks affected by NPIs, namely the strong clustering of contacts 
when people restrict their social life to a small, interconnected clique. Our analysis revealed that NPIs lead to a 
reduction in transmission probability, number of contacts, and, crucially, to the removal of almost all contacts 
outside highly clustered cliques. In contrast to standard epidemiological models, in this regime the cumulative 
number of infections does not increase exponentially but linearly, with a massively reduced peak of infections. 
The dynamics corresponds to a wave-like spread of the disease in the network, whose wave speed c we predicted 
by mean-field theory to scale as c ∝ k

√
k in dependence of the number of contacts k. At the same time, the 

effective reproduction number fluctuates around 1, irrespective of the wave speed. However, as long as the epi-
demic threshold is not reached by the reduction of contacts between cliques and the reduction of the infection 
probability, the disease still spreads in the population, which emphasizes the need for an effective test, trace, and 
isolate (TTI) system and a vaccinations.

Several other studies have highlighted the importance of random contacts between members of different 
cliques. A study that used mobility network data to show that the spread of the disease is mostly driven by infec-
tions at events which connect different communities, for example in restaurants and religious establishments, 
further supports the importance of random  contacts36. Moreover, empirical studies of the circumstances under 
which people got infected revealed that although 46% to 66% of transmission is household-based (clustered 
contacts), random contacts between these cliques are essential to sustain the epidemic, even if they only cause a 
low percentage of infections  directly37. A theoretical study that investigated the effect of different social network-
based distancing strategies showed that the most effective social distancing strategy is to restrict contacts to a 
single clique, and to eliminate any contacts between the cliques (random contacts)38.

We based our parameter inference on the daily count of positive tests. This approach is not perfect: the 
number of positive tests depends on the testing policy and the number of available tests. Also, the date, when 
the test result is recorded is always delayed. Another option is the usage of daily deaths, which are independent 
of testing. However, it is very difficult to base our approach on the death count, because the total death count in 
Germany during the first wave and especially during the summer was comparatively low. That means that even 

(2)c =
√

κI kDk ∝ k
√
k.

Figure 5.  Comparison of model dynamics and mean-field approximation in the linear regime. (a) Cumulative 
number of infections in the model for a highly clustered network ( p = 0 ). (b) Growth rate of cumulative 
infections in dependence of the number of contacts k. The growth rate scales as c ∝ k

√
k as predicted by mean-

field theory for a large number of contacts k, see Eq. (2). Shown is the mean and standard error of the mean 
(SEM) of 20 independent simulations for each parameter.
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our scaled-down system would be intractably large, if we want to reproduce the number of deaths using realistic 
assumptions about the fatality rate of the disease. Additionally, the time distribution between infection and death 
has a large variance of up to 10 days, as it varies depending on the age of the affected  individual29,39, increasing 
the noise in the already low death numbers. We further assumed that all people that were tested positive were 
also infectious at the time of the test and that the time delay between people turning infectious and their test is 
negligible. In future studies, the time delay between testing and the onset of infectiousness could be accounted 
for using  nowcasting40.

In our model we assumed a Watts–Strogatz transmission network and distinguished between random and 
clustered links. It is possible to use other algorithms to construct clustered networks, for example the stochastic 
block  model41, the relaxed caveman  graph42, or the configuration model with defined  clustering43, to name a 
few. We chose the Watts–Strogatz graph for its simplicity and its low number of parameters, but we expect that 
other graph ensembles would yield similar results, as long as they allow for high clustering and overlap of cliques. 
A potential target of future research could be the identification of the most appropriate network ensemble for 
different lockdown scenarios.

We did not account for the scale-free degree distribution found in real social networks. It is a result of hubs 
with a large number of connections potentially connecting several communities, like grocery stores, restaurants, 
religious establishments, etc. This favors disease spread even more than randomly assigned links and can lead 
to outbursts of infections (superspreading events)26. In fact, there were several superspreading events related to 
carnival festivities at the beginning of the first wave in  Germany32. We believe that this, at least in part, explains 
why our parameter inference scheme finds larger values for the total number of social contacts k than previously 
 reported34 for the time period before NPIs were put in place. However, the fact that our inferred parameters 
for the later time periods are consistent with other reports regarding the number of contacts and the infection 
probability, reassures us that our assumption, that super spreading was less important after NPIs were enacted, 
is justified.

We inferred that lifting contact restrictions in Germany after June 6 moved the disease dynamics back into 
the exponential regime. However, the effective reproduction number remained close to one, due to a reduced 
transmission probability of the disease, compared to the pre-lockdown time period. This is likely a result of 
several phenomena: first, there is probably a small seasonal reduction in virus transmission due to the higher 
temperatures when no lockdown policy is in  effect44. Second, even after contact restrictions were lifted, there 
was now a mask mandate at public places, which has been shown to reduce the daily growth rate of new cases by 
around 47% in  Germany45. Lastly, mobility was still reduced by about 20% compared to previous  years30 correlat-
ing with lower virus transmission and indicating a higher awareness of the virus in the  population46,47. In October, 
people did spend more time indoors again, and mobility reduced to normal levels, contributing to a second fast 
exponential growth of cases. The German government responded with new NPIs in November, which reduced 
the effective reproduction number to a value around one, again corresponding to a linear regime of new cases.

Our analysis shows that NPIs can reduce the effective reproduction number to one by eliminating random 
contacts. However, eliminating the disease does most likely require to cut almost all contacts between different 
cliques, for example, by working from home. In summary, government interventions should target random con-
tacts and encourage people to restrict their contacts to a single clique in order to efficiently prevent disease spread.

Methods
Model definition. We study an agent-based, discrete-time SEIR model on the classical Watts–Strogatz net-
work, representing agents as network nodes. The network is constructed by, first, connecting every node to its k 
nearest neighbors in a ring-like topology, and, second, rewiring every link to a random node with probability p, 
see Fig. 2. Every node i has a discrete state si ∈ S = {S,E, I ,R} , corresponding to susceptible (S), exposed (E), 
infectious (I), and removed (R) states.

Disease progression is dictated by Ŵ-distributed waiting times inferred from COVID-19 disease characteris-
tics, as these have been found to describe the disease progression  best29. During every discrete time step t, where 
the length of the time step corresponds to one day, each susceptible agent can become exposed with probability 
pI for every infectious agent they are connected to,

where Ii is the number of infectious agents node i is connected to. Upon infection, we change the agent’s state to 
exposed, and assign a waiting time τE ∼ Ŵ(kE , θE) which we draw from a Ŵ-distribution with shape kE and scale 
θE . In every time step, the waiting times are reduced by one day, τE(t + 1) = τE(t)− 1 if τE(t) > 0 . Else, the 
disease progresses, si(t + 1) = I , and a new waiting time is assigned from another Ŵ-distribution τI ∼ Ŵ(kI , θI ) , 
with shape kI and scale θI . Finally, when τI ≤ 0 , the node is removed, si(t + 1) = R . A sketch of the SEIR dynam-
ics can be found in Supplementary Fig. 1. See Table 1 for an overview of all model parameters.

We calculate the shape and scale of the Ŵ-distributions from the reported mean and variance of the time in 
the respective states according to

(3)P(si(t + 1) = E|si(t) = S) = 1− (1− pI )
Ii ,

(4)kE,I =
〈

τE,I
〉2

〈

�τ 2E,I
〉 ,

(5)θE,I =
〈

�τ 2E,I
〉

〈

τE,I
〉 .
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Note that we did not infer these parameters with our Bayesian parameter inference framework.
In our model we do not account for an inflow of infectious people by travel; we instead account for the initial 

surge of infections by placing randomly nE(0) exposed and nI (0) infectious agents in the population.

Bayesian parameter inference. We apply approximate Bayesian computation with a sequential Monte–
Carlo scheme (ABC-SMC) to infer the set of parameters � = {pI , p, k, nE(0), nI (0)} of our agent-based model. 
We always keep the total number of agents fixed at n = 3 · 105 . To this end, we employ the Python package 
 pyABC48. In short, the algorithm employs sequential importance sampling over generations T = 1, ..., nT . In 
generation T, the algorithm draws sets of parameters θi from a given proposal distribution and consequently 
simulates data C(i) from the model, until nABC instances were accepted based on the comparison to observed data 
via a distance function D(C(i),Cobs) and acceptance threshold εT , D(C(i),Cobs) ≤ εT . As the distance function, 
we choose the absolute difference between new cases in the model instance C(i)(t) and the respective reports for 
Germany Cobs(t),

New cases in the model are given by the daily new infections

They are compared to the 7-day rolling average of new case reports in Germany Cobs(t) provided by Johns 
Hopkins  University28 to account for the weekly fluctuations in reporting. Acceptance of model instances depends 
on the acceptance threshold ǫT of generation T, which we choose as the median of the distances of the accepted 
instances of the previous generation

When nABC model instances have been accepted, the algorithm constructs new proposal distributions from 
the accepted instances to allow high acceptance rates while decreasing the  threshold49. In particular, for the 
continuous variables it employs a multivariate normal distribution with an adaptive covariance matrix based on 
the sample covariance matrix, whose scale parameter is determined by a grid search with fivefold cross validation 
and refitting on the whole data set. We compute the discrete numbers of initially exposed and infectious people 
nE(0), nI (0) by rounding the continuous output of the multivariate normal distribution. We can do this without 
a large error as these parameters vary smoothly over a large range. For the parameter k we employ an adaptive 
discrete transition that assigns probabilities to all possible parameter values directly from the frequency of the 
respective value in the population of accepted particles with additional random jumps (with probability 0.3) to 
ensure absolute continuity of the prior. The process is repeated until the acceptance threshold is sufficiently low; 
we especially ensured that the threshold is considerably lower than the difference between the reported cases 
and the seven-day rolling average of cases.

Data availability
The simulation code and input data are available as Zenodo snapshot at https:// doi. org/ 10. 5281/ zenodo. 48841 71.
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