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Abstract 

A possibility to accurately predict the absorption maximum wavelength of BODIPYs 

was investigated. We found that previously reported models had a low accuracy (40-

57 nm) to predict BODIPYs due to the limited dataset sizes and/or number of BODIPYs 

(few hundreds). New models developed in this study were based on data of 6000-plus 

fluorescent dyes (including 4000-plus BODIPYs) and the deep neural network 

architecture. The high prediction accuracy (five-fold cross-validation room mean 

squared error (RMSE) of 18.4 nm) was obtained using a consensus model, which was 

more accurate than individual models. This model provided the excellent accuracy 

(RMSE of 8 nm) for molecules previously synthesized in our laboratory as well as for 

prospective validation of three new BODIPYs. We found that solvent properties did not 

significantly influence the model accuracy since only few BODIPYs exhibited 

solvatochromism. The analysis of large prediction errors suggested that compounds 

able to have intermolecular interactions with solvent or salts were likely to be incorrectly 

predicted. The consensus model is freely available at https://ochem.eu/article/134921 

and can help the other researchers to accelerate design of new dyes with desired 

properties. 
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 Introduction 

The BODIPY (4,4-difluoro-4-bora-3a,4a-diaza-s-indacene) compounds are 

widely used as bio- and molecular sensors [1] due to their unique spectral properties. 

The BODIPY sensors are important tools in biochemistry for the precious investigation 

of various biosystems [2]. Therefore, it is important to synthesize BODIPYs with a 

desired set of physical and chemical properties to solve specific application tasks. The 

design of molecules with required properties is usually carried out using well-targeted 

synthetic strategies and based on the expertise of the respective chemists. This 

includes the use of fundamental knowledge about the properties of a fluorophore, the 

results of quantum-chemical calculations and the chemical intuition of the scientists. 

Such approaches are, however, time-consuming and their success critically depends 

on the expertise of the chemists. The rapid development of data processing and data 

prediction methods, such as quantitative structure-activity/property relationship 

(QSAR/QSPR) approaches, allows to dramatically speed up this process. These 

methods are based on the assumption that properties of molecules could be directly 

derived from molecular structures which are represented as a set of calculated 

molecular descriptors and properties. Different linear and non-linear machine learning 

methods are frequently used to identify such dependencies [3]. Amid these methods, 

artificial neural networks (ANNs) have received a lot of attention. A pioneering article 

to demonstrate the effectiveness of using this method to predict the position of the 

long-wavelength absorption band of symmetric cyanine dyes in an alcohol solution was 

published by Baskin et al. [4]. Nowadays, there is an increasing interest to predict this 

property for different classes of dyes by using modern machine learning methods, in 

particular new generation of ANNs, so-called deep learning neural networks, for 

various classes of dyes, such as acridines, anthraquinones, di- and triphenylmethanes, 

cyanines, safranins, porphyrins, phthalocyanines, etc. [5–7] as well as other spectral 

parameters. However, there are still only few publications with an application of QSPR 

methods to predict the BODIPYs main spectral characteristics (absorption and 



emission band maximum positions, molar absorption coefficients, quantum yields and 

fluorescence lifetimes, etc.). One of the first studies in this direction was published by 

Schüller et al. [8] where the authors accurately predicted the absorption and emission 

band maximum positions of BODIPYs. The authors used stepwise multiple linear 

regression (MLR) and support vector regression (SVR) methods to analyze 

experimental data for a limited set of 288 of BODIPYs. The QSPR methods were also 

used to predict other important practical properties of BODIPYs. For example, Caruso 

et al. [9] used genetic algorithm (GA) variable subset selection (GA-VSS) and multiple 

linear regression (MLR) by the ordinary least square (OLS) to identify structural 

features correlated to phototoxicity (IC50) of BODIPYs against a tumor cell line.  

The descriptors used in the previous studies were calculated using traditional 

chemoinformatics tools. However, they can also come from the first principles. For 

example, using a library of PCE (power conversion efficiencies) for 58 of BODIPYs, Lu 

et al. [10] contributed an inverse design method for the development of BODIPY 

sensitizers in dye sensitized solar cell (DSSC). In a more recent study a time-

dependent DFT (TDDFT) was used to predict the dominant nonradiative mechanism 

and fluorescence quantum yields of BODIPYs [11]. 

It is clearly seen that the application of QSPR methods to predict various 

spectral properties of BODIPYs has been gaining popularity in the past few years. 

Firstly, this is due to the potentially wide range of BODIPYs applications, which 

necessitates an increase in the screening rate for compounds with practically 

significant properties. However, the accuracy and reproducibility of the developed 

QSPR models depend on the correctly selected methods and descriptors, the number 

of molecules for the training set and the quality of the experimental data presented. 

The previous studies were based on a limited set of compounds. Recently Ju et 

al. [7] used a database of about 3000 solvated fluorophore molecules of various nature 

to predict their maxima of absorption, emission wavelengths and fluorescence 

quantum yields. However, this dataset included only several hundreds BODIPYs, 

which could limit the accuracy of the model to this class of compounds, as it was 

demonstrated below.  



In this article, we overcame the limitations of this model to predict the band 

maximum positions of BODIPYs absorption by including nearly new 9000 

measurements. We also verified the prediction ability of this model on an external 

dataset of 26 BODIPYs synthesized and characterized by our scientific team [12–14] 

including three new BODIPYs. 

Experimental part 

Datasets 

Three training datasets were used as summarized in Table 1. The TR1 

(“Schüller set”) consisted of 298 BODIPYs (Fig. S1 a) from ref. [8]. The initial dataset 

contained 301 measurements which included one duplicated value (same solvent and 

same values). This value was removed. The TR2 (“Ju Set”) [7] comprised 2797 dyes 

(431 BODYPYs) including all measurements from TR1 (Fig. S1 b). As in the case with 

TR1 we identified 86 duplicates, which were removed from this set. Importantly, the 

authors also made publicly available their model, which was used by us to test it for 

prediction of new compounds. 

To evaluate performance of the models we collected data of absorption 

measurements (8819 samples for 3935 BODIPYs) and conditions of experiments 

(temperature and solvents) from multiple publications and also the Reaxys® database 

(www.reaxys.com). The absorption maximum wavelengths for the selected BODIPYs 

ranged from 404 to 654 nm. After removal of data points overlapping with TR1 and 

TR2 we formed a test set TS1 which was used to test performance of the models. The 

final training dataset TR3 was obtained by merging TR1, TR2 and TS1 sets (Fig. 1). 

Additional testing of the models was done with the spectral data for BODIPYs 

previously synthesized in our laboratory [12–14]. These data consisted of 173 

absorption measurements at 19 solvents for 23 BODIPYs (TS2 set) and did not have 

any molecules in common with the training sets.  A prospective validation of the models 

was done using three new compounds Br-BODIPY 1-3 (TS3 set, see experimental 

details in Scheme S1). The first two compounds were first synthesized and 

characterized in this work. While Br-BODIPY 3 was first described in ref. [15], its 

absorption maximum wavelength was never reported. 



Once data were collected, we found that the reported temperature was 293 K 

for all measurements with an exception of two samples, which were measured at 298 

K. Therefore, we ignored the effect of this condition and did not use it for modelling.  

 

Table 1. Composition of the training and test sets used in the article 

Dataset Compounds 
(BODIPY) 

Measurements 
(BODIPY) Solvents 

TR1 (“Schüller set”)  298 (all) 300 (all)1 DMSO 

TR2 (“Ju set”) 2797 (431) 4166 (474)2 51 solvents 

TS1 3935 (all) 8819 (all) 130 solvents 

TR3 (merge of TR2 and TS1) 6732 (4366) 13339 (9293) 130 solvents 

TS2 23 (all) 173 (all) 19 solvents 

TS3 3 (all) 3 (all) chloroform  

1One duplicated sample was removed from the original set. 286 duplicated samples 

were removed from the original set. TR - training set, TS - test set 

 

Fig. 1. Distribution of absorption maximum wavelengths of BODIPYs in TR3 (Insert: 

the BODIPY structures from TR3 with the smallest and largest values of the absorption 

maximum wavelength). 

Methods and descriptors 



 We used methods and descriptors available and described on the online 

platform OCHEM (http://ochem.eu) [16,17]. At the first stage, five machine learning 

methods were initially used to build the model, including deep neural network (DNN) 

[18], scalable and flexible gradient boosting [19], associative neural networks [20], 

least squares support vector machine [21], and random forest [22]. A preliminary study 

using all sets indicated that DNN consistently calculated smaller Root Mean Squared 

Error (RMSE) for analyzed datasets. Therefore, DNN was selected for all calculations 

reported in this article. We used the default architecture and hyperparameters of DNN 

as reported in ref. [18].  

 

We used different sets of 2D and 3D descriptors, which are described at 

http://docs.ochem.eu/display/MAN/Molecular+descriptors. Three-dimensional 

structures for 3D descriptors were calculated using Corina [23]. All models were 

validated by means of 5-fold cross-validation (5CV). A preliminary study indicated that 

RDKIT [24], alvaDesc [25], MORDRED [26], Fragmentor [27], and PyDescriptor [28] 

consistently contributed models with lowest RMSE. Therefore, these descriptors were 

selected to develop models for all datasets. For the final models, we combined 

predictions of the respective models into consensus models.  

In addition to the RMSE OCHEM calculated several other statistical parameters, 

such as squared Pearson correlation coefficient (R2), coefficient of determination (r2) 

as well as Mean Absolute Error (MAE) which were reported for individual and 

consensus models (Fig. S2 - S9). It should be mentioned that all reported statistical 

parameters were calculated between the experimental and predicted values of the 

absorption wavelengths using the 5CV procedure. 

To account for the solvent effect we initially followed the approach of Ju et al [7] 

who used solvent descriptors in the form of Dimroth-Reichardt ET(30) [29] and Catalan 

(SP, SB, SdP, and SA) [29,30] parameters. 

After development of models using descriptor-based methods, we also 

evaluated performance of deep-learning algorithms which are based on representation 

learning. These methods can be called descriptor-less since they do not use a fixed 

set of descriptors but discover the representations needed for the model from raw data, 

such as chemical graph, SMILES or chemical image. 

OCHEM web site has several such algorithms, which were reviewed at [31]. 

The number of methods, e.g. DEEPCHEM, did not work with boron atom [B] and thus 



were excluded from the consideration. Moreover, most of the analyzed methods did 

not allow to incorporate conditions as additional descriptors. After preliminary analysis 

we found that ChemProp [32] and Transformer CNN [33]. Below, we briefly describe 

these methods. 

Graph-based ChemProp [32] is based on the directed Message Passing Neural 

Network (MPNN) architecture which operates on undirected chemical graphs. During 

the message passing stage the network transmits information across the chemical 

graph and builds a neural network representation of the molecule. During the readout 

phase the neural network uses the learned representation to make predictions of the 

analyzed properties. 

SMILES based Transformer CNN [33] uses Transformer neural network 

architecture, which is one of the Natural Processing Language methods used by 

Google, for, e.g., translation of text between languages. The network was first learned 

to provide canonization of 1.7M chemical SMILES from the CheMBL database. Once 

this task was completed, the internal representation of molecules (which were variable 

length vectors containing probabilities of characters) were used as input to 

Convolutional Neural Network (CNN) which is a well-known method for image 

processing  proposed by Yann LeCun [34]. Transformer CNN uses 1D CNN neural 

network since the input data to this method are one-dimensional. To train and apply 

this algorithm we also used so-called augmented data, which were SMILES starting 

from a random position of an atom, which improved accuracy of this method by 

decreasing its variance for prediction of individual SMILES [35]. The average 

augmentation of n=10, which was found as optimal in previous studies [33,35], was 

used for both training and prediction of data. 

Results and Discussions  

Analysis of performance of existing models. 

Schüller et al [8] did not make their model publicly available. That is why we 

redeveloped the model for this set using the approach described in the method section. 

Calculated 5CV RMSE was similar to the value reported in the original article (Table 

2). This model calculated low accuracy for compounds from the TS2. The low accuracy 

obtained could be due to the small range of absorption maximum wavelength of 

BODIPYs in TR1 (525 - 612 nm) where 50% of all values of the absorption maxima 



wavelength were in a small range (9 nm) (Fig. S10 a). Note that all BODIPYs present 

in the TR1 had the invariance of the BODIPY core substitution position and the 

substituents nature (positions in the BODIPY core: 1-4, 6, 8: –H; 5: bulky substituent; 

7: –CH3 and 1, 3: –CH3, 2, 4, 6, 8: –H; 5: bulky substituent) [8]. The compounds from 

the test sets had much higher structural variability and that is why the model developed 

based on TR1 provided low accuracy for the unseen data.  

Table 2. RMSE of models developed using different training sets 

Training set Original 
model 5CV TS1 (n= 8819) TS2 (n=173) TS3 (n=3) 

TR1 5.81 6.3±0.4 56.7±0.5 35±3 23±1 

TR22 21±2 - 40.5±0.5 13.5±0.9 40±3 

TR23  26±2 36.9±0.5 24±4 35±3 

TR3  18.4±0.4 - 8.8±0.5 2.4±0.9 

TR3 (solvents 
ignored)  18.7±0.4 - 9.7±0.6 4±1 

1Values for 10-fold CV as reported in the article. 2The performance and the results of 

the model published in the article was used.3The model was redeveloped in this article 

using the same protocol as models for TR1 and TR3 sets. 

The application of Ju et al. [7] model, which was included as a part of 

supplementary materials of the article, provided good results, RMSE=13.5 nm for TS2 

including 23 compounds (Table 2, Fig. S10 b), which were previously synthesized in 

our laboratory. The model, however, failed to predict compounds from the large diverse 

set of compounds TS1 (RMSE=46.5 nm). This result can be attributed to the limited 

number of BODIPY compounds (474) in this set. To check this assumption, we 

developed a new model for this set using the same protocol as for the TS1 model. 

While this model calculated a slightly better performance for the TR1 set, its 

performance for prediction of this diverse set of BODIPY compounds was also low. 

The model developed based on the combined set TR3 calculated very good 

5CV results and provided excellent prediction of compounds from the TS2 set (Table 

2, Fig. 2). Since we used the same protocol across for all three sets, such a significant 



improvement in the quality of the model was achieved due to a wide variety of dye 

structures in TR3. 

 

Fig. 2. Scatter plots of calculated vs. experimental absorption maximum wavelength 

developed using TR3 and applied to TS2. The straight line indicates a perfect fit. 

We also developed a model by discarding the effect of solvent, i.e. by excluding 

solvent parameters from the set descriptors provided to DNN. While the performance 

of the model slightly decreased for both 5CV and test sets, the change in the accuracy 

was not significant. This result could be due to the fact that only a limited number of 

BODIPYs exhibit effective solvatochromism [12,36]. For example, some structures 

synthesized in our laboratory were measured at about 19 solvents. However, most of 

them had very similar absorption maximum wavelength across all solvents (Table S1). 

The solvent properties, nevertheless, are known to be much more important for the 

other spectral properties of BODIPYs (molar extinction coefficient, emission maximum 

wavelength, fluorescence quantum yield, and fluorescence lifetime). 

We inspected samples (n=305, ~ 2.3% of all samples) with large prediction 

errors (RMSE > 50 nm) in the final model. The analysis showed that 60 (26%) of 231 

compounds with large errors were salts while only 452 (6.9%) out of 6501 were salts 

in the remaining data. The salts could be sensitive to the pH of the solvent, which was 

not considered in this analysis, thus contributing larger errors for solvent with different 

acid-base properties. 



In order to determine what structural features can lead to a deterioration in the 

quality of the compounds prediction, we analyzed the structures of the remaining 

compounds. Most of the samples that we have chosen as outliers are characterized 

by the presence of bulky substituents incl. polycyclic aromatic scaffolds, and / or 

partially charged functional groups capable of entering acid-base interactions, having 

rotary properties and/or capable of entering into intermolecular interactions with 

solvent molecules (Fig. 3). Also, in a number of cases, such structural features of 

outliers can determine the implementation of various photophysical processes (charge 

transfer, photoinduced electron transfer). The implementation of such processes can 

make a significant contribution to the change in the spectral characteristics of the 

luminophores. Analysis of the average values of molecular weights (MW) showed that 

MW of the outliers samples (excluding the salt forms) was 527 g/mol, and for all other 

samples, MW was 476 g/mol. Therefore, it is necessary to search for or develop new 

descriptors capable of taking into account the above-mentioned structural features 

and/or including better description of solvents (e.g., viscosity). We think that taking into 

account the influence of these effects will improve the quality of the prediction of the 

spectral characteristics of dyes and luminophores.  

 

 

 

a b c 

Fig. 3. Examples of outliers structures: a - BODIPY, characterized by the presence of 

multibranched fluorinated residues, b - D–A–D type systems based on BODIPY, c - 2-



methyl-4-[4-(N-phenylanilino)phenyl]-6-[5-[4-[4-(N-phenylanilino)phenyl]phenyl]-1,3-

oxazol-2-yl]phenol. 

We analyzed in detail the prediction accuracy of models for three newly 

synthesized bromo-substituted BODIPYs (Br-BODIPY 1 - 3) (Scheme S1). We applied 

the model provided by Ju et. Al [7] as supplementary materials (Table 2) as well as 

also their on-line model at http://www.chemfluor.top, which was re-developed by the 

authors using Morgan/ECFP4 fingerprints. The comparison of results (Table 3) showed 

that both the models calculated low prediction accuracy for Br-BODIPY compounds. 

Moreover, they failed to predict the tendency of the absorption maximum wavelength 

to shift in the red region with an increase of the core bromination degree, which was 

correctly captured by the new model. 

 

 

 

 

Table 3. Comparative analysis of the experimental values of the Br-BODIPY 1 - 3 

absorption maximum wavelength (nm) with the values predicted using QSAR models.  

 Experiment1 new model “Ju model” chemfluor.top1 

 

528 530  496 517 

 

530 534  485 510 



 

534 540  493 501 

 
1 - values obtained in chloroform  

In our further studies, new Br-BODIPY 1 - 3 will be tested for photostability and as PDT 

agents.  

Comparison of descriptor-based and descriptor-less methods 

Statistical parameters for individual and consensus models are summarized in 

Table 4. The individual descriptor-less methods contributed one model with a higher 

(ChemProp) and one (Transformer CNN) with a similar accuracy as the respective 

individual models based on descriptors. The consensus model developed as a simple 

average of these two models had a slightly higher (but not significantly different) 

accuracy compared to the one based on the descriptors. Interestingly, both descriptor-

less methods did not use any 3D information and their results were based on SMILES 

with removed stereochemistry. This result indicates that the new methods based on 

representation learning could be very promising approaches for prediction of spectral 

properties of dyes.  

 

Table 4. RMSE of models developed using different training sets. 

Descriptors/ 
Method 

Training set, 5-CV, n=13339 Retrospective validation, n=173 

RMSE R2 RMSE R2 

Descriptor-based 

RDKIT [24] 21 0.93 13 0.88 

alvaDesc [25] 21 0.93 13 0.89 

MORDRED [26] 22 0.93 28 0.43 

Fragmentor [27] 22 0.93 12 0.93 

PyDescriptor [28] 22 0.93 18 0.89 



Consensus 18.7 ± 0.3* 0.949 ± 0.002 9.7 ± 0.6 0.93 ± 0.1 

Descriptor-less 

ChemProp [32] 19 0.94 15 0.92 

Transformer CNN [33] 21 0.94 20 0.86 

Consensus  18.5 ± 0.4 0.95  ± 0.002 10.2 ± 0.4 0.98 ± 0.01 

*Confidence intervals were estimated based on the bootstrap procedure as described 
in ref. [37]. 

 

Conclusions 

We contributed a QSPR model (https://ochem.eu/article/134921) to accurately 

predict the BODIPYs absorption maximum wavelength. To the best of our knowledge, 

this model is based on the largest dataset of BODIPY absorption maximum wavelength 

and will be a significant asset for scientists designing new BODIPY compounds. We 

also demonstrated that the accuracy of the previously reported models was limited by 

the diversity of used data. 

The obtained results inspired us to create the improved models for predicting 

other spectral properties such as emission wavelength, molar absorption coefficient, 

fluorescence quantum yield, etc., which we plan to do in new studies. The quality, 

accessibility and user-friendly interface of our model will be a great asset for synthetic 

chemists and will speed up and facilitate the design of new BODIPYs. 

In order to the convenience of the readers of this article, we have added a model 

manual (“Text Manual” and “Video Manual”) to the ESI. 
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