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Abstract

Combining samples for genetic association is standard practice in human genetic analysis of complex traits, but is rarely undertaken in
rodent genetics. Here, using 23 phenotypes and genotypes from two independent laboratories, we obtained a sample size of 3076
commercially available outbred mice and identified 70 loci, more than double the number of loci identified in the component studies.
Fine-mapping in the combined sample reduced the number of likely causal variants, with a median reduction in set size of 51%, and
indicated novel gene associations, including Pnpo, Ttll6, and GM11545 with bone mineral density, and Psmb9 with weight. However,
replication at a nominal threshold of 0.05 between the two component studies was low, with less than one-third of loci identified in one
study replicated in the second. In addition to overestimates in the effect size in the discovery sample (Winner’s Curse), we also found that
heterogeneity between studies explained the poor replication, but the contribution of these two factors varied among traits. Leveraging
these observations, we integrated information about replication rates, study-specific heterogeneity, and Winner’s Curse corrected
estimates of power to assign variants to one of four confidence levels. Our approach addresses concerns about reproducibility and
demonstrates how to obtain robust results from mapping complex traits in any genome-wide association study.
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Introduction
Combining samples, through meta- or mega-analysis, has
become routine in human genome-wide association studies
(GWAS) of complex traits as a way to augment power by increas-
ing sample size and to ensure robustness of results by replicating
findings. Genetic mapping of complex traits in rodents has
favored the use of linkage analysis in crosses between inbred
strains, with many different inbred strain combinations being
employed. In addition, few studies examine the same pheno-
types. Therefore, few rodent studies have lent themselves to
meta- or mega-analysis (Wuschke et al. 2007; Schmidt et al. 2008).
However, the more recent transition to genetic association using
outbred mice (Parker and Palmer 2011; Flint and Eskin 2012;
Chesler 2014) or panels of inbred animals (Ghazalpour et al. 2012)
provides opportunities for deploying meta- (Kang et al. 2014) and

mega-analysis (Chitre et al. 2020; Zhou et al. 2020) to increase
power and test reproducibility.

In this paper, we combine results from two independent
laboratories, one at the University of Oxford (OX) in the United
Kingdom (Nicod et al. 2016) and one at the University of Chicago
(UC) in the United States of America (Parker et al. 2016). Both
experiments sampled from the same population of commercially
available outbred mice [Crl:CFW(SW)-US_P08, hereafter CFW],
but differed in genotyping platforms, and in some of the pheno-
typing assays. The combined sample size of 3076 mice is the larg-
est cohort to date for the 23 phenotypes examined. The increased
sample size and variety of physiological and behavioral pheno-
types provided an opportunity to examine several questions that
have not been fully addressed in mouse GWAS.
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While a consensus has arisen in human GWAS that a 5� 10�8

threshold together with replication in an independent sample is
sufficient to declare locus discovery (Pe’er et al. 2008; Visscher
et al. 2012), the same is not true for mouse studies. Mouse popula-
tions used for GWAS differ substantially, in linkage disequilib-
rium (LD) structure, allele frequencies, and the extent of
relatedness between subjects, making it inappropriate to codify a
single significance threshold (Flint and Eskin 2012). Furthermore,
the selection of a genome-wide significance threshold introduces
a bias known as “Winner’s Curse” or the “Beavis effect,” in which
loci passing the genome-wide significance threshold tend to have
inflated effect sizes (Zhong and Prentice 2008; Xiao and Boehnke
2009; Sun et al. 2011). Winner’s Curse contributes substantially to
lack of replication of GWAS loci in follow-up studies (Palmer and
Pe’er 2017). There have also been concerns about the impact of
laboratory differences on the measurement of behavior (Crabbe
et al. 1999) and the potentially large impact of subtle laboratory
effects (Valdar et al. 2006; Zhou et al. 2020). These differences be-
tween studies can contribute to study-specific heterogeneity,
which can lead to spurious associations when combining studies.
We refer to unintended effects present in one study but not
others as confounders. These issues question the generalizability
of genetic analyses.

Here we performed a mega-analysis between the OX and UC
cohorts and identified 70 independent loci, of which 41 were not
found in component studies. Novel loci can result from the in-
crease in power from combining data in a mega-analysis, or they
can result from study-specific heterogeneity between the compo-
nent studies. To investigate the robustness of the novel associa-
tions in the mega-analysis, we integrate assessments of
heritability, genetic correlation, locus-specific replication, esti-
mates of study-specific heterogeneity due to confounding (Zou
et al. 2020), and Winner’s Curse corrected estimates of power
(Zhong and Prentice 2008) to categorize loci into one of four confi-
dence levels. We then performed fine-mapping analysis and an-
notation of nonsynonymous variants to identify putative genes
for a number of phenotypes.

Methods
Subjects
All animals originated from the same colony of outbred mice, the
Crl:CFW(SW)-US_P08 stock, maintained by Charles River
Laboratories in Portage, Michigan at the time of the study. Details
about the OX and UC mice are described elsewhere (Nicod et al.
2016; Parker et al. 2016). The OX mice were purchased between
December 2009 and September 2011 at 4–7 weeks of age and phe-
notyping started at 16 weeks. The UC mice arrived at 7 weeks of
age between August 2011 and December 2012, and testing started
after a 2-week acclimatization period. Both the OX and UC mice
were maintained on a standard 12:12 h light–dark cycle with wa-
ter and standard laboratory chow available ad libitum and housed
3 (OX) or 4 (UC) per cage.

Phenotypes
The effect of covariates, including sex, weight, and batch, was
tested in each data set separately (OX and UC) and introduced in
a linear model to calculate residuals when the effect was signifi-
cant (weight was retained for mapping body weight). OX and UC
residuals were then quantile-normalized before being merged in
a single data set used for the genetic analysis. Supplementary
Data S1 lists the mean and standard deviation of all measures
obtained in both studies and the covariates included in the linear

model to calculate the residuals. Many of the behavioral pheno-
types were not independent. For example, there were multiple
phenotypes within the category of locomotor activity. They repre-
sent measures related to locomotor activity at different time-
points during the testing period (e.g., 0–15, 15–30 min, etc.) as well
as summary data representing changes in activity over time (e.g.,
activity decay) that are likely correlated. Descriptions of all phe-
notypes can be found in Supplementary Table S1. The following
section describes methodological differences between OX and
UC. Further details of methods applied in the individual studies
can be found in separate publications (Nicod et al. 2016; Parker
et al. 2016).

Locomotor activity
In both centers the baseline activity of the mice was recorded
during the first 30 min of testing. The activity of the OX mice was
recorded at 16 weeks after placement into a new plastic home
cage (46 cm�15 cm�21 cm) using a photoactivity system from
San Diego Instruments (San Diego, CA, USA) which has seven in-
frared photobeams crossing the width of the cage floor.

The UC mice, �51 days of age at the time of test (SD ¼ 4), were
injected i.p. with physiological saline (0.01 ml/g body weight) im-
mediately prior to the test and placed in the center of an OF
chamber (AccuScan Instruments, Columbus, OH) consisting of a
clear acrylic arena (40 cm�40 cm�30 cm) placed inside a frame
containing evenly spaced infrared photobeams.

Four phenotypes were analyzed for this study: locomotor ac-
tivity initial (0–15 min), locomotor activity end (15–30 min), loco-
motor activity total (0–30 min), and activity decay. Activity decay
was defined as the decrease in activity from beginning to end.

Conditioned fear
In OX, conditioned fear (CF) was tested over 2 days in four San
Diego Instruments chambers with mice at 17 weeks of age. On
the first day of the test mice were subjected to a 13-min training
session during which they received two electric foot shocks
(0.3 mA, 0.5 s) preceded by a 30-s tone. In the morning of the sec-
ond day of the test the mice were placed in the same enclosure
for 5 min and fear associated with the context was measured by
the amount of freezing. In the afternoon the animals were placed
in a different enclosure for 5 min where they were subjected to
two 30-s tones without any paired electric shock. Freezing behav-
ior during all sessions of the test was scored using a VideoTrack
automated system (Viewpoint, Champagne Au Mont D’Or,
France).

UC mice were tested for CF at �63 days of age (SD ¼ 2.9) over
three consecutive days, each consisting of a 7-min trial: on the
first test day, mice were conditioned to associate a test chamber
and a tone (85 dB, 3 kHz tone lasting 30 s) with a shock (2-s, 0.5-
mA foot shock delivered four times); on the second test day, the
mice were re-exposed to the same context, but no tones or shocks
were given; on the third day, mice were exposed to the condi-
tioned stimulus (the tones), but in a different environment. Mice
were tested in four chambers obtained from Med Associates (St.
Albans, VT, USA) and immobility, or “freezing” behavior, was
recorded by analyzing digital video with Freeze Frame software
(Actimetrics, Evanston, IL, USA).

Phenotypes from the conditioned fear tests consisted of eight
measurements of immobility collected in OX and UC mice. On
day 1, we measured average proportion of freezing during the
pretraining interval (UC: 30–180 s, OX: 180–355 s) before exposure
to tones and shocks (baseline freezing D1), as well as the average
proportion of freezing during exposure to the first conditioned
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stimulus corrected for baseline freezing (corrected freezing to
tone alone). On day 2, we measured freezing during the context
test corrected for baseline (corrected freezing to context). On day
3, we measured the average proportion of time freezing in the al-
tered setting during the 30-s intervals in which the tones were
presented corrected for baseline (corrected freezing to cue).
These measurements were done on day 2 in Oxford and on day 3
in UC.

Prepulse inhibition
UC mice were tested at a mean age of 74.5 days (SD ¼ 2.2). During
prepulse inhibition (PPI), the mice were exposed to loud pulses
(120 dB) that caused them to exhibit the startle response.
Occasionally, the exposure to the loud pulse was preceded by a
barely perceptible “prepulse” (3–12 dB over background levels),
which inhibited the startle response to varying extents. The UC
PPI testing procedures follow protocols detailed in previous
papers (Palmer et al. 2000, 2004; Palmer and Airey 2003;
Shanahan et al. 2009).

OX mice were tested at �17 weeks of age following a different
protocol (Yee et al. 2005) combining exposure to loud pulses of
three different intensities (100, 110, and 120 dB), also preceded by
3–12 dB prepulses. For this analysis, only measures of startle eli-
cited by the 120 dB pulse (similar to UC) were considered.

Both OX and UC prepulse inhibition tests were performed in
chambers and apparatus from the same manufacturer and
model (San Diego Instruments, San Diego, CA, USA), capturing
mouse movement using a piezoelectric accelerometer, then con-
verted into digital data and recorded on a computer. Before the
start of each test day, the apparatuses were calibrated according
to the manufacturer’s instructions.

Five phenotypes were analyzed for this study: startle habitua-
tion difference, startle habituation ratio, startle, PPI with þ6 db
prepulse, and PPI with þ12 db prepulse. In UC, startle habituation
difference was defined as the average startle amplitude during
the fourth pulse-alone trials subtracted from the average startle
amplitude during the first pulse-alone trials. In OX this was cal-
culated by subtracting the last block from the first block for the
120 dB stimulus. In UC, startle habituation ratio was defined as
the average startle amplitude during the first pulse-alone trials
divided by the average startle amplitude during the fourth pulse-
alone trials. In OX, this was calculated by dividing the first block
for the 120 dB stimulus by the last block. Startle was defined as
the average startle amplitude to the 120 db pulses during the sec-
ond and third blocks. PPI with þ6 db prepulse was defined as the
average prepulse inhibition during blocks 1 and 2 to the 6 dB pre-
pulse. PPI with þ12 db prepulse was defined as the average pre-
pulse inhibition during blocks 1 and 2 to the 12 dB prepulse.

Musculoskeletal traits
Weight of hind limb muscles and length of tibia were collected by
the same experimenter for both the OX and UC mice. Following
sacrifice, at �20 weeks for the OX mice and �90 days of age for
the UC mice (M¼ 91.2, SD ¼ 2.6), one leg was cutoff just below
pelvis, tubed, and transferred into a �70�C freezer, then shipped
on dry ice to Dr Arimantas Lionikas at the University of
Aberdeen. On the day of dissection, the leg was defrosted and
two dorsiflexors, tibialis anterior (TA) and extensor digitorum
longus (EDL), and three plantar flexors, gastrocnemius (gastroc),
plantaris, and soleus, were removed under a dissection micro-
scope and weighed to a precision of 0.1 mg on a balance (Pioneer,
Ohaus). Then, the soft tissues were stripped off from the tibia,

and the length of the tibia was measured to a precision of
0.01 mm with a digital caliper (Z22855, OWIM GmbH & Co).

Bone mineral
In the OX mice, bone mineral content of the tibia was measured
with the Faxitron MX-20 scanner (Faxitron Bioptics LLC, AZ, USA)
using methods adapted from (Bassett et al. 2012). ImageJ (V1.48p,
National Institutes of Health, USA) was used to quantify the ap-
parent bone mineral content and the mean of the value obtained
for the entire bone used for analysis. In the UC mice, bone min-
eral density for the entire isolated femur was assessed by Dual
X-ray absorptiometry using a GE-Lunar PIXImus II Densitometer
(GE-Lunar, Madison, WI, USA). To admit a normal distribution,
we transformed the BM measurements, which were ratios, to the
(base 10) log-scale. Lastly, we measured abnormal BMD, which is
a dichotomized version of the BMD phenotype, and the only phe-
notype collected that was not quantitative.

Body weight and tail length
Body weight was measured at �17 weeks in OX mice and at
�13 weeks of age (91.2, SD ¼ 2.6) in UC mice. Tail length (in cm)
was measured at the time of sacrifice, as the distance from the
base of the tail to the tip of the tail (OX: �20 weeks of age; UC:
same as body weight measurement).

Genotypes
Sample BAM preprocessing including mapping and quality con-
trol is as previously described (Nicod et al. 2016; Parker et al. 2016).
Reads were aligned to the reference genome assembly (NCBI re-
lease 38, mm10). Imputation was carried out using STITCH
(Davies et al. 2016) (Supplementary Methods). The 3.15 M SNPs
from STITCH were filtered for low quality variant calls (INFO <

0.90) and pruned for LD using PLINK (Purcell et al. 2007), resulting
in 97,452 SNPs tested for association with the phenotypes. Using
PLINK’s hard calling threshold, the dosages were converted to ge-
notype calls. Jointly calling the OX and UC samples in this man-
ner generated a high confidence set of SNPs that was different
from those used in their prior studies (Nicod et al. 2016; Parker
et al. 2016).

Mapping of traits in the combined set
The genotype likelihoods at 97,452 independent SNPs, obtained
using STITCH, were used to perform associated studies in the
joint set of Oxford and Chicago samples. The genotype likeli-
hoods were converted to dosages of the alternate allele. Using the
dosages for the combined set of samples, association analyses
were performed using linear mixed models in GEMMA (v0.96)
(Zhou and Stephens 2012) with a precalculated genetic relation-
ship matrix (GRM) also from GEMMA. Phenotypes were converted
to normal quantiles after removing the effects of age and sex, all
analyses performed using the R progamming language
(R Development Core Team 2010). We did not convert into nor-
mal quantiles within sex because sex was used as a covariate to
generate the residuals, thus removing the difference in the
means. In addition to performing the association analyses on the
combined set of Oxford and Chicago samples, association analy-
ses were also performed on the individual sample sets (OX and
UC). Finally, the Oxford sample set was randomly split into two
equal sized samples sets 100 times. Association analyses were
performed on these Oxford subsets as well. Independent QTLs
were obtained using a peak caller (Nicod et al. 2016), where the
QTLs with the highest log P-values were retained. The code for
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the peak caller is available on the Github repository (Data avail-
ability).

Computation of significance thresholds for
association analyses
The significance thresholds for the P-values from the linear
mixed model association analyses were computed in two differ-
ent permutation approaches. First, we used a “naı̈ve” permuta-
tion approach (Cheng and Palmer 2013). In this approach, for
each phenotype, we permuted the phenotype values across the
combined set of samples. Then the association analysis was re-
peated on the permuted phenotypes, and the most significant P-
value was retained. For each phenotype, the naı̈ve permutation
analysis was repeated 100 times, resulting in a total of 2300 most
significant P-values. The permutation threshold was computed
as the fifth percentile of the distribution of the most significant P-
values from across all phenotypes; combining the phenotypes
was justified because all phenotypes had been converted to nor-
mal quantiles, therefore they had identical distributions. The
same permutation threshold was then used for all phenotypes.
Separate P-value permutation thresholds were computed for the
different sample sets: combined, OX, UC, and the two Oxford sub-
sets (OX1 and OX2).

We compared the naı̈ve permutation method to using another
permutation approach—henceforth referred to as the
“decorrelated” method (Abney 2015). First, the centered GRM was
computed using the genotype dosages from all the chromosomes.
Then the inverse square root of the GRM was computed. The phe-
notype and genotype vectors are premultiplied by the inverse
square root of the GRM, resulting in decorrelated measurements.
Since the phenotypes and the genotypes are decorrelated, a lin-
ear model is used instead of a linear mixed model, resulting in
faster computation times. For each phenotype, 100 permutation
replicates were performed by permuting the decorrelated pheno-
types and performing association analyses using linear models.
Similar to the naı̈ve approach, the most-significant P-value was
retained from each permutation replicate across the 2300
phenotype-replicate combinations. Again, the significance
threshold was computed as the 5th percentile of the distribution
of the most-significant P-values. The significance thresholds
obtained using the decorrelated method were close to the naive
permutation method (Supplementary Figure S6). Since the decor-
related method was less computationally intensive, and the two
approaches led to very similar significance thresholds, we use the
thresholds obtained using the decorrelated method for our
results.

Genetic correlation
We constructed local LD weighted genetic relatedness matrices
(GRMs) using imputed dosages at the common set of SNPs for
Oxford and Chicago studies separately, and a combined GRM for
all mice in both studies, using LDAK version 5.9 (Speed et al.
2012). We then inferred “narrow-sense” heritability from
genome-wide SNPs (h2) at 23 phenotypes measured in both stud-
ies, and genetic correlations (rG) between the two component
studies in phenotypes with nonzero heritability. Estimates for h2
at each phenotype were obtained using the individual study
GRMs using restricted maximum likelihood (REML) implemented
in LDAK, while rG for each phenotype was estimated with the
combined GRM using bivariate REML implemented in GCTA ver-
sion 1.93.2 (Yang et al. 2011). All h2 and rG calculations were
made with PCs 1 to 20 from PCA on the respective GRMs included

as fixed effect covariates. We performed a mega-analysis for all
phenotypes with significantly nonzero rG (P < 0.05).

Confidence intervals and fine-mapping
Confidence intervals (CIs) were estimated by simulation. At each
QTL, a residual phenotype was constructed by removing the ef-
fect of the top SNP at the QTL from the phenotype vector used in
the QTL mapping above. This abolished the effect attributable to
the QTL whilst maintaining genetic contributions from elsewhere
in the genome. One thousand SNPs were then randomly selected,
subject to the constraint that they were within 2.5 Mb of the top
SNP and were polymorphic in the subset of individuals pheno-
typed for the trait. A causal variant was simulated at the SNP,
with an effect size matching that of the top SNP, taking account
of the allele frequency, and added to the residual phenotype. A
local scan of the region using the same mixed model but the sim-
ulated phenotype was performed and the location and log P of
the simulated top SNP recorded. Across the 1000 simulations, we
estimated the distribution of the drop D in log P between the sim-
ulated top SNP and the simulated causal SNP (this was zero when
the top and causal SNPs coincided). We used the fraction of simu-
lations f(D) within D to determine CIs for the original phenotype
data. Thus, we identified the range of SNPs within 1.5 Mb of the
top SNP and with a log P drop less than D to define the 100f(D)%
CI for the QTL. We used the pruned SNPs within the 95% CIs as
input to the SusieR fine-mapping method. We ran the SusieR
method (Wang et al. 2020) using the susie_rss function with L¼ 1
and coverage ¼ 0.95. We annotated all variants within the 95%
causal sets and all variants in perfect LD using ANNOVAR (Wang
et al. 2010).

Modeling Winner’s Curse and study-specific
heterogeneity
We applied two random effects models proposed in Zou et al. (2020).
The z-scores of the significant variants in the discovery study and
the corresponding z-scores in the replication study are used as in-
put to learn the three unknown parameters (rg

2, rc1
2, rc2

2) using
maximum likelihood. rg

2 is the variance in the true effect size. rc1
2

and rc2
2 are the variances in the study-specific effects for the dis-

covery and replication studies, respectively. The first model (WC)
only corrects for Winner’s Curse and assumes that the discovery
and replication studies have a shared genetic effect (k � Nð0; rg

2Þ).
This model corrects for Winner’s Curse by modeling the conditional

distribution of the replication statistics given discovery statistics

sð2Þk js
ð1Þ
k ¼ x; r2

g � N
ffiffiffiffiffiffiffiffiffi
N1N2
p

r2
g

N1rg
2þ1 x; 1þ N2 r2

g �
N2r2

g

N1r2
gþ1

� �� �
, where N1

and N2 are the sample sizes of the discovery and replication studies,
respectively, and k is a genetic locus used as input to the method.
The second (WCþC) corrects for both Winner’s Curse and study-
specific effects for the discovery (dð1Þ) and replication studies (dð2Þ),
where dð1Þ � Nð0; rc1

2Þ and dð2Þ � Nð0; rc2
2Þ. This model corrects

for both Winner’s Curse and study-specific heterogeneity using a

similar conditional distribution (sð2Þk js
ð1Þ
k ¼ x; rg

2; rc1
2; rc2

2

� N
ffiffiffiffiffiffiffiffiffi
N1N2
p

r2
g

N1rc1
2þN1rg

2þ1 x; 1þ N2r2
g þ N2r2

c2 �
N1N2rg

4

N1rc1
2þN1rg

2þ1

� �
, where x is

the value of the z-score in the discovery study. We apply this
method only to the nine phenotypes with at least three significant
loci.

We compared the expected replication rate under the two mod-
els to the observed replication. The observed replication was com-
puted as the fraction of variants that were significant in discovery
study that were also nominally significant and having the same
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sign in the replication study. The expected replication rate ðrÞ under
each model was computed as r ¼ 1

M

PM
k¼1 Pðabsðsk

ð2ÞÞ > z j sk
ð1Þ ¼ xÞ,

where M is the number of variants significant in the discovery
study, and z is the significance threshold for the replication study.

Power calculations
We estimated the power of the association statistics obtained
from the OX, UC, and combined data sets using (Zhong and
Prentice 2008) to correct for Winner’s Curse. This method cor-
rects for the bias from Winner’s Curse and provides an estimate
of the true effect size (btrue) as follows:

btrue ¼ bobs � r
/ b

r

� �
� c

� �
� / � b

r

� �
� c

� �

w b
r

� �
� c

� �
� w � b

r

� �
� c

� � ;

where bobs is the observed effect size, r is the standard error, c is
the significance threshold, /ðxÞ is the standard normal density
function, and wðxÞ is the standard normal cumulative density
function.

We use the estimates of the true effect size to compute the
power as the probability of observing a significant result under a
normal distribution (sk

ð1Þ � Nððbtrue=rÞ, 1)).

Results
We provide an overview of our methodology in Figure 1, which
shows the numbers of phenotypes, QTLs, and genes that we iden-
tified at each stage of the analysis.

Combining phenotypes and genotypes
We identified 23 phenotypes that were measured in both studies
(Supplementary Table S1 and Data S1). We observed a high corre-
lation between related phenotypes, such as “locomotor activity
initial” and “locomotor activity total” (Supplementary Figure S1).
To obtain a common set of genotypes, we converted sequence
data into genotypes using a single pipeline and obtained a com-
mon set of 3,152,108 SNPs for mapping with MAF > 0.001. Quality
control data for genotypes are shown in Supplementary Figures

S2–S4. We also genotyped a subset of these mice on the
megaMUGA array (Collaborative Cross Consortium 2012), and ob-
served 98.71% concordance for the OX cohort and 97.14% concor-
dance for the UC cohort. We also compared the overlapping SNPs
to our prior publications and found 99.12% concordance for OX
and 91.87% concordance for UC. After filtering the imputed geno-
types for pairwise r2 (>0.999), 97,452 SNPs were retained for sub-
sequent mapping (Supplementary Data S2). For all phenotypes,
residuals were obtained by regressing out the relevant covariates
in a linear model. These residuals were converted to normal
quantiles within each cohort and then combined for the mega-
analysis.

Genetic correlations
To determine the degree of concordance between the OX and UC
component studies, we computed genetic correlations using bi-
variate genome-based restricted maximum likelihood estimates,
implemented in the GCTA software package (Yang et al. 2011)
(Figure 2). Genetic correlations were obtained for 17 of the 23
phenotypes with nonzero heritabilities (Supplementary Table S2)
using samples from both studies. We use these 17 phenotypes for
further analyses since phenotypes with low heritability and ge-
netic correlation are unlikely to have genome-wide significant
associations. For these analyses, we used a set of pruned variants
with INFO> 0.90. As a control, we performed the same analyses
using two cohorts that were obtained by randomly splitting the
OX cohort in half (termed the OX1 and OX2). Theoretically, there
should be little heterogeneity between OX1 and OX2, so the ge-
netic correlation should be close to 1.

As expected, the genetic correlation between OX1 and OX2
was indeed close to 1 for all phenotypes (Supplementary Figure
S5). The standard errors on the genetic correlations were high
when the estimated heritability for the trait was low. Figure 2
shows that genetic correlations between OX and UC were >0.7 for
phenotypes with heritability greater than or equal to 15%, indi-
cating that the studies have substantial shared genetic associa-
tion signal. Behavioral phenotypes, such as startle and fear
conditioning, tended to have lower heritabilities (Supplementary

Figure 1 Method overview. We combined two cohorts of CFW mice for 23 shared phenotypes. We identified 17 phenotypes with heritability significantly
>0. Fifteen of these phenotypes had genetic correlations >0.70. We performed GWAS meta-analysis using these 15 phenotypes and obtained 70
genome-wide significant QTLs.
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Table S2) than the physiological traits. However, this may be in

part due to differences in methodology between the OX and UC

studies (see Methods).

Mega-analysis
We performed a mega-analysis of 23 traits in the combined OX

and UC cohorts (3076 mice, Supplementary Data S3). We com-

pared two different permutation-based methods (“naive” and

“decorrelated”) to obtain thresholds at a significance level of 0.05

(see Methods; Supplementary Figure S6). We used the more

conservative decorrelated thresholds for our analysis. We identi-
fied 70 independent loci that were significant at an empirically
derived �log P threshold of 5.79 (Figure 3).

The genetic architecture of the phenotypes is polygenic;
namely many loci each contribute a small effect to the heritabil-
ity (Supplementary Table S3). Figure 3 shows that the log P val-
ues for behavior (red dots in the figure) are on average less than
those for physiological traits (blue dots). The absolute median ef-
fect size for the behavioral loci was 0.16 and 0.18 for physiological
traits, indicating that the behavioral QTLs tended to have smaller
effect sizes than the physiological QTLs. Supplementary Table S3
lists the positions of all genome-wide significant loci for every
phenotype, giving their log P and effect sizes.

Confidence intervals
We estimated the 95% CI for every QTL using a previously pub-
lished simulation procedure in which, for each locus, we ran-
domly implanted causal SNPs that matched the true QTL’s
observed effect size and simulated phenotypes for all samples
(Nicod et al. 2016). A local scan of the region using the mixed
model was then performed using the simulated phenotypes, and
the location and P-value of the top SNP was recorded. These sim-
ulations were used to compute the empirical distribution of the
change in P-value between the most highly associated SNP and
the causal SNP (D). The 95% CI was estimated as the maximum D

among the lowest 95% of simulations. Supplementary Table S3
contains the CIs estimated for all QTLs found in the mega-
analysis. Figure 4 shows several examples of CIs computed for
two QTLs. Most CIs coincide with strong LD blocks, as expected
(Figure 4A). However, in some cases, the CIs included variants
with low correlation to the lead SNP (Figure 4B). Thus, the CIs are
able to identify regions responsible for the peak signal in a less ar-
bitrary way than simple LD thresholds. These CIs were computed
using the LD pruned variants. We use these variants to simplify
the simulations for the CI estimation and the subsequent fine-
mapping. However, we add variants in LD for downstream analy-
ses of the variants. Supplementary Figure S7 shows the

Figure 2 The genetic correlation between each pair of phenotypes mapped in OX and UC studies. Each dot represents the estimated genetic correlation,
and the error bars show the 95% confidence intervals obtained using the standard errors. Only phenotypes with heritability significantly different from
zero are shown. Phenotype names are defined in Supplementary Table S1.

Figure 3 Porcupine plot showing a genome-wide representation of all
QTLs identified for all traits. Light gray dots show association for the
measures where a QTL was detected. SNPs at each locus that exceed a
permutation derived significance threshold are marked with a colored
dot, where blue represents physiological and red behavioral traits.
Significance thresholds were derived using a decorrelated permutation
approach, described in the methods section. While some of these QTLs
represent closely linked loci for similar traits, some loci are shared
between physiological (blue) and behavioral (red) traits.
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distribution of the 95% CI widths of all QTLs, which range from
0.09–7.96 Mb, with a median of 1.3 Mb.

Fine-mapping of mega-analysis loci
In order to identify putative causal variants within the 95% CIs
previously computed, we applied a fine-mapping framework
called susieR (Wang et al. 2020). We used summary statistics
from an LD pruned set (R2 < 0.99) of variants and the LD between
these variants as input to susieR. SusieR uses these variants to
compute a number of credible sets that are designed to contain
the causal variant with high probability (i.e., 95%). We obtained
credible sets of SNPs for 62/70 QTLs for which the fine-mapping
algorithm converged. Table 1 provides examples in which the
fine-mapping was particularly effective. For example, a QTL we
identified for tibia length (chr6:145481081) had over 15,000 SNPs
in the 95% CI of the QTL, and after fine-mapping, the number of
putative SNPs was only 169 (representing a 99% reduction in the
number of putative SNPs). The median number of variants in the

credible sets was 932, and the median reduction in set size was
51% (Supplementary Figure S8 and Data S4). Across all pheno-
types and loci, we identified 94,177 variants in the credible sets or
in high LD (R2 > 0.99) of variants in the credible sets. We used the
variants within these credible sets as a high confidence set of var-
iants for downstream analysis.

We generated gene-based annotations for the variants in the
credible sets using the ANNOVAR software. Ninety-nine percent-
age of variants were in noncoding regions of the genome. 32 var-
iants in the credible sets were nonsynonymous mutations within
22 coding genes (compared to 4 nonsynonymous variants in UC
and 16 nonsynonymous variants in OX). We interrogated the
NHGRI-EBI catalog of human GWAS and the Mouse Genome
Informatics database to determine if any of these 22 genes have
been previously associated with relevant traits of interest
(Supplementary Table S4). Of the 22 coding genes identified, 11
were previously implicated in either human GWAS or KO mouse
studies of similar traits (Supplementary Table S4).

Colocalized traits
We examined the effect of the 70 QTL significant in the mega-
analysis on the other 23 traits, to determine the extent of colocal-
ization between traits. We found that 45/70 QTLs had effects on
more than one trait, after applying a Bonferroni correction
(P< 5.1e�05) for multiple testing of combinations of QTLs and
other phenotypes. Phenotypes often derive from the same test
(such as activity measured over different lengths of time or meas-
ures obtained from different muscles). To report our results we
created two phenotype categories (Behavior and Physiology).
Results are shown in Supplementary Figure S9 and Table S5.
While the majority of these colocalized traits are between similar

Figure 4 High-resolution mapping of two QTLs. Each point is a variant in the locus, and the color of the point corresponds to the correlation of that
variant with the lead SNP. The vertical lines correspond to the 95% confidence interval estimated for the QTL. Genes falling within the confidence
intervals are shown below the plot. (A) QTL for locomotor activity end (chr11:96653605). The confidence intervals fall along a block of variants in strong
LD. (B) QTL for initial locomotor activity (chr13:9154368). The confidence intervals include many variants with low correlation to the lead SNP.

Table 1 Examples of fine-mapping QTLs

Phenotype Chr Position All SNPs Fm SNPs Reduction

Tibia 6 145481081 15,815 169 0.99
TA 2 154645131 3,284 72 0.98
Total locomotor

activity
2 89914086 1,366 43 0.97

Soleus 2 155505679 2,812 140 0.95
BMD 11 100053320 20,037 2,980 0.85

“All SNPs” refers to the total number of SNPs used as input to the SusieR fine-
mapping method, and “Fm SNPs” corresponds to the number of variants in the
credible sets. “Reduction” is the percentage of decrease relative to the total
number of SNPs used as input to the fine mapping.
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traits, such as locomotor activity at different time points, 20 of 45
QTLs had effects on at least one behavioral trait and one physio-
logical trait. For example, a QTL for initial locomotor activity
(chr11:96964818) was also associated with total locomotor activ-
ity, locomotor activity end, weight of TA, tibia length, BMD, and
abnormal BMD. Similarly, a QTL for weight (chr13:9217096) was
also associated with soleus, weight of TA, EDL, total locomotor
activity, locomotor activity end, and locomotor activity initial.

Replication
Despite the high genetic correlations between phenotypes in the
OX and UC studies (Figure 2), we observed a high rate of nonrep-
lication of QTLs, where replication was defined as a genome-wide
significant association in the “discovery” data set (OX or UC) and
a P-value of 0.05 or lower in the other (“replication”) data set.
After mapping all traits in either just the OX or just the UC sam-
ple and applying empirically derived thresholds (�log P 5.68 for
OX, 5.43 for UC), we identified 32 QTLs in the OX data set and 22
in the UC data set. Six of the 32 QTL discovered in OX replicated
in the UC (19%); of the 22 QTL identified in UC, 7 replicated in OX
(32%). There were also instances where the mega-analysis failed
to confirm findings in a component study (12 of 22 loci from UC
and 4 of 32 loci from OX, Supplementary Figure S10). Forty-one of
70 loci were significant in the mega-analysis but not significant
in the component studies (Table 2).

We explored the contributions of power and confounders
(which are presumed to reflect experimental differences between
studies) to replication rates in our samples. When power is low,
variants that pass the significance threshold are more likely to
have inflated effect size estimates, meaning they are less likely to
be replicated, a phenomenon that is often called “The Winner’s
Curse.” Put another way, when power is low, the positive predic-
tive value falls, so that for a given P-value there will be more false
positives.

We applied a statistical framework that jointly models
Winner’s Curse and study-specific heterogeneity due to con-
founding (Zou et al. 2020). The inputs to this method are the
z-scores of the significant variants from the discovery study and
the corresponding z-scores from the replication study. The
method compares two random effects models: one that accounts
for Winner’s Curse (WC) and another that accounts for both
Winner’s Curse and study-specific heterogeneity due to con-
founding (WC þ C). We compared the expected replication rates

under each of these random effects models to the observed repli-
cation rates. If the observed replication rate is well explained by
the WC model, there is relatively little heterogeneity. However, if
the observed replication rate is better explained by the WC þ C
model, there may be heterogeneity between the studies.

We used the OX cohort as the discovery data set and UC co-
hort as the replication data set. We jointly modeled Winner’s
Curse and study-specific heterogeneity in nine phenotypes which
had at least three significant loci [model parameters are not ro-
bustly estimated with fewer significant loci (Zou et al. 2020)]. We
computed the expected replication rate under each model for
each phenotype and compared these estimates with the observed
replication between the two data sets. In order to estimate CIs we
applied this method to 100 randomly divided sets of the OX sam-
ple (heterogeneity should not exist when a single study is ran-
domly split in half into two cohorts). To display the results, we

Table 2 The number of QTLs significant in the mega-analysis
(“mega-analysis”) and the number of the QTLs from the mega-
analysis that were also found in each of the component studies
(“OX” and “UC”)

Phenotype Mega-analysis OX UC

Plantaris 4 1 0
Weight 3 1 0
Abnormal BMD 2 2 1
Startle habituation ratio 1 0 0
BMD 8 4 3
gastroc 4 1 0
Soleus 6 3 1
Total locomotor activity 7 2 0
EDL 7 2 0
Tibia 10 8 3
Locomotor activity initial 7 1 0
Tail length 1 0 0
TA 7 3 0
Locomotor activity end 3 1 0

Phenotype names are defined in Supplementary Table S1.

Figure 5 Replication analysis between OX and UC cohorts. (A) Difference
between the observed and expected replication (y-axis) after accounting
for Winner’s Curse (green) and after accounting for both Winner’s Curse
and study-specific heterogeneity due to confounding (brown).
Empirically computed 95% confidence intervals are shown as vertical
bars. (B) Variance attributable to study-specific heterogeneity and
genetics. The phenotypes are sorted by the amount of variance
explained by genetics. There are six phenotypes with at least as much
variance explained by genetics as study-specific heterogeneity (EDL,
tibia, BMD, total locomotor activity, TA, and locomotor activity initial)
and three phenotypes where the heterogeneity is more substantial
(soleus, gastroc, and locomotor activity end). Phenotype names are
defined in Supplementary Table S1.
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plotted the difference between the observed replication and the
expected replication after correcting for Winner’s Curse, which
should be close to zero when the model explains the observed
data.

Figure 5A shows the results modeling Winner’s Curse (WC).
The estimate for one phenotype, EDL, overlaps with zero, but in
all other cases the Winner’s Curse model predicts higher rates of
replication than we observed. The WC þ C model jointly models
Winner’s Curse and study-specific heterogeneity. Taking into ac-
count confounds in addition to Winner’s Curse (WC þ C) does a
better job explaining the observed replication, as shown in
Figure 5A. Only one phenotype, bone mineral density, deviates
significantly from zero (Figure 5A). In this phenotype, replication
was not explained well by either model.

We estimated the relative contribution of WC and study-
specific heterogeneity for each phenotype. Figure 5B shows that
the relative contribution varies between phenotypes. Replication
rate differences for EDLs depend almost entirely on WC while for
soleus, gastroc, and locomotor activity end, confounds outweigh
the contribution of WC. In general, behavioral phenotypes tended
to have more heterogeneity than physiological phenotypes.

We returned to the results of the mega-analysis to categorize
the robustness of the findings, based on the results of our replica-
tion analysis. For each of the genome-wide significant QTLs in
the OX, UC, and mega-analysis studies, we corrected the ob-
served effect sizes for WC using Zhong and Prentice (2008). This
method takes into account the significance threshold used to de-
tect the QTLs. We estimated the power using this corrected effect
size estimate (Supplementary Table S6). As expected, power was
on average higher in the mega-analysis than the component
studies (Supplementary Figure S11). We then used these power
estimates in combination with replication data and estimates of
study-specific heterogeneity to divide the mega-analysis results
into four categories (Table 3).

The first category consisted of a high confidence set of var-
iants that were significant in the combined study and both com-
ponent study. Eight of the 70 variants in four phenotypes were in
this first category of variants. The second category consisted of
variants that were significant in the combined study and at least
one component study. Twenty-one of 70 variants in 12 pheno-
types were in this second category of variants. The third category
consisted of variants found in phenotypes without evidence of
heterogeneity (excluding phenotypes without enough significant
variants to determine the heterogeneity level). Fourteen of the 70
variants in five phenotypes fell in this category. Finally, the
fourth category contained the remaining variants. Twenty-seven
of the 70 variants in 12 phenotypes fell within this category. A
summary of the QTLs found in each of the categories is shown in
Supplementary Table S7.

Discussion
By combining phenotypes and genotypes from two independent
laboratories, we identified 70 loci for 23 complex traits in a popu-
lation of 3076 commercially available outbred mice. The large
sample delivered a median QTL interval size of 1.1 Mb. Fine-
mapping reduced the number of likely causal variants, with a
median reduction in set size of 51%. For all traits analyzed our
results are consistent with a polygenic architecture, in which the
vast majority of causal variants likely lie in noncoding parts of
the genome, and with the existence of a considerable degree of
pleiotropy, a pattern commonly recognized from GWAS of hu-
man complex traits (Visscher et al. 2017). As well as indicating the

genetic architecture of the traits, our findings cast some light on
the biology of the phenotypes we have mapped, allowed us to ex-
amine factors contributing to replication, and hence to assess the
robustness of our findings. We discuss these points below.

To assess the robustness of our findings in the mega-analysis,
we categorized QTLs by integrating replication data, heterogene-
ity estimates for each phenotype, and estimates of power in the
mega-analysis. We use replication of findings in the OX and UC
cohorts to determine the two highest confidence categories.
Confidence category 1 consisted of QTLs that replicated in both
cohorts. One example QTL in this category was associated with
tibia length (chr12:83514944). Through fine-mapping and annota-
tion of variants in the causal set, we implicated the Zfyve1 gene.
This gene was also implicated by two other loci associated with
gastroc (chr12:83517483) and TA (chr12:83514944) and is
expressed highly in these tissues (Lionikas et al. 2012, 2013).
Zfyve1 is known to bind to Ptdins3P (Lee et al. 2019), which is an
important mediator of Akt/PKB kinase activation and upregula-
tion of protein synthesis (Hemmings and Restuccia 2012), provid-
ing a potential mechanism for influencing variability in muscle
weight. Zfyve1’s link to Ptdins3P along with the GWAS associa-
tions with tibia length, gastroc weight and TA weight suggests
that Zfyve1 may be involved in modification of the intracellular
signal promoting growth.

Confidence category 2 contained QTLs that replicated in one
component study but not the other. These associations are less
likely to be driven by differences between studies or Winner’s
Curse, since they were also significant in a component study
with fewer samples than the mega-analysis. For example,
chr11:94758993 was associated with abnormal bone mineral den-
sity in the mega-analysis and was replicated in the OX study but
not the UC study. Through our fine-mapping and nonsynony-
mous variant annotation, we implicated the gene Tmem92, which
has been previously found to be associated with heel bone min-
eral density in humans in a number of studies (Kemp et al. 2017;
Kim 2018; Kichaev et al. 2019; Morris et al. 2019). Additionally, the
Tbx18 gene which was implicated by a confidence level 2 QTL for
plantaris weight (chr9:87855594), was previously associated with
body size phenotypes in human GWAS studies and mouse KO
studies (Wu et al. 2013; Lotta et al. 2018; Kichaev et al. 2019; Pulit
et al. 2019).

Confidence category 3 contains QTLs that did not replicate in
component studies. However, these QTLs were found in pheno-
types with relatively lower heterogeneity and had high estimated
levels of power (>0.5) in the mega-analysis after correcting for
Winner’s Curse. A QTL for EDL weight (chr13:113025220) in confi-
dence category 3 implicated gene Cdc20b, which has been previ-
ously associated with BMI adjusted waist circumference in
human GWAS (Zhu et al. 2020). The estimated power level for this
variant was 11% in the OX study, 14% in the UC study, and 67% in
the mega-analysis. QTLs in confidence level 3 are likely to be true
associations that were identified due to the increase in power in
the mega-analysis.

In general, we observe that genes implicated using high confi-
dence QTLs are more likely to have support in previously pub-
lished results. For example, we identified seven olfactory
receptor genes from two QTLs associated with EDL weight and
body weight that were in the lowest category of confidence (4).
Additionally, the EDL QTL (chr2:86662262) had low estimated
power after correcting for Winner’s Curse, and the body weight
QTL (chr17:37094289) had a high estimated level of heterogeneity
between studies. None of the seven genes have been previously
associated with related phenotypes in the literature and are
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unlikely to be true associations. However, there is evidence to
support the candidacy of genes at some of the QTLs in this cate-
gory. For example, a QTL for soleus weight (chr13:9242435) impli-
cates Larp4b, which has been previously associated with atypical
femoral fracture and ankle injury in human GWAS (Kim et al.
2017; Kharazmi et al. 2019). Since the soleus is the plantar flexor
muscle of the ankle, it is likely to play a role in these two pheno-
types. While we estimated substantial amounts of heterogeneity
for the locomotor activity end phenotype and the soleus weight
phenotype, previous findings may indicate that these genes may
have been identified in spite of the heterogeneity we observed.

While these examples highlight genes that have previously
been associated with similar phenotypes in mice or humans,
other genes (Pnpo, Gm11545, Psmb9, and Ttll6) represent novel tar-
gets for functional validation in follow-up studies. In particular,
Pnpo lies at the bone mineral density QTL chr11:96912238, in con-
fidence category 1. The bone mineral density phenotype had rela-
tively low estimated levels of heterogeneity between the OX and
UC cohorts, and the power of the mega-analysis after correcting
for Winner’s Curse was close to 100%.

Our results also provided us with an opportunity to identify
the factors that contribute to replication rates. When we investi-
gated replication between component studies we found that
about a fifth (19%) of QTL discovered in OX replicated in UC and
just less than one-third (32%) of QTL identified in UC replicated
in OX. We explored reasons for the low rates of replication and
came to the following conclusions.

Unknown confounds between laboratories limited replication,
but this depended on the phenotype. By applying a method that
detects the effect of heterogeneity, we observed that for one phe-
notype there was no impact of heterogeneity (weight of the EDL
muscle), while on others the impact was substantial (up to 60%
of the variance explained in the case of weight of the plantaris
muscle). Some of the differences likely reflect systematic differ-
ences between the way the mice were treated at the two testing
sites: mice born in Portage, Michigan, were shipped either to
Chicago by truck (�200 km) or to Oxford by truck and plane
(�6100 km). Other factors may include differences in the way the
animals were handled or a variety of other laboratory specific dif-
ferences.

Current human GWAS usually report results only from their
meta-analyses, following the argument that joint analysis is
more powerful than replication-based analyses (Skol et al. 2006),
and rarely rely on replication as a touchstone for the dependabil-
ity of their findings. Results obtained in this way are usually
regarded as robust (Marigorta et al. 2018). However, replication
rates may be inconsistent with the P-values and effect sizes
reported in discovery cohorts; for example, a replication rate of
48% was found in a survey of 100 papers (Palmer and Pe’er 2017).

The bulk of human GWAS findings since 2008 are replications
of associations that have been described at least twice (Marigorta
et al. 2018), thus allaying concerns that the findings are not ro-
bust. The same cannot be said for mouse GWAS, where it is rare
for a trait to be mapped multiple times at all, much less to be
mapped multiple times in the same population. Furthermore, the
genetic structure of mouse mapping populations is quite unlike
that of outbred human populations. For example, no human pop-
ulation consists of fully inbred individuals, a commonly used de-
sign in mouse experiments [as in the recombinant inbred strains
of the collaborative cross, or the inbred strains that constitute
the hybrid mouse diversity panel (Flint and Eskin 2012)].
Replication across such different populations is more difficult
than within a population [as already documented for human

studies (Palmer and Pe’er 2017)]. We show here that obtaining ro-

bust results in mice is demanding because of difficulties in

obtaining a replication population, the impact of Winner’s curse

and phenotype specific confounds. As a first step we derive cate-

gories of confidence to our mapping results by combining infor-

mation about replication, study-specific heterogeneity, and

power. We thus categorized loci into one of four confidence lev-

els. Our approach helps alleviate concerns about reproducibility

(Button et al. 2013) and can be used to prioritize QTLs for

follow-up studies, but needs further development to produce a

systematic method to evaluate confidence quantitatively, rather

than categorically as we have attempted here. This framework

may also be applicable to human GWAS especially when replicat-

ing in admixed populations, when phenotyping may be difficult.
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