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The treatment resistance and high morbidity associated with conventional chemotherapeutic treatments
warrant new therapeutic approaches for B-cell precursor acute lymphoblastic leukemia (BCP-ALL), espe-
cially for relapses and adult patients.1 The selective BCL2 inhibitor venetoclax has demonstrated action
against various hematological malignancies, is clinically approved for chronic lymphocytic leukemia, and
has also shown remarkable efficacy in treatment of acute myeloid leukemia (AML).2 BCP-ALL response
to venetoclax is heterogeneous, with the highest efficacy in preclinical models of rare molecular subtypes
(TCF3-HLF–rearranged ALL3 and hypodiploid ALL4). Functional dependence on BCL2 has been identi-
fied as a major determinant of the venetoclax sensitivity of BCP-ALL.5 However, upstream regulation of
BCL2 addiction is not well understood, and suitable targets to increase venetoclax efficacy via combina-
tion therapies are needed, to broaden clinical application for BCP-ALL.

To identify novel synergistic partners, we targeted candidate signaling pathways, with and without vene-
toclax, in BCP-ALL cell lines. This approach identified silmitasertib (CX-4945) as the most promising syn-
ergistic combination partner (Figure 1A; supplemental Figure 1A-B). Silmitasertib is a potent, selective,
orally bioavailable, small-molecule inhibitor of the growth-stimulating, apoptosis-suppressing serine/threo-
nine kinase casein kinase 2, which is overexpressed in acute and chronic leukemias.6 Silmitasertib per-
formed well against preclinical leukemia models,7,8 and is the first casein kinase 2 inhibitor to enter
phase 1/2 clinical trials for solid tumors and multiple myeloma.9

BCP-ALL cell lines, representing molecular BCP-ALL subtypes, were treated with venetoclax, silmitaser-
tib, or both before assessing viability (Figure 1A; supplemental Figure 1C). Combining a minimally effec-
tive silmitasertib concentration with venetoclax decreased viability across .5 venetoclax concentrations
tested, allowing for an up to 99.9% dose reduction of the half-maximal effective concentration (EC50;
697 cell line; supplemental Table 1). This effect was most prominent in cell lines with a lower basal vene-
toclax sensitivity (NALM-6 and 697; EC50: �5 mM) compared with cell lines with higher venetoclax sensi-
tivity (HAL-01, NALM-16; EC50: �0.5 mM). The combination effect analysis, using a Loewe model
(Combenefit)10 on 70 combined drug concentrations in each cell line, confirmed moderate to strong syn-
ergism in 4 of 6 cell lines, with up to 37 synergistic combined concentrations (Figure 1B; supplemental
Figure 2A, supplemental Table 1). Flow cytometric analysis of annexin A5 and propidium iodide staining
confirmed induction of apoptosis as the underlying cause of synergistic viability reduction (Figure 1C),
independent of the time point tested (supplemental Figure 2B). To better reflect the biological and clini-
cal heterogeneity of BCP-ALL, we treated 15 patient-derived BCP-ALL xenografts11 (Figure 1D; supple-
mental Table 2) and 14 primary patient samples (Figure 1E; supplemental Table 3) ex vivo. Comparison
of the combined vs single venetoclax/silmitasertib treatments indicated a significantly reduced viability of
BCP-ALL cells isolated from NSG mouse xenografts (Figure 1D; supplemental Figure 3A-B) and
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Figure 1. Synergistic effect of silmitasertib and venetoclax in BCP-ALL models. (A) Viability was assessed in BCP-ALL cell lines (WST-1 assay) 48 hours after treat-

ment with serial dilutions of venetoclax alone or combined with minimally effective silmitasertib concentrations (left). Cell viability after treatment with a minimally effective
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significantly increased apoptosis in short-term cultures12 of samples
from patients with primary BCP-ALL (Figure 1E; supplemental Figure
4A-B). Combination effect analyses indicated an additive to synergis-
tic interaction independent of the molecular driver subtype in these
ex vivo culture systems (supplemental Figures 3B and 4C-D). BCP-
ALL samples with a lower basal venetoclax sensitivity showed stron-
ger synergistic responses (supplemental Figure 4E). Our data con-
firm the proapoptotic synergism achieved by combining venetoclax
and silmitasertib in cell lines and clinically closer, patient-derived
BCP-ALL samples and an overall higher susceptibility for synergistic
interactions in BCP-ALL cells less responsive to venetoclax.

ALL cells depend on antiapoptotic signaling pathways for their sur-
vival, including signaling through the BH3 family members BCL2 or
MCL1.13 We used BH3 profiling to assess MCL1 dependencies of
xenografts derived from patients with BCP-ALL14 and observed a
tendency toward higher MCL1 dependence in the less venetoclax-
sensitive samples (Figure 2A), confirming previous reports15-17 of
functional MCL1 dependence as an intrinsic resistance mechanism
of BCL2 inhibition by venetoclax. Along this line, dynamic BH3 pro-
filing,5 analyzing the development of dependence on MCL1 in the
presence of venetoclax, indicated significantly stronger dependence
in a venetoclax-resistant cell line (697) than in a venetoclax-sensitive
cell line (HAL-01; P , .05; Figure 2B; supplemental Figure 5).
Remarkably, venetoclax treatment by itself upregulated MCL1 in dif-
ferent BCP-ALL cell lines with a dose-dependent increase of
expression, which was maintained in the presence of the apoptosis
inhibitor Q-VD (Figure 2C; supplemental Figure 6). Conversely,
treatment with silmitasertib alone or in combination with venetoclax
reduced MCL1 levels in BCP-ALL cell lines in a dose- and time-
dependent manner, establishing a model of proapoptotic synergism,
wherein venetoclax induces MCL1 upregulation as a mode of intrin-
sic apoptosis resistance that is blocked by cotreatment with silmita-
sertib (Figure 2C; supplemental Figures 6 and 7A-B). To confirm
that effect, we overexpressed MCL1 in NALM-6 cells, which
reduced sensitivity toward single treatments with venetoclax and sil-
mitasertib (Figure 2D-E; supplemental Figure 7C-D) and nearly abol-
ished the synergistic interactions (Figure 2D) of both cell viability/
proliferation and induction of apoptosis (Figure 2E). Transcriptome
sequencing confirmed the expected inhibition of AKT/mTOR sig-
naling after silmitasertib and combined treatments but did not
provide evidence of transcriptional regulation as a major contribu-
tion to the synergistic treatment effect (supplemental Figure 8).

On the posttranscriptional level, cotreatment with the proteasome
inhibitor MG132 blocked MCL1 downregulation after silmitaser-
tib treatment, suggesting that silmitasertib interfered with MCL1
protein stability (supplemental Figure 9A). Activation of glycogen
synthase kinase 3b (GSK3B), via its dephosphorylation at resi-
due serine 9 (S9), has been linked with priming MCL1 for protea-
somal degradation.18,19 We observed reduced GSK3B S9
phosphorylation after silmitasertib treatment alone or in combina-
tion with venetoclax (Figure 2C), suggesting that silmitasertib
activates GSK3B to prime MCL1 for proteasomal degradation,
which results in synergistic induction of apoptosis when com-
bined with venetoclax in MCL1-dependent cell lines. For func-
tional validation of GSK3B in this context, we created GSK3B
knockout clones from NALM-6 cells by CRISPR/Cas9 genome
editing. In the absence of GSK3B protein expression, these cell
lines retained sensitivity to single venetoclax and silmitasertib
treatments which was comparable to NALM-6 wild-type (supple-
mental Figure 9B-C). However, the synergistic effect of com-
bined treatment was markedly reduced in GSK3B knockouts
(Figure 2D), confirming a functional dependency on GSK3B for
the synergistic interaction. Our findings support a model in which
silmitasertib induces the GSK3B activation that promotes MCL1
degradation by the proteasome to sensitize ALL cells to
venetoclax-induced apoptosis. Our findings concur with similar
observations made in a preclinical model of AML.20

To validate this synergistic interaction in vivo, we used an estab-
lished xenograft model in zebrafish embryos,21 where BCP-ALL
cells (cell line: SEM) are injected into the pericardium of immuno-
suppressed zebrafish embryos and bathed in the drug for 72 hours
before flow cytometrically evaluating effects on BCP-ALL cells. Anal-
yses showed an enhanced induction of apoptosis (P , .05) after
combined silmitasertib/venetoclax treatment (Figure 2F) and con-
firmed in vivo the silmitasertib-induced downregulation of MCL1 as
a functional underpinning of the synergistic treatment effect (supple-
mental Figure 10).

Various MCL1 inhibitors, in combination with venetoclax have
proved efficient in preclinical models of AML,20 T-ALL,22 non-
Hodgkin lymphoma,23 and high-risk BCP-ALL,24,25 but none are
currently approved for use in patients. In our study, combining
the BCL2 inhibitor venetoclax with the casein kinase 2 inhibitor
silmitasertib (currently in clinical trials) created synergism that
reduced viability and enhanced apoptosis in BCP-ALL cell lines,

Figure 1 (continued) dose of silmitasertib (5 mM for 697, NALM-6, SEM, and REH cells; 1.25 mM for sensitive cell lines NALM-16 and HAL-01; right). The data are the

mean and standard deviation (SD) of 3 independent experiments conducted in duplicate. Complementary data on serial dilutions of venetoclax combined with silmitasertib

fixed dose are shown in (supplemental Figure 1C). (B) Combination effects on cell line viability were analyzed 48 hours after treatment with serial dilutions of single and com-

bined compounds (70 combined concentrations: venetoclax alone [n 5 10], silmitasertib alone [n 5 7], and all combinations of those). Combination effects were determined

by a Loewe synergy model (Combenefit software) integrating 3 independent experiments. Each data point represents 1 drug or a combination. Data on 696 and SEM cells

are shown as examples. Corresponding plots for the remaining 4 cell lines are shown in Figure 2D and supplemental Figure 2. (C) Annexin A5 and propidium iodide

(ANXA5/PI) staining was assessed by flow cytometry in BCP-ALL cell lines 48 hours after treatment with 5 mM silmitasertib and/or 0.05 mM venetoclax, to determine apopto-

sis. The proportions of vital (ANXA52/PI2), early apoptotic (ANXA51/PI2), late apoptotic (ANXA51/PI1), and necrotic (ANXA52/PI1) cells are shown. Data represent the

mean 6 SD of 3 independent experiments. P values were calculated with a 2-tailed, paired Student t test. (D) Scatter plots of PDX cell viability (WST-1 assay, each dot rep-

resents 1 PDX sample, line is the median) 24 hours after treatment with 5 mM silmitasertib and/or 0.1 mM venetoclax. The same experiment with 7.5 mM silmitasertib and a

corresponding combination effect analysis is shown in supplemental Figure 3. (E) Proportion of dead cells in primary BCP-ALL samples cocultured on patient-derived mesen-

chymal stem cells. ANXA5 and PI staining were detected by flow cytometry 48 hours after treatment with 5 mM silmitasertib and/or 0.05 mM venetoclax. The same experi-

ment measured at 24 hours, with distribution of molecular subtypes and combination effect analyses, is shown in supplemental Figure 4. P values were calculated using

Mann-Whitney U test. *P # .05; **P # .01; ***P # .001, by Mann-Whitney U test. Additional information on applied methods and samples is provided in supplemental

Methods.
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patient-derived cells, and a zebrafish xenograft model of BCP-
ALL. Antiproliferative and proapoptotic effects occurred across
different concentration ranges and treatment times, caused mainly
by destabilizing the antiapoptotic protein MCL1 via GSK3B
(Figure 2G). The strongest synergy was observed in BCP-ALL
cell lines and patient samples that were least sensitive to veneto-
clax, presenting a rationale for circumventing venetoclax resis-
tance and improving efficacy against refractory and relapsed
BCP-ALL.
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