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Abstract  51 

Background: Infectious agents can reprogram or “train” macrophages and their progenitors to 52 

respond more readily to subsequent insults. However, whether such an inflammatory memory 53 

exists in type-2 inflammatory conditions such as allergic asthma was not known.  54 

Objective: To decipher macrophage trained immunity in allergic asthma. 55 

Methods: We used a combination of clinical sampling of house dust mite (HDM)-allergic 56 

patients, HDM-induced allergic airway inflammation (AAI) in mice and an in vitro training set-57 

up to analyze persistent changes in macrophage eicosanoid-, cytokine- and chemokine 58 

production as well as underlying metabolic and epigenetic mechanisms. Transcriptional and 59 

metabolic profiles of patient-derived and in vitro trained macrophages were assessed by RNA 60 

sequencing or Seahorse and LC-MS/MS analysis, respectively. 61 

Results: We found that macrophages differentiated from bone marrow- or blood monocyte- 62 

progenitors of HDM-allergic mice or asthma patients show inflammatory transcriptional 63 

reprogramming and excessive mediator (TNF-CCL17, leukotriene, PGE2, IL-6) responses 64 

upon stimulation. Macrophages from HDM-allergic mice initially exhibited a type-2 imprint, 65 

which shifted towards a classical inflammatory training over time. HDM-induced AAI elicited 66 

a metabolically activated macrophage phenotype, producing high amounts of 2-67 

hydroxyglutarate (2-HG). HDM-induced macrophage training in vitro was mediated by a 68 

formyl-peptide receptor 2 (FPR2)-TNF-2-HG-PGE2/EP2-axis, resulting in an M2-like 69 

macrophage phenotype with high CCL17 production. TNF blockade by etanercept or genetic 70 

ablation of Tnf in myeloid cells prevented the inflammatory imprinting of bone marrow-derived 71 

macrophages from HDM-allergic mice.  72 

Conclusion: Allergen-triggered inflammation drives a TNF-dependent innate memory, which 73 

may perpetuate and exacerbate chronic type-2 airway inflammation and thus represents a target 74 

for asthma therapy. 75 
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Key messages: 77 

 Macrophages from HDM-allergic asthmatics show persistent inflammatory imprinting 78 

 Inhibition of TNF signaling prevents macrophage trained immunity in allergic airway 79 

inflammation 80 

 2-hydroxyglutarate, PGE2 and lysine demethylase 1 mediate allergen-driven metabolic 81 

and epigenetic macrophage reprogramming 82 

 83 

Capsule summary: Macrophages and their progenitors develop a type-2 inflammatory 84 

memory in allergic asthma, which can be targeted by inhibiting tumor necrosis factor. 85 

 86 

Keywords: CCL17, chemokines, eicosanoids, lipid mediators, macrophages, trained immunity, 87 

type 2 inflammation 88 

 89 

Abbreviations: 90 

AAI Allergic airway inflammation 

AM Airway macrophage 

aMDM Alveolar-like monocyte-derived macrophage 

BAL Bronchoalveolar lavage 

BMDM Bone marrow-derived macrophage 

cysLT Cysteinyl leukotriene 

DEG Differentially expressed genes 

FPR2 Formyl-peptide receptor 2 

GM-CSF Granulocyte-macrophage colony stimulating factor 

HDM House dust mite 

HIF Hypoxia-inducible factor 

2-HG 2-hydroxyglutarate 

IL Interleukin 

KDM Lysine demethylase 
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LOX Lipoxygenase 

LSD1 Lysine demethylase 1 

RNAseq RNA sequencing 

TGF Transforming growth factor  

TLR Toll-like receptor 

TNF Tumor necrosis factor 

Introduction 91 

The prevalence of allergic asthma has constantly increased over the last 2 decades (1). House 92 

dust mite (HDM) represents the most prominent aeroallergen and approximately 50% of 93 

asthmatics are sensitized to it (2). In addition to allergen-specific T cells, the innate immune 94 

system contributes to type-2 inflammation in allergy (3). Macrophages play an important role 95 

in asthma and asthma severity correlates with numbers of M2-polarized macrophages in the 96 

airways (4,5). CCL17, a TH2-cell chemoattractant (6), is overexpressed in alveolar 97 

macrophages from asthmatic patients and involved in asthma exacerbations (7–10). 98 

Eicosanoids are key mediators of type-2 inflammation (11,12) and airway macrophages of 99 

asthmatic patients, show an exaggerated production of proinflammatory leukotrienes (LTs) 100 

(13). LT production and recruitment of inflammatory monocytes are central for the 101 

development of allergic airway inflammation (AAI) (14,15). While other eicosanoid-producing 102 

myeloid cells (e.g. eosinophils) are cleared from the lung after acute inflammation resolves 103 

(16), macrophages persist (17). Pathogen molecules or sterile inflammatory stimuli trigger 104 

bioenergetic and epigenetic reprogramming in monocytes and macrophages, which may result 105 

in persistently altered responsiveness and effector functions (18–20). This phenomenon, termed 106 

“trained immunity”, is not limited to tissue macrophages but extends to bone marrow 107 

progenitors that provide “central trained immunity” (21,22). Respiratory viral infection can 108 

induce macrophage reprogramming and replacement, thus promoting or preventing asthma 109 

development (23–25). However, if and how macrophage trained immunity is triggered during 110 

allergen-driven inflammation remained unclear. We found that monocyte- or bone marrow-111 
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derived macrophages from HDM-allergic asthmatics or HDM-sensitized mice persistently 112 

upregulate inflammatory genes and type-2-inflammatory chemokines and eicosanoids (CCL17, 113 

cysteinyl leukotrienes (cysLTs). This inflammatory memory depended on FPR2- and TNF-114 

signaling resulting in metabolic reprogramming and KDM1-mediated histone demethylation, 115 

thus representing a trained immunity program that may contribute to chronification and 116 

exacerbation of allergic asthma. 117 

 118 

Methods 119 

For a more detailed description of the experimental procedures, see the Online Repository.   120 

Human study participants 121 

The ethics committee of the Technical University of Munich approved the study (internal 122 

reference: 422/16). HDM-allergic patients and healthy subjects (see Table 1 for patient 123 

characteristics) were recruited at the Allergy Section, Otolaryngology Department, TUM 124 

School of Medicine. All participants gave informed written consent in accordance with the 125 

Declaration of Helsinki before sampling. The study visit consisted of questionnaires (SNOT22, 126 

MiniRQLQ, PSQ20), blood- and sputum collection. The clinical diagnostic laboratory of the 127 

hospital assessed differential blood cell counts, specific mite IgE and total IgE. Sputum 128 

induction and sputum cell isolation was performed as previously described (26).  129 

Murine model of allergic airway inflammation 130 

6-8 weeks old mice (wildtype C57BL/6J, Tnf fl/fl and LysM-cre Tnf fl/fl) were intranasally 131 

sensitized and challenged with HDM extract as previously described (11) (Fig.E1). Analysis 132 

was performed on bronchoalveolar lavage, lung tissue, airway macrophages and bone marrow 133 

cells, comparing mice sensitized and challenged to PBS or HDM. 134 

In vitro macrophage differentiation and culture 135 
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Monocyte- or bone marrow-derived macrophages were generated as previously described 136 

(11,12). Supernatants were analyzed by liquid-chromatography tandem-mass spectrometry or 137 

ELISA after stimulation with ionophore A23187 (5 µmol/L, Merck) for 10 min, and cell pellets 138 

were analyzed via western blot, qPCR or RNA sequencing.  139 

Metabolic flux analysis 140 

5 x 104 MDM or BMDM were plated per well on a Seahorse Miniplate (Agilent) and cultured 141 

for training (aMDM) or stimulated overnight (BMDM) before mitochondrial stress test 142 

(Agilent).  143 

Metabolomics analysis 144 

5 x 105 aMDM or BMDM were pelleted for targeted metabolomics. Metabolite quantification 145 

by LC-MS was performed at the Metabolomics Core Facility of the Max Planck Institute for 146 

Immunobiology and Epigenetics in Freiburg, Germany.  147 

Statistical analysis 148 

Data were analyzed using Graphpad Prism 9 (Graphpad, San Diego, CA, USA). T-test or Mann-149 

Whitney test were used to compare two populations depending on normal distribution. For 150 

comparison of more groups, Friedmann test, one-way or two-way ANOVA was used with 151 

correction for multiple comparisons as indicated in the figure legends. P values<0.05 were 152 

considered statistically significant. See figure legends for details of statistical tests and sample 153 

size. Heatmaps were generated using Morpheus software (Broad Institute). 154 

 155 

Results  156 

Macrophages from HDM-allergic patients show transcriptional reprogramming and 157 

enhanced production of type-2 inflammatory mediators 158 
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Macrophages represent key regulators of lung homeostasis and immunity and they govern 159 

airway inflammation by producing eicosanoids and chemokines (15,27). We recently described 160 

stable differences in gene expression and metabolite profiles in macrophages from patients with 161 

NSAID-exacerbated respiratory disease (N-ERD) (26), a non-allergic chronic type-2 162 

inflammatory condition. To study a potential macrophage memory in allergic asthma, we 163 

generated macrophages (aMDM) from monocytes of HDM-allergic or healthy donors (Table 164 

1) (Fig.E1 A). RNA sequencing (RNAseq) analysis yielded 88 genes differentially expressed 165 

between aMDM from HDM-allergic compared to non-allergic donors (28 up, 60 down) (Fig.1 166 

A, B, Supplementary Data file 1), indicating stable transcriptional reprogramming that persisted 167 

throughout ex vivo differentiation. S100P, TNFSF10 (TRAIL), CLEC4D (dectin-3), LGALS12 168 

(galectin-3) and IL12RB1, all implicated in macrophage activation (28–32), were upregulated 169 

in aMDM of allergic donors while immunoregulatory genes such as MERTK and CD84 (33,34) 170 

were downregulated (Fig.1 A, B). CD84 and MERTK gene expression correlated negatively 171 

while ITGA1 and S100P correlated positively with disease scores MiniRQLQ and SNOT-22 172 

(Fig.E2 A). Several of the DEGs identified in aMDM of HDM-allergic asthmatics (e.g. S100P, 173 

ITGA1, TNSF10, MERTK, CD84), are regulators or downstream targets of TNF-signaling. In 174 

vitro HDM exposure resulted in enhanced production of TNF, IL-12 p70, CXCL2, S100P and 175 

IL-1 from patient-derived aMDM, while IL-10 induction tended to be reduced (Fig.1 C, Fig. 176 

E2 B). However, CCL5, CCL11 and IL-18 production was similar in aMDM from HDM-177 

allergic and healthy subjects (Fig. E2 C), suggesting that the enhanced HDM response of patient 178 

aMDMs was dominated by TNF. Unstimulated aMDM, but not airway macrophages (AM) 179 

from HDM-allergic individuals produced exaggerated amounts of cysLTs, important mediators 180 

of type-2 inflammation (14) as well as further 5-lipoxygenase (5-LOX)-derived eicosanoids 181 

(Fig.1 D, E, Fig.E2 D, E). In addition, CCL17, a driver of the Th2 response in asthma (7,35) 182 

tended to be increased in aMDM and AM of HDM-allergic asthmatics (Fig.1 D, E). Thus, 183 
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aMDM from allergic asthmatics exhibited inflammatory imprinting and type-2-driving 184 

mediator profiles at baseline and enhanced TNF-dominated HDM responses. 185 

 186 

HDM-induced allergic airway inflammation induces a persistent inflammatory imprint 187 

in the bone marrow 188 

Similar to their human counterpart, murine macrophages (BMDM) differentiated for 7 days 189 

from bone marrow progenitors of HDM-sensitized mice (Fig.E1 B) showed an elevated 190 

production of cysLTs and enhanced Ccl17 expression compared to PBS-sensitized mice (Fig.2 191 

A, Fig.E2 F), which was reflected in airway macrophages of HDM-sensitized mice (Fig.2 B). 192 

In contrast to cysLTs, 5-LOX-derived mediators were not generally increased in AM (Fig.E2 193 

G). Seven days post-challenge, HDM-induced AAI as well as type-2 cytokine expression in the 194 

bone marrow had mostly resolved (Fig.2 C, Fig.E2 H). However, AM and BMDM maintained 195 

their elevated production of CCL17 (Fig.2 D). Additionally, BMDM upregulated classical 196 

trained immunity genes (Il6 and Ptgs2) (Fig.2 E, Fig.E2 I). Genes differentially regulated in 197 

aMDM from HDM-allergic donors (Fig.1 A, B), Cd84, Mertk, Clec4d, Itga1 and Tnfsf10 198 

showed a similar pattern in BMDM from HDM-sensitized mice (Fig.2 E, E2 J). Together this 199 

suggested that allergic airway inflammation leaves an innate memory both locally and in bone 200 

marrow progenitors. 201 

 202 

HDM-training elicits exaggerated cysLT and CCL17 responses and transcriptional 203 

reprogramming in human aMDM 204 

To study whether in vivo reprogramming of HDM-experienced macrophages could be 205 

mimicked in vitro (Fig.E1 C), aMDM were stimulated (“trained”) with HDM on day 7 of 206 

differentiation, re-stimulated after a 5-day wash-out period and harvested 24h later for 207 

eicosanoid, gene expression and cytokine analyses. In vitro HDM-trained and re-stimulated 208 
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aMDM escaped HDM-induced, TLR4-dependent cysLT-suppression (12) resulting in high 209 

amounts of cysLTs (Fig.3 A, Fig.E3 A), resembling the exaggerated cysLT production in 210 

aMDM or BMDM from HDM-sensitized humans or mice (Fig.1 D, 2 A). HDM-training of 211 

aMDM in vitro also resulted in an increased CCL17 production in response to HDM challenge 212 

(Fig.3 B), reminiscent of enhanced CCL17 production of airway macrophages from HDM-213 

allergic patients or mice (Fig.1 E, 2 B, D). The primed CCL17 response was evident already 214 

before challenge (Fig.E3 B), dose-dependent (Fig.E3 C) and not evoked by -glucan (BGP), a 215 

classical trigger of trained immunity (20) (Fig.E3 D). HDM-training did not affect macrophage 216 

viability (Fig.E3 E) and training with purified allergens (Der f1 or Der f2) did not enhance 217 

macrophage inflammatory responsiveness (Fig.E3 F). RNAseq analysis of HDM-trained 218 

macrophages with or without HDM re-stimulation (Fig.E1 C) identified 166 DEGs in HDM-219 

trained macrophages 6 days after HDM exposure compared to control macrophages (139 up, 220 

27 down) and 304 DEGs between previously HDM-trained and “naïve” macrophages 24h after 221 

HDM challenge (159 up, 143 down) (Fig.3 C-F). HDM-trained macrophages exhibited an 222 

increased expression of genes involved in M2 polarization (e.g. IRF4, CD163, IL4I1, VEGFA) 223 

and chemokine/cytokine signaling (CCL17, CCL18, CXCL9) (Fig.3 C, E, Supplementary Data 224 

file 2), while the HDM-driven induction of interferon-induced genes, (e.g. OASL, OAS2/3, 225 

ISG15/20, USP18, CMPK2) was reduced compared to “naïve” HDM-stimulated aMDM (Fig.3 226 

D, F). TNF-signaling (Fig.E3 G) as well as cytokine-cytokine receptor interaction and 227 

chemokine-signaling (Fig.E3 G, H) were enriched in HDM-trained macrophages. Inflammatory 228 

gene expression was paralleled by metabolic activation of HDM-trained macrophages (Fig.3 229 

G-I), suggesting that metabolic reprogramming persisted following wash-out of HDM. IL17RB 230 

(the receptor subunit binding IL-25 (36)) was upregulated in both in vitro trained and patient-231 

derived aMDM (Fig.1 A, B, Supplementary Data file 1, Fig.3 J) and exposure to IL-25 resulted 232 

in increased CCL17 and cysLT production in allergen-trained compared to control aMDM 233 

(Fig.3 K, L), suggesting heightened responsiveness to epithelial cues. Conversely, supernatants 234 
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from HDM-trained and challenged macrophages upregulated CXCL8 in human bronchial 235 

epithelial cells (Fig.3 M). Thus, in vitro HDM-training induced transcriptional and metabolic 236 

reprogramming and reproduced hallmarks of the inflammatory memory in asthma patients’ 237 

macrophages with functional consequences on the airway epithelium. 238 

 239 

FPR2- and TNF- signaling mediate HDM-induced macrophage reprogramming 240 

We next sought to identify mechanisms underlying macrophage reprogramming by HDM. The 241 

formyl peptide rector 2 (FPR2), implicated in HDM sensing (37,38), was persistently 242 

upregulated in HDM-trained macrophages (Supplementary Data files 2,3), and induced by 243 

HDM stimulation  (Fig.4 A). Blocking FPR2-signaling by a pharmacological inhibitor (PBP10) 244 

during HDM training suppressed the enhanced CCL17 response (Fig.4 B) and prevented the 245 

induction of TNF (Fig.4 C), suggesting FPR2 as a major HDM receptor involved in HDM-246 

driven macrophage reprogramming. Since TNF-signaling was reported to initiate CCL17-247 

mediated inflammation (39) and as it was enriched in aMDM of asthmatic patients or following 248 

in vitro HDM training (Fig.1, Fig.4 D, Fig.E3 G), we neutralized TNF during HDM-training, 249 

which resulted in suppression of the enhanced CCL17 response in HDM re-stimulated aMDM 250 

(Fig.4 E). In vitro cysLT responses were not affected by inhibition of TNF or FPR2 (Fig.E4 A, 251 

B). Treatment with the FPR2 inhibitor or TNF-neutralizing antibody alone did not influence 252 

macrophage HDM-responses on day 13 (Fig.E4 C, D). To test the relevance of TNF signaling 253 

in vivo, we injected HDM-sensitized mice with etanercept (a TNFR2-based fusion protein 254 

which neutralizes TNF and lymphotoxin a) during sensitization and challenge (Fig.4 F upper 255 

panel). Etanercept treatment did not influence HDM-induced AAI at 72h or 7 days post-256 

challenge (Fig.E4 E, F) (Fig.4 G). However, etanercept treatment attenuated the increased 257 

CCL17 release by BMDM from HDM-sensitized mice (Fig.4 H, left). During in vitro HDM re-258 

stimulation, the enhanced CCL17 and IL-6 response of BMDM from HDM-sensitized mice 259 
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was prevented by etanercept treatment during HDM-induced AAI (Fig.4 H, right, Fig.4 I). 260 

Sensitization and challenge of mice with a myeloid deficiency in TNF (LysM-cre Tnffl/fl) (40) 261 

(Fig.4 F lower panel) resulted in reduced airway eosinophilia (Fig.4 J) as well as decreased 262 

CCL17 production by BMDM at baseline and following IL-4 stimulation (Fig.4 K), supporting 263 

a role for myeloid-derived TNF in type-2 imprinting in the bone marrow during HDM-induced 264 

AAI. Together, this suggested that autocrine TNF signaling, induced via FRP2, drives the 265 

proinflammatory macrophage memory during allergen-driven inflammation. 266 

 267 

2-hydroxyglutarate and lysine demethylase-1 drive inflammatory macrophage 268 

reprogramming 269 

Based on the observed metabolic reprogramming of in vitro trained macrophages (Fig.3 G, H, 270 

I), we performed a targeted metabolomic analysis, quantifying amino acid- and TCA-cycle 271 

metabolites. BMDM from HDM-sensitized mice showed an increased output of amino acids 272 

and TCA-cycle intermediates (Fig.5 A), including metabolites involved in LT biosynthesis, M2 273 

activation and type-2 immunity (Fig.5 A-C) (41–43). 2-hydroxyglutaric acid (2-HG), a 274 

modulator of -ketoglutarate-dependent dioxygenase activity (44) was increased (Fig.5 D), 275 

while bioenergetic parameters indicative of glycolysis (ECAR) or mitochondrial respiration 276 

(OCR) were unaltered in HDM-sensitized compared to mock-sensitized BMDM (Fig.E5 A, B). 277 

Similarly, baseline expression of M2 markers in BMDM and genes related to the glycolytic 278 

pathway were unchanged (Fig.E5 C). M2 markers were not generally affected by inhibition or 279 

myeloid deficiency of TNF (Fig.E5 D, E), however Arginase-1 (Arg1) expression in BMDM 280 

was increased (Fig.5 E, F), suggesting a suppressive role of TNF on negative regulators of type-281 

2 inflammation (45). In line with increased 2-HG in HDM-sensitized BMDM, acute HDM 282 

exposure upregulated 2-HG in human aMDM (Fig.5 G). Replacement of HDM by 2-HG during 283 

training resulted in an enhanced CCL17 but not cysLT response to HDM challenge (Fig.5 H, 284 
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Fig.E5 F), partially mimicking HDM-induced training. When added during acute activation of 285 

macrophages with LPS, 2-HG potentiated induction of CCL17, IL1B and PTGS2 (Fig.5 I), 286 

indicating that 2-HG can enhance the inflammatory activation of aMDM. In BMDM, addition 287 

of 2-HG increased PGE2 and CCL17 production (Fig.5 J), suggesting an involvement of 2-HG 288 

in type-2 imprinting. 2-HG promotes HIF-1activation by inhibiting its degradation by prolyl-289 

hydroxylases and Hif1a was upregulated in BMDM from HDM-sensitized mice (Fig.E5 C). 290 

HIF1-target genes (VEGFA, MMP2, PLOD2, EGR1, VLDLR, RBP1, PPFIA4) (46–51) as well 291 

as HIF1A transcription were induced by HDM-training in human macrophages (Fig.3 E, F, 292 

Fig.5 K), but inhibiting HIF1 during HDM-training only partially abrogated the enhanced 293 

CCL17 response (Fig.5 L) and glycolysis (Fig.E5 G). 2-HG also modulates the activity of 294 

histone demethylases, e.g. lysine demethylase (KDM) families 2-8 (52) and KDM6B (JMJD3) 295 

is implicated in M2 macrophage activation (53). Genes related to M2 activation and IL-4 296 

signaling were enriched in HDM-trained macrophages (Fig.E5 H), but KDM6B was suppressed 297 

in HDM-trained macrophages (Fig.E5 I) and inhibition of KDM6B during HDM-training did 298 

not affect enhanced mediator responses (Fig.E5 J, K). Instead, a screen of different histone 3 299 

modifications in HDM-trained aMDM (Table 2) revealed less abundant H3K4 mono- and tri-300 

methylation as well as H3K9 di-methylation, modifications induced by family 1 KDMs, e.g. 301 

KDM1A (LSD1) (54). Application of the KDM1A inhibitor pargyline during training 302 

suppressed CCL17 and cysLT responsiveness upon HDM-challenge (Fig.5 M), suggesting 303 

KDM1A-mediated reprogramming as the epigenetic mechanism underlying HDM-training.  304 

 305 

HDM-induced macrophage training is distinct from classical trained immunity and 306 

driven by prostaglandin E2/EP2-signaling 307 

To further identify downstream mediators of TNF-driven metabolic and epigenetic macrophage 308 

reprogramming, we performed targeted LC-MS/MS and multiplex cytokine analyses for HDM-309 
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trained aMDM immediately after allergen-training (day 8), after 5 days of rest (day13) and 24h 310 

post-HDM challenge (day 14). Except for CCL17, HDM-training evoked a transient increase 311 

of cytokines and eicosanoids which had returned to baseline after the resting phase (Fig.6 A). 312 

After HDM re-stimulation, most cytokines and chemokines were similar between HDM-trained 313 

and acutely stimulated macrophages, except for CCL17 and IL-6, which were increased in 314 

trained macrophages after HDM challenge (Fig. 3 B-F, 6 B, C). HDM-trained aMDM also 315 

synthesized high amounts of prostanoids upon challenge (Fig.6 D) and enzymes involved in the 316 

production of PGE2, particularly mPGES1, were persistently induced by HDM training and 317 

challenge (Fig.6 E, F). Together with HDM-induced cyclooxygenase-2 (12) this likely explains 318 

augmented HDM-triggered PGE2 production in HDM-experienced human and murine 319 

macrophages (Fig.6 G, H). Reduced HDM-triggered COX-2 (Ptgs2) induction following 320 

etanercept treatment (Fig.6 I) further implicated the COX-2/PGE2 pathway in TNF-driven 321 

reprogramming. PGE2 receptor 2 (EP2)-deficient BMDM showed an intact HDM-triggered 322 

TNF response, but a reduced CCL17 response compared to wildtype BMDM (Fig.6 J, K), 323 

suggesting that enhanced PGE2 synthesis by macrophages represents a downstream mechanism 324 

of TNF-mediated innate immune training. Thus, the increased arachidonic acid metabolism of 325 

HDM-trained macrophages contributes to TNF-mediated trained type-2 immunity. Together, 326 

these data identify a metabolic-epigenetic circuit leading to persistent type-2 inflammatory 327 

macrophage reprogramming in allergic asthma. 328 

 329 

Discussion  330 

Previous studies have shown that innate memory responses on the level of ILC2s and epithelial 331 

stem cells can contribute to type-2 inflammation in the context of allergic airway inflammation 332 

and nasal polyposis (55,56). Here, we describe an allergen-driven trained immunity program in 333 

macrophages that drives the production of key mediators involved in asthma. Macrophages 334 
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derived from allergic asthma patients, HDM-sensitized mice or trained with HDM extract in 335 

vitro produced high amounts of CCL17 and cysLTs, both potent mediators of type-2 immunity 336 

and therapeutic targets in asthma (14,35). Trained type-2 immunity was associated with an 337 

increased arachidonic acid metabolism and prostaglandin signaling perpetuated inflammatory 338 

macrophage reprogramming. This identifies an unprecedented role for eicosanoids in trained 339 

immunity and highlights leukotrienes and prostaglandins as promising targets for preventing 340 

the chronification or exacerbation of allergen-induced airway inflammation. The heightened 341 

cysLT response of asthma patient macrophages was mimicked by HDM-training and re-342 

exposure of macrophages in vitro, where it depended on TLR4 and KDM1A. KDM1A 343 

demethylates histones (particularly H3K4 and H3K9), but it has not been previously implicated 344 

in trained immunity. We found reduced H3K4 tri- and mono-methylation and reduced H3K9 345 

di-methylation in HDM-trained vs. control macrophages, suggesting a role for KDM1 in 346 

removing repressive marks to enhance type-2 inflammatory mediator responses (57). As 347 

KDM1A activity is necessary for hematopoietic stem cell differentiation (58), its role in 348 

reprogramming of bone marrow cells and macrophage progenitors in asthma warrants further 349 

investigation. The exaggerated CCL17 and LT response of HDM-trained macrophages and 350 

macrophages from asthmatics appears to be a hallmark of allergen-induced training that drives 351 

a chronic pathologic type-2 immune bias. However, gene expression profiles of HDM-trained 352 

and challenged macrophages from healthy blood donors minimally overlapped with profiles of 353 

macrophages from HDM-allergic patients. This may be due to high experimental doses of HDM 354 

in vitro while in vivo, macrophages are exposed to lower HDM doses but over a longer time 355 

span and within a complex tissue milieu. While in vitro trained aMDM exhibited an M2-like 356 

transcriptional profile, allergic aMDM showed a downregulation of immunoregulatory genes 357 

(e.g. MERTK and CD84), suggesting that tolerogenic pathways may be defective in 358 

macrophages from allergic individuals. However, upregulation of IL17RB was evident in both 359 

allergic aMDM as well as after in vitro HDM-training and challenge, similar to murine ILC2 360 
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memory of allergic inflammation (55) suggesting heightened IL-25 responsiveness as a feature 361 

of the innate memory in allergic asthma. In murine BMDM, no clear M2-like phenotype was 362 

observed as Arg1 was less induced in BMDM from HDM-sensitized compared to control mice 363 

which could result in prolonged type-2 inflammation as Arg1 suppresses pathological Th2 364 

responses (45). While we did not observe heightened baseline CCL17 expression in aMDM 365 

from allergic donors, sputum-derived airway macrophages cultured ex vivo released high levels 366 

of CCL17 compared to aMDM or compared to airway macrophages from healthy controls. This 367 

suggests that aberrant CCL17 responses depend on tissue priming of monocytes/macrophages 368 

in the lung. HDM-trained macrophages did not generally increase their production of 369 

proinflammatory cytokines, but specifically induced cysLTs and CCL17, which elicit type-2 370 

immune responses. Thus, allergen-induced trained type-2 immunity appears to be distinct from 371 

trained immunity programs driven by microbial products, despite some overlapping features 372 

such as increased IL-6 responses (19,22). The transient upregulation of IL-4 and IL-13 in the 373 

BM following HDM challenge may contribute to the time dependent shift from type-2 to 374 

classical imprinting of macrophage progenitors. HDM-training also transiently induced TNF in 375 

an FPR2 dependent fashion, suggesting that the HDM components Der p13 and Blo t13, 376 

recently identified ligands of SAA-1-mediated FPR2 activation, mediate TNF-driven 377 

macrophage imprinting (38). TNF functions as a negative regulator of M2 polarization in cancer 378 

or infectious diseases (59–61). In arthritis, in contrast, TNF signaling is important at early time 379 

points, while TNF-induced CCL17 appears as a late mediator (39), mirroring the kinetics of 380 

HDM training in macrophages. CD84, which was significantly downregulated in patient-381 

derived macrophages, predicts the response to etanercept in rheumatoid arthritis patients (62), 382 

suggesting TNF-mediated downregulation of CD84 as a mechanism of aberrant macrophage 383 

activation in type-2 inflammation. In the trained type-2 immunity pathway we uncovered, TNF 384 

acted as an early initiator of type-2 inflammatory macrophage activation. These data argue that 385 

TNF has a complex effect on M2 myeloid pathways that require further analyses. One 386 
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prediction emerging from our work is that TNF may have differential inhibitory or enhancing 387 

effects depending on timing and signaling via the two TNF receptors. Importantly, altered 388 

expression of TNF-response genes and type-2-inducing effector functions persisted during 389 

macrophage differentiation from bone marrow- or monocyte progenitors isolated from HDM-390 

sensitized mice or HDM-allergic patients. Thus, HDM exposure does not only trigger local 391 

inflammatory responses, but results in a persistent reprogramming of myeloid progenitors or 392 

monocytes giving rise to macrophages with elevated inflammatory effector functions.  393 

The induction of a trained CCL17 response by 2-HG, a modulator of histone demethylase and 394 

prolyl hydroxylase activity, suggests the involvement of histone modifications and HIF-1 in 395 

TNF-mediated trained type-2 immunity (11,63). However, how 2-HG production and HIF-1 396 

activation are elicited downstream of FPR2 and TNF, remains to be determined. Our data 397 

suggest that 2-HG promotes COX-2 expression and PGE2 production downstream of HDM-398 

induced TNF, thus driving M2-like reprogramming and enhanced CCL17 production. Future 399 

studies should assess sites of differential histone methylation in HDM-experienced 400 

macrophages and define how individual modifications regulate CCL17 and cysLT responses, 401 

respectively. Based on our study design, we cannot discern whether HDM itself or the type-2 402 

inflammation triggered by HDM is responsible for macrophage training in vivo. The finding 403 

that HDM-training of macrophages in vitro resulted in exaggerated CCL17 and cysLT 404 

responses upon challenge suggests that resident macrophages in the airways can be directly 405 

trained by HDM. In contrast, central trained type-2 immunity on the level of myeloid 406 

progenitors in the bone marrow may be evoked by the inflammatory response to HDM and our 407 

findings implicate TNF-signaling in this process. Similar to clinical trials failing to show 408 

efficacy of etanercept in asthmatic patients (64), airway inflammation was unchanged in 409 

etanercept-treated HDM-sensitized mice. However, inflammatory imprinting in bone marrow 410 

progenitors was attenuated by TNF blockade, which may prevent asthma progression or 411 

exacerbation. As TNF inhibition possesses the risk of increased infection susceptibility, it will 412 
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be necessary to understand the role of TNF-induced trained immunity in distinct human asthma 413 

endotypes. (65). It will be important to further decipher innate memory responses in allergic 414 

asthma since inflammatory reprogramming of myeloid cells may contribute to the 415 

chronification, exacerbation or even transmission of type-2 airway inflammation. 416 
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Tables 600 

Table 1. Clinical characteristics of healthy and HDM-allergic probands 601 

 Healthy (SDV) Allergic (SDV) P value 

Age [years] 28.8 2.2 30.0 7.7 0.7473 
Sex [f/m] 5/0  4/2   
BMI [kg/m2] 21.4 2.6 25.7 4.8 0.1170 
MiniRQLQ 6.6 6.5 24.4 5.9 0.0020 
SNOT22 5.6 2.7 25.0 14.1 0.0163 
PSQ20 49.0 3.9 48.0 3.1 0.4654 
Total IgE [kU/L] 10.8 8.4 241.6 328.0 0.0079 
Der p IgE [kU/L] 0.0 0.0 13.4 16.9 0.0079 
Der f IgE [kU/L] 0.1 0.3 15.4 20.3 0.0079 
Eur m IgE [kU/L] 0.0 0.0 3.1 4.0 0.0079 
Blood monocytes [%] 7.6 0.5 7.2 2.2 0.7937 
Blood eosinophils [%] 2.8 2.5 5.0 1.6 0.1339 

Data are presented as mean. SDV=standard deviation; F=female; m=male; BMI=body mass 602 

index; MiniRQLQ= Mini Rhinoconjunctivitis Quality of Life Questionnaire; SNOT22=Sino-603 

nasal Outcome Test; PSQ20=Perceived Stress Questionnaire; Der p=Dermatophagoides 604 

pteronyssinus; Der f= Dermatophagoides farinae; Eur m=Euroglyphus maynei 605 

  606 

Jo
urn

al 
Pre-

pro
of



Lechner et al. 24 

 

Table 2. Histone 3 modification screen in trained vs. macrophages 607 

Histone 3 modification HDM-trained vs. control 

H3K14ac -- 

H3K18ac = 

H3K27me1 = 

H3K27me2 + 

H3K27me3 = 

H3K36me1 = 

H3K36me2 - 

H3K36me3 - 

H3K4me1 -- 

H3K4me2 = 

H3K4me3 -- 

H3K56ac - 

H3K79me1 = 

H3K79me2 = 

H3K79me3 = 

H3K9ac = 

H3K9me1 = 

H3K9me2 -- 

H3K9me3 + 

H3ser10P - 

H3ser28P - 

  608 
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Figure Legends 609 

Fig. 1: Monocyte-derived macrophages from HDM-allergic asthma patients show 610 

persistent inflammatory gene expression and exaggerated production of inflammatory 611 

mediators 612 

A: Heatmap of 28 significantly upregulated and 39 downregulated DEG in aMDM from HDM-613 

allergic donors versus healthy donors (n=5 per group, DeSeq2) B: Volcano plot of DEG (fold 614 

change>2, padj <0.05) in aMDM from HDM-allergic versus healthy donors (n=5 per group) C: 615 

TNF, IL-12 p70, CXCL2 production and S100P expression of aMDM from HDM-allergic 616 

donors versus healthy donors, after 24h HDM exposure in vitro (n=5 per group, RM two-way 617 

ANOVA, Sidak’s multiple comparisons test) D: Baseline cysLT and CCL17 production of 618 

aMDM from healthy vs. HDM-allergic human donors (ELISA, n=4-8 per group, Mann-619 

Whitney or unpaired t-test) E: Baseline cysLT and CCL17 production of sputum-derived 620 

macrophages from healthy vs. HDM-allergic human donors (normalized to RNA concentration, 621 

n=5 per group, Mann-Whitney test). Data are presented as z-score transformed (heatmap) or 622 

mean + SEM. *p<0.05, **p<0.01 623 

 624 

Fig. 2: HDM-induced airway inflammation induces a type-2 imprint in murine peripheral 625 

and airway macrophages, which shifts towards classical central trained immunity 626 

A, B: CysLT production and Ccl17 expression in BMDM (A) or BAL AM (B) from PBS- vs 627 

HDM-sensitized mice 3 days post-challenge (Mann-Whitney test, n=13-17 (A)/ unpaired t- test, 628 

n=9-16 (B) per group), C: Representative images of lung histology of PBS- vs HDM-sensitized 629 

mice, 3 and 7 days post-challenge (Hematoxylin and eosin staining). Bars indicate 50 µm. D: 630 

Baseline cysLT (normalized to RNA) production of, and Ccl17 gene expression of BALF 631 

macrophages from PBS- vs. HDM-sensitized mice, harvested 7 days post-challenge (n=8-14 632 

per group, unpaired t- test). E: Baseline cysLT, CCL17 and IL-6 production, and Ccl17, Il6, 633 

Ptgs2 and Cd84 gene expression of BMDM of PBS- vs. HDM-sensitized mice, harvested 7 634 
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days post-challenge (n=10-15/n=4-8, unpaired t-test/Mann-Whitney test). Data are presented 635 

as mean + SEM. *p<0.05, **p<0.01. i.n.=intranasal administration, BALF=bronchoalveolar 636 

lavage fluid 637 

 638 

Fig. 3: HDM training of differentiated human macrophages drives a type-2 promoting 639 

and metabolically activated phenotype  640 

A,B: cysLT (A) or CCL17 (B) production of control and HDM-trained aMDM (D14, n=12/ 641 

n=15, RM one-way ANOVA with Geisser-Greenhouse correction, Holm-Sidak’s multiple 642 

comparisons test) C, D: Volcano plots of DEG (FC>2, padj <0.05) in HDM-trained versus 643 

control (C) or HDM-trained and challenged versus acutely HDM-exposed aMDM (D) on day 644 

14 (n=3/ n=2) E, F: Heatmaps of DEG in HDM trained versus control (E) or HDM trained and 645 

challenged versus acutely HDM-exposed (F) aMDM (D14, n=3/ n=2) G: Oxygen consumption 646 

rate (OCR) and H: Spare respiratory capacity, and I: Extracellular acidification rate (ECAR) of 647 

control and HDM-trained aMDM (n=7-8, paired t-test) J: Venn diagram of upregulated DEG 648 

in trained/control, trained+challenged/acute HDM and HDM-allergic/healthy aMDM K, L: 649 

CCL17 (K) or cysLT (L) production by control and HDM-trained aMDM ± IL-25 (n=5, RM 650 

one-way ANOVA, Sidak’s multiple comparisons test) M: CXCL8 production by normal human 651 

bronchial epithelial cells, ± medium or supernatants from control or HDM-trained aMDM (n=8, 652 

Friedmann test, Dunn’s multiple comparisons test). Data are presented as mean + SEM or z-653 

score transformed. *p<0.05, **p<0.01. 654 

 655 

Fig. 4: Autocrine TNF signaling mediates HDM-driven type-2 imprinting in vitro and in 656 

vivo. 657 

A: Normalized read counts for FPR2 in aMDM (n=3 healthy donors), ± 24h HDM (padj, 658 

DeSeq2) B: CCL17 production by challenged HDM-trained aMDM ± Formyl peptide receptor 659 

Jo
urn

al 
Pre-

pro
of



Lechner et al. 27 

 

2 inhibitor (FPR2i) during training (D14, n=6, paired t-test). Dotted line: CCL17 production by 660 

aMDM + 24h HDM. C: TNF production of control and HDM-trained aMDM ± FPR2i during 661 

training (n=6, Friedmann test, Dunn’s multiple comparisons test) D: Genes related to TNF 662 

signaling enriched in HDM-trained versus control aMDM (n=3) E: CCL17 production by 663 

challenged HDM-trained aMDM ± TNF neutralizing antibody (nAB) during training (D14, 664 

n=7, paired t test). F: Experimental scheme for HDM-induced AAI ± TNF inhibition (upper), 665 

or in mice deficient in myeloid Tnf (lower) G: Representative histology images of lung tissues 666 

of HDM-sensitized mice ± etanercept treatment. Scale bar: 50 µm. H, I: CCL17 (H) or IL-6 (I) 667 

production by BMDM from PBS- or HDM-sensitized mice ± etanercept treatment ± 24h ex 668 

vivo HDM (n=3-8, two-way ANOVA, Tukey’s multiple comparisons test). J, K: BAL 669 

eosinophils (J) or ex vivo BMDM CCL17 production (K) for HDM-sensitized Tnffl/fl or LysM-670 

cre Tnffl/fl mice. Data are presented as mean + SEM or z-score transformed. *p<0.05, **p<0.01, 671 

***p<0.001. n.d.=not detected. 672 

 673 

Fig. 5: A metabolic-epigenetic crosstalk via 2-hydroxyglutarate and KDM1A contributes 674 

to HDM-induced macrophage hyperresponsiveness  675 

A: Targeted metabolomics, and histograms for B: glutathione, C: adenosine, and D: 2-676 

hydroxyglutarate (2-HG) of BMDM from PBS- vs. HDM-sensitized mice (n=3 per group, 677 

paired t-test) E: Arg1 expression in BMDM of PBS- or HDM-sensitized Tnffl/fl or LysM-cre 678 

Tnffl/fl  mice ± 24h IL-4 (n=4-9) (E) or from PBS- or HDM-sensitized mice ± etanercept 679 

treatment (n=5-8) (F), E,F: two-way ANOVA, Sidak’s multiple comparisons test G: 2-HG in 680 

MDM from healthy donors ± 24h HDM (n=7, paired t test) H: CCL17 production by control or 681 

2-HG-trained macrophages ± HDM challenge (D14, n=3, RM one-way ANOVA, Sidak’s 682 

multiple comparisons test) I: LPS versus control, fold change of CCL17, IL1B and PTGS2 ± 2-683 

HG (n=6, paired t test) Dotted lines: fold change=1. J: PGE2 and CCL17 production of BMDM 684 

± 2-HG (n=5, Mann-Whitney test) K: HIF1A expression in control and HDM-trained human 685 
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macrophages (n=10) L: CCL17 production by HDM-trained human macrophages, ± HIF1 686 

inhibition during training (D14, n=5). M: CCL17 and cysLT production by challenged HDM-687 

trained macrophages, ± KDM1A inhibition during training, (D14, n=8/n=5, Wilcoxon test). L, 688 

M: Dotted line: CCL17 or cysLT in aMDM + 24h HDM. Data are presented as z-score 689 

transformed or mean + SEM. *p<0.05, **p<0.01, ***p<0.001. AUC=area under curve. 690 

 691 

Fig. 6: HDM-induced macrophage training is distinct from classical trained immunity and 692 

driven by prostaglandin E2/EP2-signaling 693 

A,B: Mediator production of HDM-trained aMDM on D8 and D13 (A) or D14, after HDM 694 

restimulation) C: IL-6 production of control and HDM-trained aMDM, after 1h, 8h or 24h of 695 

HDM restimulation (n=4) A-C: RM two-way ANOVA, Sidak’s multiple comparisons test) D: 696 

Eicosanoid production by control or HDM-trained human macrophages (n=11) E: Normalized 697 

read counts (RNAseq) of eicosanoid metabolism genes in control and HDM-trained aMDM 698 

(n=2) F: mPGES1 protein levels for control and HDM-trained aMDM, (n=5, Friedmann test, 699 

Dunn’s multiple comparisons test) and representative western blot G, H: PGE2 production by 700 

aMDM (G) or BMDM (H) from healthy or HDM-allergic donors or mice, ± 24h HDM (n=5 701 

/n=8-9 per group) I: Ptgs2 expression in from PBS- or HDM-sensitized mice ± etanercept 702 

treatment ± 24h HDM (n=5-8, RM two-way ANOVA) G, H, I: RM two-way ANOVA, Sidak’s 703 

multiple comparisons test  J, K: TNF (J) or CCL17 (K) production of wildtype or EP2 KO 704 

BMDM, ± 24h HDM exposure (n=7, Mann-Whitney test). Data are presented as z-score 705 

transformed or mean + SEM. n.d.=not detected, EP2 KO=Ptger2 knockout. *p<0.05, *p<0.01. 706 
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