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Abstract

Background: RNA-seq emerges as a valuable method for clinical genetics. The transcriptome is “dynamic” and
tissue-specific, but typically the probed tissues to analyze (TA) are different from the tissue of interest (TI) based on
pathophysiology.

Results: We developed Phenotype-Tissue Expression and Exploration (PTEE), a tool to facilitate the decision about
the most suitable TA for RNA-seq. We integrated phenotype-annotated genes, used 54 tissues from GTEx to
perform correlation analyses and identify expressed genes and transcripts between TAs and TIs. We identified
skeletal muscle as the most appropriate TA to inquire for cardiac arrhythmia genes and skin as a good proxy to
study neurodevelopmental disorders. We also explored RNA-seq limitations and show that on-off switching of gene
expression during ontogenesis or circadian rhythm can cause blind spots for RNA-seq-based analyses.

Conclusions: PTEE aids the identification of tissues suitable for RNA-seq for a given pathology to increase the
success rate of diagnosis and gene discovery. PTEE is freely available at https://bioinf.eva.mpg.de/PTEE/

Background
Exome sequencing (ES) is a well-established method for
diagnosing Mendelian disorders and improving precision
medicine. Yet, ∼50–75% of patients remain undiagnosed
after ES [1–6], although an underlying genetic disorder is
highly suspected. Genome sequencing (GS) of patients of-
fered a promising alternative, however, GS led to only a
marginal increase in the yield compared to ES, with add-
itional 10–15% of patients being diagnosed [4, 7–9]. The
minimal boost of GS in the diagnostic yield is caused by a
poor prioritization and interpretation of variants because

of the lack of our current functional knowledge specifically
of non-coding regions [3, 4, 8, 10, 11]. Hence, there is a
growing interest of clinicians to use transcriptomics to fa-
cilitate variant interpretation [3, 11–13]. While DNA se-
quencing reveals variants in coding and non-coding
regions, the investigator is still blind to the effect of regu-
latory variants that may affect RNA abundance and spli-
cing. RNA-seq addresses this important gap by directly
probing gene expression and splicing patterns. Yet, RNA-
seq holds distinct limitations for the detection of DNA
variants, made difficult by monoallelic expression or non-
sense mediated decay. Thus, beginning experience with
RNA-seq has proven successful in improving diagnosis of
individuals with unresolved diagnosis after exome- or
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genome sequencing, when introduced complementary to
GS or ES [3, 7, 11, 12, 14–16].
One major challenge of transcriptomics is tissue-

specific gene expression [7, 14, 16]. In the endeavor of
finding the diagnosis for the patient’s phenotype, clini-
cians are left with the decision of which tissue is most
suitable to inquire, since biopsies to acquire the tissue of
interest (TI) based on inferred pathophysiology are fairly
rare. Recently, MAJIQ-CAT, a web-based tool has been
designed to inform the tissue choice according to spli-
cing pattern similarities between a clinically accessible
tissue for analysis (TA) and a TI [7]. While the tool is
very useful when the gene of interest is known, incorp-
oration of human phenotype ontology [17] could prove
additional utility for candidate gene identification and
diagnosis [7].
We designed the online resource, Phenotype Tissue

Expression and Exploration (PTEE), that incorporates
data of 54 adult tissues from Genotype-Tissue Expres-
sion (GTEx) Project [18] and genes annotated to a
multitude of phenotypes based on Phenomizer, human
phenotype ontology (HPO) [17, 19], and expert opinion
for neurodevelopmental (NDD)- [20], heart rhythm -[21,
22], and monogenic obesity-related disorders [23]. We
identify tissues that are most suitable for performing
RNA-seq in individuals with NDD or cardiac arrhythmia
conditions. We show that genes annotated with these
phenotypes are not necessarily expressed in the TI (e.g.,
NDD genes / inherited cardiac arrhythmia genes are not
always expressed in the brain / heart). Our observations
on gene expression correlations between distinct tissues
could explain why, although blood is not considered to
be a representative tissue for neurologic disorders, RNA-
seq on blood proved successful for such conditions [12].
In summary, the present resource informs clinicians and
scientists about which TA should be collected given the
individual’s phenotype and a TI, provided a valid ethical
and individual consent.

Implementation
Data processing
Data processing was performed in R [24] version 4.0.3.
We used gene median transcript per million counts
(TPM) of 54 tissues and a total of 17,382 samples from
GTEx version 8 (Supplementary Material – File 1 dis-
plays number of expressed genes as a function of num-
ber of samples/individuals per tissue). The gene
expression analysis appears to be most robust and the
number of expressed genes plateaus when the number
of samples per tissue exceeds 100. For transcript specific
expression, we considered the transcript TPMs and cal-
culated the median per tissue. A gene was required to
have TPM ≥ 1.5 to be considered expressed [25] and in-
cluded in subsequent analyses.

Phenotype annotation data was obtained from Pheno-
myzer [17], SysID Database (release 1.1:2021-04-10) for
primary NDD genes [20], the gene compilation by Gray
and Behr for cardiac rhythm disorders [21], and the
compilation by Rhode and colleagues for monogenic
obesity disorders [23].
A workflow of the analysis is presented in Supplemen-

tary Material – File 2. Briefly, analyses can be restricted
to gene lists annotated for specific phenotypes, custom
input, or all genes expressed in a specific tissue. Further,
the tissue of interest and the tissue of analysis are de-
fined. To calculate Pearson’s correlation based on gene
expression profiles only genes with TPM ≥ 1.5 are con-

sidered and the correlation is calculated as: rxy ¼ covðx;yÞ
SDx�SDy

, where cov is the covariance of the x = gene expression

levels in the tissue of interest and y = gene expression
levels in the tissue of analysis and SD = standard devi-
ation of the variables [26]. To control for the influence
of the tested genes on the correlation analysis we per-
formed 100 randomization tests in which we calculated
correlation coefficients based on random gene lists,
which included the same number of genes as the real
non-randomized gene list (e.g., 39 genes for inherited
cardiac arrhythmias). We ran a binomial test to check
whether the tissue that showed highest number of best
correlations in the randomization tests was significantly
different from the other tested TAs.
To identify which genes are expressed in the tissue of

interest and the tissue of analysis, we considered only
the genes included in the input list (phenotype of inter-
est, custom genes, or all genes expressed in a specific tis-
sue). For each considered tissue we then filtered the list
of genes to include only the ones with TPM ≥ 1.5, con-
sidered to be expressed. To identify overlaps of gene ex-
pression in different tissues we used the merge function
from R and identified common genes between the differ-
ent tissues. If multiple tissues were input as TA/TI,
genes were considered expressed if they were present in
at least one of the considered tissues. For visualization of
the graphs, we used ggplot [27] and venn diagram [28]
packages.
In single gene analysis we display the expression of the

gene in multiple samples and multiple tissues using vio-
lin graphs created with the package ggplot [27] – geom_
violin from R.
The code and data for each analysis are deposited at

the GitHub PTEE (https://github.com/akhilvelluva/
PTEE) repository.

Web tool implementation and data access
We developed a user-friendly web interface using the R
shiny package [29] – Phenotype Tissue Expression and
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Exploration (https://bioinf.eva.mpg.de/PTEE/). Graphics
were generated using BioRender.com. Instructions for
PTEE usage are presented in Supplementary Material –
File 3. Users can select either a phenotype of interest
based on an individual’s phenotype or input a list of
genes to be inquired. The selection of the phenotype of
interest restricts analyses to genes annotated with the re-
spective HPO term, or genes that are annotated to be
causative or candidates for NDD, heart rhythm-, or
monogenic obesity-related disorders. Additionally, users
can also upload custom gene lists according to their in-
terests. Users can identify which genes belong to the
HPO term in the table displayed online, with the possi-
bility of download. Based on the phenotype the individ-
ual displays, users select a TI, which in general reflects
the most affected organ and the disease pathophysiology.
Accessible TAs are: whole blood, skin, Epstein Barr

virus (EBV)- transformed lymphocytes, cultured fibro-
blasts, and skeletal muscle. Users can visualize the cor-
relation based on gene expression levels between TI and
the TA, considering genes that are annotated to the indi-
vidual’s phenotype. Based on random gene lists that con-
tain the same number of genes as the one selected in the
phenotype of interest, users can determine whether the
tissue with best correlation coefficient generally per-
forms best, or the correlation is influenced by the num-
ber of considered genes. Another feature of the tool
allows users to visualize the overlap of expressed tran-
scripts between TI and TA and to inquire the expression
of each transcript in the two tissues. Also, the users can
visualize which tissue expresses most genes included in
the list they inquire.
In the gene expression analysis, users can directly

visualize the expression of genes in different tissues.

Inquiry of heart rhythm disorders for tool validation
To validate the tool, we inquired genes related to inher-
ited cardiac arrhythmias which are often induced by
channelopathies. The underlying genetic defects can
alter the ionic currents and change the shape and dur-
ation of the cardiac action potential [22]. Thus, most of
the responsible genes are expressed in cardiomyocytes.
Given the fact that the heart is a specialized muscle,
among the easily accessible TAs skeletal muscle is ex-
pected to have the highest similarity to heart. Using ana-
lyses implemented within PTEE we prove this
hypothesis, which also served as a sanity check for our
tool.

Transcriptional profiling in the developing human brain
and protein-protein interaction networks
To identify patterns of gene expression which are in-
formative about neuronal developmental processes, we
used the Allen Brain Atlas expression data and

ABAEnrichment package implemented in R [30]. To this
end, we identified the maximum expression in each de-
velopmental stage, followed by one-way ANOVA test to
establish significance and Tukey’s HSD for the pairwise
comparisons between the different groups, using the R-
implemented corresponding functions [24]. The code for
this analysis has been deposited under http://rpubs.com/
Akhil_Velluva/ptee_aba.
We performed protein-protein interaction network

(PIN) functional enrichment analysis of genes not
expressed in the TI to delineate molecular processes in
which these genes are involved. We incorporated the
protein interaction partners of these genes to increase
the power of functional module identification [31].
Functional annotations of genes were obtained from
Gene Ontology (GO) [32] and protein-protein inter-
action data from InBio Map [33]. We then used a hyper-
geometric test to determine the enrichment of genes
(conventional) and functional PPIs (network-wise) in-
volved in the functional modules. The functional PPIs
are interactions formed by two genes with the same GO
annotation. We adjusted network-wise p-values using
the Benjamini and Hochberg multiple testing procedures
[34]. Functional modules with 1) adjusted conventional
p-value < 0.05, 2) adjusted network-wise p-value < 0.05,
and 3) at least one studied gene were considered to be
significantly enriched.

Results
Skeletal muscle is the most appropriate accessible tissue
to inquire for cardiac arrhythmias
The greatest challenge faced by clinicians and re-
searchers in the transition to RNA-seq-based diagnostics
is the tissue-specific gene expression [14]. Thus, both
the underlying pathology and the expected most repre-
sentative tissue must be factored in the decision regard-
ing which tissue should be analyzed by RNA-seq. The
choice can prove very complicated in the case of hetero-
geneous phenotypes for which a representative tissue is
hard to establish, e.g., in the case of hereditary cancer
syndromes.
Hence, for the validation of the resource we developed,

we initially chose a homogenous phenotype – inherited
heart rhythm disorders – which involves a highly spe-
cialized organ – the heart. The phenotype is very suit-
able to validate the approach of our tool for two reasons:
(i) inherited cardiac arrhythmias are often a result of
perturbed ionic channels, generally expressed in the
heart – thus, the choice of TI is very clear; (ii) the heart
is a highly specialized muscle, hence the accessible TA
expected to be most similar is skeletal muscle.
To test this we used the “Cardiac Arrhythmia” list,

which includes 39 genes, reviewed by Gray and Behr
[21]. We show that, based on expression levels, the
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highest correlation occurs, as expected, for skeletal
muscle in comparison to all other accessible TAs (r =
0.48 compared to other accessible TAs with r ≤ 0.45
Fig. 1A). Also, in multiple randomization tests p-value
was lower than 0.001, suggesting that skeletal muscle
compared to the other accessible TAs generally corre-
lates better with heart. Beside the correlation analysis
based on gene expression levels, it is important to know
how many of the target genes are expressed by the TI
and TA to identify blind spots of the analysis. This ana-
lysis showed that skeletal muscle and skin are the ac-
cessible TAs with highest overlap of genes expressed in
the TI – heart (20 and 21 genes, respectively, compared
to all other accessible TAs with ≤16 genes, Fig. 1B).
Moreover, skin and skeletal muscle are also the access-
ible TAs which share most transcripts with heart (39

and 38 transcripts, respectively, compared to all other
accessible TAs with ≤28 transcripts, Fig. 1C). Further-
more, we show that if multiple TAs are sequenced the
yield of expressed genes overlapping with TI is higher.
Based on the “Expression Analysis” tab, we identified 7

genes with no cardiac expression (median TPM < 1.5,
Table 1). Thus, we used the “Single gene analysis” tab to
visualize expression levels of those genes. Except for
KCND2, all other genes displayed a very high variability
in expression levels in the heart (Fig. 1D); individuals
with high expression levels of those genes could have in-
creased susceptibility to cardiac arrhythmia. Next, we
identified which PINs are significantly enriched among
the genes with low heart expression. We observed an en-
richment of functional modules related to regulation of
heart contraction and ion transport for potassium

Fig. 1 Most appropriate tissue of analysis to inquire for cardiac arrhythmias. A. Correlation analysis based on genes with median TPM > 1.5
between the TI (heart) and all easily accessible TAs. The highest correlation coefficient between TI and TAs was obtained by skeletal muscle
(correlation coefficients marked in the purple rectangular: r = 0.43 for the heart left ventricle and r = 0.48 heart atrial appendage). B. Venn
diagrams showing the number of expressed genes (median TPM > 1.5) in TI (heart) and different TAs. Skin and skeletal muscle express most of
the genes included in the “Cardiac Arrhythmia” list. When all TAs are considered, 30 of the 39 genes annotated in the “Cardiac arrhythmia” list
(PI = phenotype of interest) are captured and only 9 genes are not covered in any of the TAs. C. Venn diagrams showing the number of
transcripts (median TPM > 1.5) in TI (heart) and different TAs. Using the “Cardiac Arrhythmia” list, skin and skeletal muscle show the highest
number of overlapping transcripts with heart. D. Violin plot of genes with low cardiac expression (median TPM < 1.5). Numbers above violins
represent standard deviation. The only gene with low expression and low variability is KCND2
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channel encoding genes KCND2, KCNE1, KCNE2, and
KCNE5 (Supplementary Material – Supplementary
Table). Furthermore, we identified significantly enriched
functional modules formed by PINs of SEMA3A part-
ners. These were related to regulation of neurogenesis
and sympathetic neuron projection (Supplementary Ma-
terial – Supplementary Table), which suggests an indir-
ect effect of this gene on heart function.
Thus, using our tool we confirmed our initial hypoth-

esis that skeletal muscle is the most suitable TA as proxy
for heart. Yet, based on our results skin appears to be
another TA suitable to test genes related to inherited
cardiac arrhythmia. At a deeper exploration of genes in-
volved in cardiac arrhythmias we identified those with
lower and variable cardiac expression and with potential
indirect effects.

Skin is the most suitable accessible tissue for RNA-seq
testing in individuals with neurodevelopmental disorders
(NDD)
To evaluate which is the most appropriate accessible TA
for RNA-seq in individuals with NDD, we used the list
of genes from SysID [20]. This is an expert curated data-
base, which includes genes with an already established
genotype-phenotype correlation. We initially considered
all central nervous system (CNS) tissues as TI and per-
formed correlation analyses based on expression levels
of all easily accessible TAs. The highest correlation co-
efficient was attained by skeletal muscle and skin.
However, in multiple randomization none of the ac-
cessible TAs reached significance, suggesting that the
correlation with the central nervous system can suffer
considerable variation depending on the chosen gene
list. While blood seemed least suitable to inquire gene
expression of NDD-genes, the correlation coefficient
to areas of the CNS was still very high (≥ 0.86,
Fig. 2A). Next, we show that skin is the TA which
shares most expressed NDD genes (85%) with CNS
(Fig. 2B). Furthermore, most transcripts expressed in
CNS could be recovered in skin, while the overlap be-
tween CNS and whole blood was lowest (Fig. 2C).
Interestingly, 46 (3%) of the NDD genes are not
expressed in brain (median TPM < 1.5), of which 3

(FANCD2, HPD, HIST1H1E) show blood expression
(Fig. 2B).

Genes involved in NDD and not expressed in the adult
brain show significantly higher expression during
prenatal brain development
To determine whether NDD genes, which are not
expressed in the adult brain based on GTEx data are ac-
tive during brain organogenesis or different developmen-
tal stages we inquired the Allen Human Brain Atlas [35]
using the ABAEnrichment package [30]. We observed a
significantly higher expression of these genes in the pre-
natal stage of brain development (p-value < 0.0001, Fig.
2D) followed by an apparent switch-off of the majority
of these genes in the stages immediately after birth.
While based on GTEx data ALG11, CCBE1, FOXP2,
HPD, and SIK1 are not expressed in the adult brain,
based on Allen Human Brain Atlas data from 6 donors
they show brain expression (Fig. 2D). This agrees with
our observation based on the GTEx data that the num-
ber of expressed genes shows more variation when there
are less than 100 samples considered (Supplementary
Material – File 1).
Yet, 8 genes showed no brain expression during any of

the inquired developmental stages (Table 1). To under-
stand how these genes are involved in nervous system
development we performed a PIN analysis. We identified
a significant enrichment of functional modules formed
by PIN partners of KIF14, FANCD2, and OCLN (Supple-
mentary Material – Supplementary Table). These mod-
ules were related to apoptosis, including neuronal
apoptotic processes, or DNA repair and cell-cell junction
assemblies.

Discussion
RNA-seq is on its way to be integrated into clinical la-
boratory genomics, since it holds the promise to facili-
tate the interpretation of variants of unclear significance
[36]. Previous studies have touched on the potential of
RNA-seq to enable rare disease diagnosis as well as
novel gene discovery [11, 12, 14], but the extent to
which RNA-seq is useful and when alternative ap-
proaches are needed remains largely unknown. The
tissue-specific splicing pattern has been regarded as the

Table 1 Genes annotated for cardiac arrhythmias or NDD with very low expression (median TPM < 1.5) in the TI. Genes marked in
bold show highest expression in brain during the prenatal stage of development. Underlined genes are not expressed in brain in
any of the developmental stages

Cardiac arrhythmia genes not
expressed in heart

KCNE2, KCNE5, SCN10A, SEMA3A, SCN3B, KCNE1, KCND2

NDD genes not expressed in adult
brain

STRA6, ARSE, TM4SF20, SLC6A19, CA5A, GSX2, ZBTB20, NEUROG1, SCN10A, KPNA7, AGMO, HIST1H4C, TAT,
RNU4ATAC, RMRP, IGF1, ASPM, GLI2, WDR62, ORC1, KIF4A, UPB1, HOXA1, CENPF, KIF14, TWIST1, STIL, FOXP2,
KIF11, CEP55, CENPE, GATA6, SIK1, PLK4, FANCD2, MAT1A, BUB1B, HPD, HIST1H1E, CKAP2L, ESCO2, CCBE1,
FAT4, OCLN, MIR17HG, ALG11
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major concern when using a TA as proxy for a TI based
on the individual’s phenotype and inferred disease
pathophysiology [7]. While clinicians already have access
to tools that allow splicing pattern comparisons between
different tissues [7], the decision of which TA is most
suitable for RNA-seq given a specific pathology is still
largely uninformed.
Here, we provide custom gene lists based on Human

Phenotype Ontology [17, 19] and expert opinion [20, 21,
23], which enable clinicians to restrict analyses to genes
related to a specific phenotype. We show that while cli-
nicians may consider a specific tissue as relevant for the
observed pathology (e.g., brain for NDD or heart for car-
diac arrhythmias), it is not mandatory that the disease-
causing gene is expressed in that tissue. Interestingly, for

both phenotypes that we inquired closely – cardiac ar-
rhythmias and NDD – we identified genes which are not
expressed in the TI (Table 1).
Our results suggest that skeletal muscle or skin are the

TA which best represent heart gene expression (Fig. 1).
We identified genes encoding for ionic channels, with
very low expression levels (median TPM < 1.5), which
display a high variability in the heart (Fig. 1D). One pos-
sible explanation for their involvement in cardiac ar-
rhythmias, despite their general low cardiac expression,
is that given their increased variability, individuals at risk
for heart rhythm pathologies could show higher expres-
sion levels. Interestingly, KCND2, which encodes the
pore-forming subunit of the Kv4.2 cardiac potassium
channel involved in the repolarization phase of the

Fig. 2 Most appropriate tissue of analysis to inquire for neurodevelopmental disorders. A. Correlation analysis based on genes with median
TPM > 1.5 between the TI (different regions of brain cortex) and all easily accessible TAs. The highest correlation coefficient was obtained by skin
(r = 0.99). B. Based on the “NDD Genes from SysID (Primary ID Genes)” set, the Venn diagrams show the number of expressed genes (median
TPM > 1.5) in TI (central nervous system) and different easily accessible TAs. Skin shows the highest number of expressed genes (86.6%). When all
easily accessible TAs are considered, 1317 of the 1452 genes annotated in the NDD list (PI = phenotype of interest) are captured and only 135
genes are not covered in any of the considered TAs. C. Venn diagrams showing the number of transcripts (median TPM > 1.5) in TI (central
nervous system) and different TAs. Based on the NDD gene list, skin shows the highest number of overlapping transcripts with TI. D. Expression
in different developmental stages of genes not expressed in adult brain (GTEx median TPM < 1.5). There is a significant enrichment of genes with
a maximum expression level in the prenatal stage (Table 1). Based on Allen Brain Atlas data SIK1, CCBE1, FOXP2, HPD, and ALG11 are expressed in
the adult brain. *** p-value < 0.0001 RPKM = Reads Per Kilobase of transcript, per Million mapped reads
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ventricular action potential, displays low variability and
low expression levels in the heart (Fig. 1D). Gain-of-
function variants in KCND2 have been implicated in
nocturnal atrial fibrillation [37]. The nocturnal occur-
rence of symptoms was attributed to the circadian vari-
ation of Kv4.2 in murine hearts with a substantial 2-fold
change in expression between night and day [38]. Hence,
condition-dependent variation of gene expression adds
another layer of complexity for RNA-seq approaches, in
addition to tissue-specific expression. Based on our re-
sults inquiry of TI does not guarantee that all genes are
properly represented; e.g., we identified SEMA3A, which
is poorly expressed in heart (Fig. 1D) to be involved in
sympathetic neuron projection (Supplementary Material
– Supplementary Table). This suggested an indirect role
of this gene in the generation of cardiac arrhythmias. In-
deed, SEMA3A has been indirectly implicated in cardiac
arrest and ventricular fibrillation [39] by affecting the
cardiac sympathetic innervation [40]. Based on our re-
sults the most suitable tissues for RNA-seq analyses with
the aim to inquire inherited cardiac arrhythmias are
skeletal muscle and skin. Yet, inherited cardiac arrhyth-
mias can be accompanied by abnormalities in the skel-
etal muscle [41], which may affect the expression profile.
Still, the comparison to the normal state can aid the
identification of expression outliers [42].
Furthermore, we focused on NDD genes and the iden-

tification of the most appropriate TA for RNA-seq, con-
sidering brain as TI. Our results suggested that the best
proxy for brain given the considered easily accessible
TAs is skin (Fig. 2). This is also supported by embryonic
gene expression profiles which show higher clustering of
the surface ectoderm (precursory of skin) and neuroec-
toderm (precursory of CNS) compared to blood meso-
derm [43]. As in the case of cardiac arrhythmias we
identified genes which do not show expression in any of
the adult brain areas (Table 1). Among these, based on
the Allen Brain Atlas [30] data, there is a significant en-
richment (p-value < 0.0001) of genes with highest ex-
pression during the prenatal stage followed by silencing
in the other developmental stages (Fig. 2D). Similar to
the previous example of genes with expression levels in-
fluenced by circadian rhythm, this result brings aware-
ness to the difficulties of RNA-seq-based studies. Thus,
a gene which may be relevant in organogenesis and
hence for a specific pathology, in this case NDD, can be
turned off during adulthood. Such genes will be blind
spots for RNA-seq-based diagnosis when only the TI is
inquired.
Interestingly, for some of these genes whole blood

RNA-seq would be a better option to increase the
chances of detecting expression of specific transcripts, or
alterations in gene expression (Fig. 2B). For example, 3
NDD genes (FANCD2, HPD, HIST1H1E – identified

using the table in the “Expression Analysis” tab) are
expressed in blood, but not in the central nervous sys-
tem (Fig. 2C). Pathogenic variants of all three genes
cause syndromic diseases, where the CNS symptoms
represent only a part of the clinical picture. An example
of an indirect effect on CNS is HIST1H1E, which en-
codes histone H1.4 that regulates the accessibility of
regulatory proteins to the target sites and DNA; patho-
genic variants in this gene cause epigenetic modifications
of genes that are highly expressed in brain tissues [44],
influencing indirectly the CNS.
Still, the overall high correlation in expression levels of

NDD genes between blood and brain (r = 0.86, Fig. 2A)
may explain why Frèsard and colleagues had a higher-
than-expected rate of success for gene identification in
neurological cases on blood RNA, although this is not
assumed to be a representative tissue for the pathology
[12].

Conclusions
We provide a tool which, based on the individual’s
phenotype and an inferred tissue of interest, facilitates
an informed decision regarding the most suitable TA for
RNA-seq, according to gene expression correlations and
number of expressed genes/transcripts. Our results sug-
gest that there is no perfect tissue to analyze for a spe-
cific pathology. Counterintuitively, the TI does not hold
a 100% guarantee that the disease-causing gene is well
represented. This could be related to the fact that gene
expression is dynamic during ontogenesis since tran-
scription and expression levels can change during cell
differentiation and the transition between different de-
velopmental stages [45, 46]. We show that RNA-seq-
based studies can be complicated by condition-specific
expression patterns, switching on-and-off of a gene, or
even indirect effects on expression profiles. The webtool
we developed helps clinicians and scientists to directly
explore these limitations and identify the most suitable
tissue or combination of tissues to increase the success
rate of RNA-seq based analyses.
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