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Translational Relevance 

 

Despite aggressive multi-modal treatment, patients suffering from advanced head and neck 

squamous cell carcinomas (HNSCC) are at high risk of recurrence as the clinical response to 

therapy depends both on the molecular characteristics of the individual tumors and on the extent 

of intratumor heterogeneity. A therapy-driven composition of tumor subpopulations has 

significant impact on therapy resistance and tumor recurrence. Here we present an in-depth 

analysis of molecular tumor dynamics in a unique cohort of primary and recurrent tumor pairs, 

which is of clinical importance in two ways: (i) it suggests transcriptome profiling of recurrences 

for therapeutic considerations and (ii) it identifies a basal tumor subtype as the most important 

molecular subgroup for alternative therapy approaches in recurrent tumors. Thus, transcriptome 

approaches should be included in molecular tumor boards and basal subtype-related processes 

should be considered for novel treatments options. 
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Abstract 

Purpose: 

The genetic relatedness between primary and recurrent head and neck squamous cell carcinomas 

(HNSCC) reflects the extent of heterogeneity and therapy-driven selection of tumor 

subpopulations. Yet, current treatment of recurrent HNSCC ignores the molecular characteristics 

of therapy-resistant tumor populations. 

Experimental Design: 

From 150 tumors, 74 primary HNSCCs were RNA-sequenced and 38 matched primary/recurrent 

tumor pairs were both, whole-exome and RNA-sequenced. Transcriptome analysis determined the 

predominant classical (CL), basal (BA) and inflamed-mesenchymal (IMS) transcriptional subtypes 

according to an established classification.  Genomic alterations and clonal compositions of tumors 

were evaluated from whole-exome data. 

Results: 

While CL and IMS subtypes were more common in primary HNSCC with low recurrence rates, 

the BA subtype was more prevalent and stable in recurrent tumors. The BA subtype was associated 

with a transcriptional signature of PARTIAL EPITHELIAL-TO-MESENCHYMAL TRANSITION (P-EMT) 

and early recurrence. In 44% of matched cases, the dominant subtype changed from primary to 

recurrent tumors, preferably from IMS to BA or CL. Gene set enrichment analysis identified 

upregulation of HYPOXIA, P-EMT and RADIATION RESISTANCE signatures and downregulation of 

TUMOR INFLAMMATION in recurrences compared to index tumors. A relevant subset of 

primary/recurrent tumor pairs presented no evidence for a common clonal origin. 

Conclusions: 
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Our study showed a high degree of genetic and transcriptional heterogeneity between 

primary/recurrent tumors, suggesting therapy-related selection of a transcriptional subtype with 

characteristics unfavorable for therapy. We conclude that therapy decisions should be based on 

genetic and transcriptional characteristics of recurrences rather than primary tumors to enable 

optimally tailored treatment strategies. 
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Introduction 

Head and neck squamous cell carcinomas (HNSCC) appear as a heterogenous disease in terms of 

etiology, phenotypes, biological, immunological, and clinical features (1). In line with this 

heterogeneity, molecular studies confirmed a molecular diversity on the genome, transcriptome, 

and immune landscapes of HNSCC (1-3). Etiological diversity is a major determinant of the 

heterogeneous HNSCC phenotype because of the two major entities (being either driven by human 

papilloma virus (HPV)-driven or induced by tobacco and alcohol abuse) that are now clearly 

defined in a new pathological classification system (4). Besides this inter-tumor heterogeneity also 

intra-tumor heterogeneity is a key feature of HNSCC and has been observed on different molecular 

levels (5-11). Deeper insights into tumor composition and cellular diversity were gained by the 

use of single-cell mRNA sequencing (scRNA-seq) (12). A recent scRNA-seq study on primary 

and metastatic HNSCC discovered partial epithelial-to-mesenchymal transition (p-EMT) as a key 

mechanism of nodal metastasis (9). However, the role of pEMT in the progression and recurrence 

of HNSCC after multi-modal treatment is so far unclear. A key component in multi-modal 

treatment is radiotherapy, which is significantly impacted by tumor hypoxia in terms of 

radiotherapy response (13). HNSCC cells can adapt to the hostile environment generated in 

hypoxic areas, thus promoting the emergence of more aggressive tumor phenotypes (14). Hypoxia 

contributes to radiation resistance of tumor cells, as does enhanced DNA repair, which in HNSCC 

is frequently associated with overexpression of the epidermal growth factor receptor (EGFR) and 

mutations in TP53 and CDKN2A (15). All these factors involved in radiation resistance support 

the development of tumor recurrence, which commonly occurs in advanced stage HNSCC – 

despite aggressive, multi-modal treatment comprising surgery and postoperative 
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radio(chemo)therapy. Local tumor relapses are consentaneously defined as tumors that develop 

within three years after the multi-modal treatment within the high-dose radiation field of treated 

tumors (16). A local relapse may originate from minimal residual disease or from surrounding 

preneoplastic cells, respectively, and thus may exhibit different levels of relationship to the 

primary tumor (17). In the latter case, the process of field cancerization, i.e. the occurrence of 

carcinogenic alterations across large areas of affected tissue in the absence of morphological 

change, may play an important role (18). Consequently, both the extent of genetic correspondence 

between primary and recurrent HNSCCs and the role of intra-tumor heterogeneity in tumor 

recurrence remain largely elusive. Cell populations contributing to local relapses were investigated 

in a surgical xenograft model of HNSCC of HNSCC which demonstrated how initially sparse 

clones propagated and eventually substituted dominating clones (19). These findings raise the 

question about genetic traits of such substituting clones in tumor recurrences. To answer these 

questions, genomic driver alterations play an important role. They are also a major focus in 

precision medicine of malignancies since they are used to target frequently aberrant molecular 

pathways in tumors (20). A randomized clinical trial compared molecularly targeted agents 

matched to specific molecular alterations versus conventional chemotherapy in refractory solid 

tumors, including HNSCC (21). The actionability of most molecular targets, based on the ESMO 

Scale of Actionability of molecular Targets (ESCAT) (22), was low in this SHIVA01 trial, 

highlighting the crucial importance of the type of molecular alteration beyond genomic driver 

genes and affected pathways (23). In the present study, we therefore aimed to identify similarities 

and differences on the exome and transcriptome levels in a panel of well-characterized matched 

pairs of primary and recurrent tumors from HPV-negative HNSCC patients. We hypothesized that 
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by performing a detailed matched-pair analysis, we could gain new insights into the development 

of recurrence with possible implications for personalized treatment strategies.  
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Methods 

HNSCC patient specimens 

This observational study was designed to investigate matched pairs of primary tumors and 

recurrences in HNSCC patients after radiotherapy (RT) with curative intent. Formalin-fixed 

paraffin-embedded (FFPE) specimens of 150 HNSCCs - comprising 74 primary tumors and 38 

matched primary/recurrent tumor pairs - were collected (resected tissues or pan-endoscopic 

biopsies; Ludwig-Maximilians-University (LMU) Clinics Munich and Luebeck University 

Clinics). This study was approved by the local ethics committees in Munich (EA 448-13/17-116) 

or Luebeck (16-277) and was carried out in accordance with the Declaration of Helsinki. HNSCC 

of the hypopharynx, larynx, oropharynx, or the oral cavity was histologically confirmed (Table 1, 

Table S1). Tumor stage was assessed using the UICC TNM Classification of Malignant Tumors, 

7th edition. HPV-status was determined by p16INK4a immunohistochemistry in combination with 

HPV DNA detection as described before (24). 

HPV-negative primary/recurrent tumor pairs were included according to the following criteria: 

local or locoregional recurrence within the high-dose field after radio(chemo)therapy, tumor 

relapse within three years after initial diagnosis to exclude secondary cancers (and in the case of 

definitive radiotherapy treatment, at the earliest six months after therapy completion). 29 patients 

received initial surgical resection followed by adjuvant RT (median dose: 64 Gy; range 62.4-75.6 

Gy), ten patients thereof underwent concomitant chemotherapy. Nine patients were treated by 

definitive radio(chemo)therapy (median dose: 70 Gy; range 69.96-80.5 Gy). Five patients 

underwent definitive or adjuvant RT followed by an interstitial HDBT-Boost to the tumor or tumor 

bed. 
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The independent LMU-KKG (LMU Munich, Clinical Cooperation Group "Personalized 

Radiotherapy in Head and Neck Cancer") cohort (n=74; Table S1) includes HNSCC patients with 

available follow-up data who received resection with curative intent followed by adjuvant 

radio(chemo)therapy (median dose 64 Gy) at the LMU Department of Radiation Oncology 

between 2008 and 2013 (25,26). In the case of close or positive microscopic resection margins 

and/or extracapsular extension, patients (n=49) received concurrent chemotherapy. 

Tumor specimens were processed as serial sections (3 and 10 µm) from FFPE tumor tissue blocks, 

of which the first and last sections were stained with hematoxylin/eosin (HE). The HE-stained 

tissue sections were examined by a pathologist and the tumor area was defined. The annotated 

tumor area was dissected followed by simultaneous DNA and total RNA extraction as described 

in Supplementary Methods. 

Primary ex vivo cell cultures were established from surgical material of three HPV-negative 

HNSCC patients (P39_ex_vivo, P40_ex_vivo, P41_ex_vivo; Table S2). Tissues were minced 

with a scalpel and incubated with LiberaseTM (1 mg/ml in HBSS; Roche) for 1 hour at 37°C. The 

cell suspensions were treated as described in Supplementary Methods. Afterwards, the cells were 

seeded and incubated in a humified atmosphere at 37°C and 5% CO2. The primary cells were 

cultivated as described in Supplementary Methods. 

In this study, whole RNA, 3’mRNA and single-cell RNA sequencing was performed. 

Whole RNA sequencing 

For whole RNA sequencing, a protocol adapted for FFPE material was used. Prior to library 

generation, RNA integrity was assessed using Bioanalyzer systems and Agilent RNA 6000 Nano 

Reagents according to the manufacturer’s protocols (Agilent Technologies, Inc., USA). The 

percentage of fragments >200 nucleotides (DV200) was determined followed by categorization 
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into low, medium, and good quality samples. Accordingly, RNA sequencing library preparation 

using the TruSeq Stranded Total RNA Library Prep Gold Kit (Illumina, Inc., USA) was adjusted 

for input quantity and RNA fragmentation time. After library preparation, library quality and 

quantity were evaluated using the Quanti-iT PicoGreen dsDNA Assay (Thermo Fisher Scientific, 

MA, USA) and the Bioanalyzer High Sensitivity DNA Analysis Kits (Agilent Technologies). 

Sequencing and data analyses were performed as described in Supplementary Methods. 

3’mRNA sequencing 

Different microscopically defined areas (n=19) of n=3 matched pairs of primary/recurrent FFPE 

tumor specimens and ex vivo primary cell cultures on four technical replicates of each bulk and 

subclone were subjected to 3’mRNA sequencing (3’RNA-seq). RNA isolation, quantification, and 

quality assessment were conducted as for whole RNA-seq. Sequencing libraries were generated 

using the QuantSeq 3'-RNA-Seq Library Prep Kit FWD for Illumina with dual indexing (Lexogen) 

according to the manufacturer's instructions for low quantity samples. After library quality 

assessment, sequencing was performed, and data analysis was carried out with R-packages as 

outlined in Supplementary Methods. 

Single-cell RNA sequencing 

Single-cell RNA sequencing on ex vivo cells of P39_ex_vivo, P40_ex_vivo and P41_ex_vivo was 

conducted on cell suspensions generated according to 10x Genomics Sample Preparation 

Demonstrated Protocol (10x Genomics, Inc. Pleasanton USA). They were microscopically 

inspected, counted and diluted to a specific target density. Sequencing libraries were constructed 

with Chromium Single Cell 3’ Reagent Kits v2 (10x Genomics) and subsequent sequencing was 

performed as a pool of the three libraries on four channels of an Illumina HiSeq2000 machine. 

Processing of raw base calls, quality control and data analysis (Seurat 2.3.0) is detailed in 
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Supplementary methods. Classification of subtypes was performed by a custom R script that 

closely follows the method described by Puram et al. [9] and detailed in Supplementary Methods. 

Bulk RNA sequencing data analysis 

RNA sequencing data were processed as outlined in Supplementary Methods. Molecular subtyping 

was performed by the nearest centroid method (27). VST normalized expression values were first 

gene-wise scaled and median centered and then correlated to the centroid table obtained from Keck 

et al. (3). The subtype with highest Pearson correlation coefficient was assigned to each sample. 

For TCGA subtype calling, the same method was applied (a custom centroid table was computed 

from data of TCGA HNSCC samples). For pathway analyses, gene set enrichment approach 

(GSEA) was used with the java command line tool v3 (28,29). 

Metagene activity scores were computed as median of gene-wise scaled and centered expression 

values. Thereby, for survival and radiation resistance scores, signature genes with negative 

associations were sign inverted. For comparisons primary versus recurrent tumors Wilcoxon tests 

with patient as pairing variable were used in inference testing. For subtype comparisons Kruskal-

Wallis-Tests were computed with pairwise Wilcoxon Tests post-hoc. Univariable Cox 

proportional hazard models were computed and Kaplan-Meier analysis visualized with the R 

packages survival (30), and survminer. Statistical results from metagene activity scores are 

reported as nominal p-values. 

Cibersortx deconvolution was used to determine the proportion of immune cells from the 

normalized read counts of all matched tumor pairs. In addition, tumor subclonality was 

reconstructed from aligned and recalibrated bam files using the HATCHet approach. Details are 

outlined in Supplementary Methods. 
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Whole Exome Sequencing 

For whole exome sequencing (WES) DNA quality was assessed and samples were categorized 

into low, medium, and good quality according to Bioanalyzer profiles (details in Supplementary 

Methods). Sequencing library construction was adjusted according to quality measurements. 

Exome processing included quality checks, trimming, filtering and mapping to a human reference. 

The tools are outlined in Supplementary Methods. Single nucleotide variants and short insertions 

and deletions were called using Mutect2. Quality assessment for cross-sample contamination, 

filtering of somatic variants and variant annotation was performed as described in Supplementary 

Methods. Somatic signatures were estimated based on cophenetic correlation metric and signatures 

were compared to known SBS signatures. 

Network diffusion and pathway analysis 

After data processing (Supplementary Methods) resulting gene sets were plotted using the R 

package ComplexHeatmap (v 2.0.0) (31). 

Genomic copy number and genomic biomarkers 

For genomic copy number analysis of primary/recurrent tumor pairs Mutect2 variant calling was 

run including the “genotype-germline-sites” and “genotype-pon-sites” flags in order to record 

germline records existent in the normal samples and pool of normal samples as required by PureCN 

(version 1.22.2). Details of genomic copy number analysis are outlined in Supplementary Methods 

and include the determination of ploidy, cellularity, extent of subclonality and chromosomal 

instability for each tumor sample. 
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Assessment of clonality of matched primary and recurrent tumor pairs 

Analysis of clonality was performed with logR-ratios calculated from GC-normalized read 

coverages using the Bioconductor Clonality R package. Pairs of genomic copy number profiles 

were considered independent if the calculated odds-ratio of independence was >1. 

Data availability statement 

Processed bam files from next-generation whole-exome sequencing have been deposited in the 

European Genome Phenome Archive (EGAS00001004941). RNA sequencing and single-cell 

RNA sequencing data have been deposited at Gene Expression Omnibus under GSE173855 

(RNA-seq), GSE186461 (RNA-seq tumor areas) and GSE173964 (scRNA-seq), respectively. 

Access to all codes used in this study can be obtained from the Github repository 

(https://github.com/ZytoHMGU/HNSCC-GenTrans-PrimRelapse) upon request. 

  

https://github.com/ZytoHMGU/HNSCC-GenTrans-PrimRelapse
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Results  

To elucidate the extent of genetic relationship in pairs of primary and recurrent HPV-negative 

HNSCC we combined an exome and a transcriptome analysis of patient and ex vivo samples. In a 

first step, we characterized three primary ex vivo HNSCC cultures (Table S2) by both bulk 3’RNA-

seq and scRNA-seq, which revealed an overt degree of heterogeneity of transcriptional subtypes 

within each tumor. Transcriptional subtyping of different tumor areas from RNA-seq in three 

primary/recurrent tumor pairs revealed a subtype heterogeneity within selected samples. This 

prompted us to hypothesize that tumor recurrence upon radio(chemo)therapy is related to tumor 

cell subpopulations that have advantageous molecular phenotypes. For a more in-depth 

examination of therapy-related molecular phenotypes in HNSCC recurrences, we focused on 

patients who developed a recurrence in the high-dose irradiation field within three years of initial 

diagnosis after definitive or adjuvant (chemo)radiation therapy (Table 1). For comparison, we also 

investigated the independent LMU-KKG cohort (n=74) of HNSCC patients with clinical follow-

up data on recurrences by means of whole transcriptome sequencing (Table S1). 

 

Transcriptomic heterogeneity of primary ex vivo HNSCC cultures and different tumor areas in 

HNSCC specimens 

We generated scRNA-seq profiles from primary ex vivo HNSCC cultures of three patients (Table 

S2; P39_ex_vivo 5,536 cells; P40_ex_vivo 3,055 cells; P41_ex_vivo 5,388 cells) encompassing 

transcriptomes for in total 14,267 high quality cells. For transcriptional subtyping of each 

transcriptome, centroid genes as published by Keck et al. (3) were used. The assignment of basal 

(BA), classical (CL) and inflamed-mesenchymal (IMS) subtypes revealed a mixture of subtypes 

(P39_ex_vivo: BA 1,490 cells, CL 81 cells, IMS 403 cells; P40_ex_vivo: BA 512 cells, CL 1,712 
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cells, IMS 32 cells; patient P41_ex_vivo: BA 236 cells, CL 589 cells, IMS 62 cells; apart from 

non-assignable cells for each case) in all ex vivo cultures. The transcriptional subtypes of each case 

were determined by bulk 3’RNA sequencing of five isolated single-cell subclones and the bulk 

culture. Diverse subtypes in the subclones were confirmed and highly concordant findings for 

predominant subtypes in single-cell and bulk 3’RNA sequencing were obtained (Figures 1A and 

1B). Hence, bulk mRNA sequencing was able to identify the dominating subtype in each case. In 

addition, RNA-seq analysis of different tumor areas (n=19) from three primary/recurrent tumor 

pairs revealed heterogeneous transcriptional subtypes in one primary and two recurrent tumors 

confirming at the same time the concept of predominant transcriptional subtypes (Figures 1C and 

1D). These hypothesis-generating approaches rationalized a systematic bulk mRNA sequencing 

study on two FFPE tumor cohorts for which scRNA-seq analyses were not feasible. 

 

Changes of predominant transcriptional subtypes between primary and recurrent tumors 

To examine therapy-related transcriptional subtypes, we assessed the dominating subtypes in 

tumor pairs (n=38) of primary HNSCCs and local or loco-regional recurrences. For comparison 

and a more stable subtype calling, we included an independent cohort of n=74 primary HNSCCs 

with known recurrence status. First, an unsupervised clustering of all samples and between 

matched tumor pairs based on a principal component analysis (PCA) could not discern any specific 

subgroups with regard to general technical parameters or clinical characteristics of different 

cohorts (Figures S1A, S1B). Next, we performed a transcriptional subtype calling according to 

subtypes defined by Keck et al. (3) (malignant cells only: BA, CL, IMS) or TCGA-defined 

subtypes (1) (basal - BA, atypical - AT, classical – CL, mesenchymal – MS related to cancer-

associated fibroblasts). Based on the median expression profiles of centroid genes, the MS subtype 
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centroid (TCGA) shared similarity with both BA subtypes, whilst the IMS centroid (Keck et al.) 

was similar to the AT centroid of TCGA. (Figure S1C). Hierarchical cluster analysis of with 

expressions of the “Keck subtype” centroid genes sorted samples mainly according to the assigned 

predominant subtypes (Figure S2). PCA of dominating subtypes according to Keck et al. (3) 

showed a clear clustering of individual subtypes and of HPV-related subtypes for all tumors of the 

reference cohort (Figure 2A). Furthermore, a PCA on the primary and recurrent tumors indicated 

the correlation or likewise dissimilarity between the pairs according to their two-dimensional 

separation along the first two principal components (Figure 2B). After exclusion of four outlier 

tumor pairs due to low quality, 19 primary tumors maintained the initial subtype in the recurrent 

tumors, while 15 tumors changed the predominant transcriptomic subtype between primary and 

relapsed tumor (Figure 2C, Table 1). Interestingly, the majority of these subtype switchers 

changed to the BA subtype (60%; 9/15), four cases to the CL subtype (27%; 4/15), and only two 

cases to the IMS subtype (13%; 2/15). "BA" was the most common subtype in primary tumors 

(50%; 17/34), was maintained in 94% of recurrences and selected in 60% of non-BA primary 

tumors in recurrences. These findings strongly suggested a preferential association of the BA 

subtype with tumor recurrence. The prevalence of individual subtypes was further investigated in 

the independent LMU-KKG HNSCC cohort (n=74 primary tumors; Table S1). This cohort with a 

recurrence rate of only 14% (10/74) showed a different subtype prevalence (BA: 24.4%, CL: 

37.8%, IMS: 37.8%) compared to the cohort of primary/recurrent tumor pairs. 

To explore the transcriptional diversity between primary tumors and recurrences and between 

individual transcriptional subtypes, we performed differential gene expression (DGE) and gene set 

enrichment (GSEA) analyses identifying deregulated cancer-related gene sets and pathways 

(Figure 2D-G; Tables S3-10). Gene sets contributing to metabolic functions (GLUCOSE and 
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OXYGEN METABOLISM) and DNA REPAIR processes (NUCLEOTIDE EXCISION REPAIR and DOUBLE-

STRAND BREAK REPAIR) were enriched in relapsed tumors, whereas PD1 SIGNALING was 

diminished. GSEA between CL and BA subtypes revealed less distinct differences which were 

mainly associated with repair and metabolic processes (Figure 2H-K), whereas the IMS subtype 

showed enriched PD1 SIGNALING and diminished GLUCOSE METABOLISM in comparison to the BA 

subtype. Compared to the CL subtype, the IMS subtype also exhibited enriched PD1 SIGNALING, 

yet diminished DNA repair processes (NER, HR, DSB REPAIR). GSEA enrichment maps 

summarize the major molecular characteristics between primary/recurrent tumors and between the 

BA subtype and the other subtypes (Figure S3). 

 

Tumor recurrence and transcriptional subtypes associated with prognosis-related gene sets 

On the basis of differentially enriched gene sets between primary and relapsed tumors, we obtained 

deregulated pathways and cellular functions in tumor recurrences and individual transcriptional 

subtypes. Next, we selected published sets of metagenes from prognostic signatures that are related 

to the GSEA related functions and important prognostic features: HYPOXIA, RADIATION 

RESISTANCE, P-EMT, EGFR, SURVIVAL, TUMOR INFLAMMATION SIGNATURE (TIS) (9,32-35). 

Signature expression scores were calculated and subjected to differential analysis between primary 

and recurrent tumors in matched-pair comparisons and between groups defined by transcriptional 

subtypes. In recurrent tumors, HYPOXIA and P-EMT were upregulated and the expression of 

RADIATION RESISTANCE was elevated compared to primary tumors. In contrast, TIS expression 

scores were significantly decreased in recurrences (paired Wilcox test, p<0.05) (Figure 3A-D). 

Besides the activity change in prognostic signatures during tumor relapse, we also examined the 

interdependence between transcriptional subtypes and these signatures. HYPOXIA, P-EMT and EGFR 
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showed the strongest expression in the BA subtype, whereas the IMS subtype had the highest and 

the BA subtype the lowest SURVIVAL expression score (Kruskal test, p<0.05). At the same time, 

the IMS subtype showed the highest and the CL subtype the lowest expression score for TUMOR 

INFLAMMATION (Kruskal test, p<0.05) (Figures 3E-H, S4). Time to local/locoregional recurrence 

reflected the impact of transcriptional subtypes and prognostic signatures on the latency time of 

tumor relapse. High expression scores of HYPOXIA, P-EMT and RADIATION RESISTANCE were 

associated with a significantly shorter latency time to recurrence (pairwise Wilcox test, p<0.05) 

(Figure 3I-L). The BA subtype showed the shortest latency time for relapse development 

(pairwise Wilcox test, p<0.05) (Figure 3M). Interestingly, the tumors considered as subtype 

switchers had a significantly prolonged time to local/loco-regional recurrence compared to non-

switchers (pairwise Wilcox test, p<0.05) suggesting complex processes of transcriptional 

reprogramming and/or subclone selection after therapy (Figure 3N). At the same time, the initially 

determined transcriptional distance between primary and recurrent tumors (Figure 2B) had no 

significant impact on latency time (Figure S4).  

We also observed a significantly reduced TIS expression in the CL subtype regardless of primary 

and recurrent disease status (Figure S5A-B). This effect was even more pronounced, if only 

recurrent tumors were compared (Figure 3H). Thus, the CL subtype showed the lowest TIS 

expression score. We further investigated, if this observation was also reflected by other 

immunological parameters, such as the immune checkpoint marker PD-L1 and infiltrating immune 

cell populations. PD-L1 staining and derived tumor proportional score (TPS) revealed no 

significant differences between primary and recurrent tumors, however, confirmed a significantly 

reduced PD-L1 expression associated with the CL subtype (Figure S5C-D). Deconvolving 29 

infiltrating immune cell populations from RNA-seq counts showed for some of them different 
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frequencies between primary and recurrent tumors. Considering only immune cell populations that 

correlated either with TUMOR INFLAMMATION expression or PD-L1 TPS scores resulted in a panel 

of ten immune cell types, including dendritic cells, monocytes, B cells and lymphocytes of which 

dendritic cells (mDC, pDC) correlated with both scores. Similar to TIS and TPS scores, dendritic 

cells were significantly reduced in CL subtypes. On the other hand, natural killer (NK) cells and 

plasmablasts were significantly reduced in BA subtypes. With regard to primary/recurrent tumor 

comparisons, NK cells and plasmablasts were strongly reduced in recurrences which is in line with 

the prevalence of BA subtypes in recurrent tumors (Figure S6A-E). 

A high degree of diversity at exome DNA level between tumor pairs 

Genetic diversity was also investigated by WES of primary/recurrent tumor pairs (n=28). The 

tumor samples had 92 (±97, median 85±51) somatic mutations in average. In total, 19 genes 

showed a mutation frequency >10%. TP53 was the most commonly mutated gene in 62% of 

samples (Figure 4A, Table S11). Differences in mutational signatures among covariates were 

assessed. Different tumor stages showed a significant difference for the COSMIC Single Base 

Signature (SBS) SBS2 (Figure 4B). The summary statistics demonstrated missense mutations as 

the most common variant class and single nucleotide variants (SNV) as the most frequent variant 

type (Figures S7). 

We used a pathway enrichment against the Molecular Signature database (MSigDB) hallmark gene 

sets from the results of a network propagation approach (36) on the somatic mutations to elucidate 

the molecular effect of the patients’ mutatomes. The resulting interaction networks revealed three 

clusters of up- and downregulated gene sets in all tumor samples, but no specifically deregulated 

gene sets in neither the primary nor the recurrent tumors (Figure S8A). Compared to the HNSCC 

TCGA cohort, the paired tumor samples of this study revealed a slightly lower mutational burden 
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not reaching statistical significance (Figure S8B). A comparison of SNVs of the top 20 genes 

between primary and recurrent tumors (Figure 4A) showed on average an overlap of 70.9% (s.d. 

 33.31%) mutations between paired tumors. Thus, an unexpectedly low degree of similarity for 

tumor gene variants between primary tumors and recurrences was observed. With further 

consideration of various quality controls (Tables S12 and S13) due to the usage of FFPE materials 

we are confident that the WES data are valid and better suited for variant calling than RNA-seq 

data (Figure S9). 

The WES data were used to determine genomic copy number variations (CNV) of 

primary/relapsed tumor pairs (n=28). Unsupervised hierarchical clustering of CNVs revealed three 

main clusters which were neither associated with primary/recurrent tumor types nor with tumor 

site, sex, or transcriptional subtype (Figure 5A) or the primary/recurrence status of tumors. 29 

amplified copy number regions on chromosomes 3, 12 and 20, covering 167 genes were associated 

with the CL subtype and one deleted region covering the gene CROCC gene on chromosome 1 

was associated with the IMS subtype (Figure S10, Tables S14-15). Analysis of clonal relatedness 

of primary and recurrent tumors revealed that 6/28 (21%) primary/recurrent tumor pairs are likely 

to be genetically unrelated (odds ratio >1), while the others appeared to be clonally related (79%, 

odds ratio <1; Figure S11, Table S16). 

Exome-derived SNV and CNV data were used to explore the extent of chromosomal instability, 

subclonality, ploidy and cellularity of each tumor sample. An overview of the most frequent CNVs 

is depicted in Figure 5A. Matched pairs of primary/recurrent tumors were composed of up to five 

tumor subclones. A clonal expansion was observed in 16/28 tumor pairs indicating a potential 

clonal selection of therapy-related subclones (Figure 5B). Chromosomal instability scores were 

not significantly different between primary tumors (mean: 0.38), and recurrences (0.48), but were 



 23 

significantly lower in IMS tumors (mean: 0.28) compared to the other subtypes (mean: 0.46, 

p=0.028; Figures 5C, S12C). As reflected by the proportion of subclonal variants within all 

identified alterations, there was an increased level of subclonality in recurrences (mean: 74%) 

compared to primary tumors (mean: 70%, p=0.02). Along the transcriptional subtypes, CL 

exhibited the highest (mean: 76%), BA an intermediate (mean: 59%) and IMS the lowest level of 

subclonality (mean: 42%, p<0.06; Figures 5D, S12A). Ploidy was not significantly different 

between primary (mean: 2.25) and recurrent tumors (mean: 2.55) but was significantly increased 

in BA/CL-subtypes (mean: 2.50) compared to the IMS subtype (mean: 2.1, p=0.033; Figures 5E, 

S12D). The mean size of the cellular fractions estimated to carry SNV/CNV alterations was 

increased in primary (mean: 70%) compared to recurrent tumors (mean: 57%, p=0.01) and 

increased in IMS tumors (mean: 74%) compared to BA/CL tumors (mean: 59%, p=0.042; Figures 

5F and S12B).  Cellularity (i.e., the proportion of tumor cells in the analyzed bulk) was determined 

as another genomic biomarker for each tumor. Primary tumors had lower levels of cellularity 

(mean: 28%) compared to recurrent tumors (mean: 42%, p= 0.0015), which was the lowest for the 

IMS subtype showed the lowest mean value of cellularity (mean: 22%), followed by the BA 

subtype (mean: 34%) and CL subtype (mean: 60%, p<0.01). A comparison of the degree of 

cellularity estimated from the exome data with those determined from the histological 

hematoxylin/eosin-stained slides indicated a moderate (Pearson correlation: 0.59) but statistically 

significant agreement (p<0.001; Figures S12E-F). 

Thus, CNVs confirmed genetic heterogeneity between tumor pairs and disclosed a clear link 

between transcriptional subtypes, CNVs, and derived subclones. In this sense, the more similar CL 

and BA subtypes both showed a disparity to the IMS subtype.  
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Discussion  

Genetic diversity across and within tumors represents a major challenge for cancer therapy 

affecting cancer pathways and phenotypic heterogeneity (37). As a consequence, diverse cancer 

cell populations evolve during tumor progression and/or in response to treatment (38,39). Tumor 

cell dynamics are poorly understood in the therapy-related tumor recurrence of HNSCC. Thus, a 

longitudinal analysis of matched samples of primary and relapsed tumors is of paramount clinical 

importance. However, such cohorts are rare and sample sizes are usually small. Here, we 

established and analyzed the hitherto largest sample cohort of primary HNSCCs and corresponding 

recurrences that emerged upon surgery and radio(chemo)therapy. We used NGS to investigate the 

genetic diversity and dynamics at the genomic and transcriptomic level. 

First, we used RNA sequencing of HNSCC patient samples to systematically determine 

dominating transcriptional subtypes. We classified each individual HPV-negative tumor sample 

as BA, CL or IMS subtype according to Keck et al. (3) and compared this classification approach 

with TCGA-derived subtypes (9) in our whole dataset. Hereinafter, we focused our analyses on 

the tumor cell-specific subtypes according to Keck et al. (“Keck subtypes”) (3). The predominant 

subtypes of our HNSCC cohorts revealed a complex picture for subtype prevalence, diversity, and 

longitudinal persistence. (i) The CL and IMS subtypes were more frequent in primary HNSCC 

with a low recurrence rate, while the BA subtype was enriched in primary/recurrent tumor pairs. 

(ii) The BA subtype was stable between primary and recurrent tumors and associated with the 

expression of P-EMT (9) and EGFR (40) gene signatures and early recurrence. (iii) 44% of primary 

tumors changed the predominant subtype in the recurrence, preferably switching from IMS to BA 

or CL subtypes, respectively. (iv) The CL subtype of recurrent tumors showed a very low 

expression of a TUMOR INFLAMMATION signature, suggesting mechanisms of immune escape in 
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these recurrences. This was supported by significantly reduced intra-tumoral immune cell 

populations (dendritic cells) and PD-L1 scores in CL subtype tumors pointing to a strong link 

between DC cell infiltration and PD-L1 tumor expression in this particular subtype. Differential 

expression of immune markers was already reported in individual “Keck subtypes” correlating 

PD-L1 expression with an inflamed phenotype consistent with the IMS subtype (3). 

Simultaneously, a lack of immune markers for the BA subtype was observed. In our study, the co-

occurrence of a low TUMOR INFLAMMATION signature and the CL subtype in recurrent tumors was 

very pronounced suggesting a combinatorial use of both markers for the prediction of tumor 

recurrence probability. Also, the reduced NK cell and plasmablast infiltration in the BA subtype 

is a striking finding of this study. A correlation of the BA subtype with enhanced P-EMT and EGFR 

signatures indicates a preferred route of tumor recurrence via a BA subtype/P-EMT axis. The P-EMT 

program includes upregulation of mesenchymal and restriction of epithelial genes, resembling 

EMT processes, yet in the absence of EMT-typical transcription factors. It is considered as a 

continuum of states recapitulating aspects of EMT and being linked to invasive properties, such as 

local invasion and nodal metastasis (9,41-43). Importantly, in HNSCC P-EMT has been exclusively 

associated to metastasis so far, yet its putative role in tumor recurrence is unknown. Also, EGFR 

was enhanced in BA subtypes which points to an EGF-mediated EMT in HNSCC (44). In our 

dataset an elevated P-EMT signature in the BA subtype was correlated with early tumor relapse. 

This was also noticed for HYPOXIA and RADIATION RESISTANCE signatures, while it remains unclear 

whether this is also related to the elevated P-EMT program or rather independent thereof. 

Additionally, recurrences had reduced PD1 SIGNALING and upregulated DNA REPAIR and 

METABOLISM PROCESSES compared to primary tumors. Since DNA repair capacity is strongly 

linked to radiation resistance, this was a conclusive finding in line with tumor relapse. 
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Interestingly, several DNA repair pathways were upregulated, including the gene and the 

associated base excision repair pathway. NTHL1 plays a pivotal role in cellular sensitivity towards 

clinical agents including ionizing radiation that induce double strand breaks and thereby has a 

strong influence on radiation sensitivity (45). 

A main finding of our study was the frequent switch of the predominant subtype between primary 

and recurrent tumors. Therapeutic pressure apparently selects a therapy-resistant phenotype 

governed by a specific transcriptional subtype. It can be assumed that either intra-tumor 

heterogeneity of pre-existing subclones or transcriptional reprogramming are key drivers of such 

therapy-related phenotypes, however, this could not conclusively clarified in this study. Along 

these lines, it has been previously reported for glioblastoma that several transcriptional subtypes 

exist in most tumor samples and that subtype changes occur between primary recurrent tumors in 

about 50% of cases (46). Of note, also in the present study subtype switchers were observed in 

approximately 50% of the patients. This process was associated either with reduced expression of 

ANTI-TUMOR IMMUNITY response (47) or with an enhanced expression of P-EMT, suggesting 

increased tumor aggressiveness (9). A prolonged time to tumor relapse in patients with subtype 

changes points to time-consuming processes within tumor cells resulting in subtype-related 

resistance. 

Here, we also generated a mutational landscape of matched primary/recurrent tumor pairs 

revealing dissimilarities for somatic mutation patterns. Various quality checks were performed on 

the FFPE-derived SNVs to exclude technical artefacts and to confirm that normal, primary tumor 

and recurrent tissues were from the same source. The observed genomic heterogeneity between 

tumor pairs is in line with the transcriptomic findings and with recent publications reporting that 

five out of ten primary and relapsed tumor pairs were not genetically related to each other (5,6). 
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With regard to driver mutations between primary and relapsed tumors in our cohort the best match 

was observed for TP53 with concordant results in 16/ 28 (57%) tumor pairs. In case of NOTCH1, 

only 2 /28 (7%) primary tumor/recurrent pairs showed agreement for this driver mutant. 

Previously, genes have been reported that were mutated in metastatic or recurrent tumors, but not 

in the corresponding primary tumors (6). This includes discoidin domain receptor tyrosine kinase 

2 (DDR2/TKT) (6), which is mutated in about 2.2% of HNSCC cases according to cBioPortal for 

Cancer Genomics (https://www.cbioportal.org). This gene was neither mutated in our filtered set 

of somatic mutations nor in the unfiltered data. Another recent study on the comparison of HPV-

positive primary and corresponding recurrent HNSCCs similarly observed that the HPV-related 

mutational landscape of primary tumors changed in recurrences to landscape features of HPV-

unrelated HNSCCs (48). Looking at genomic disparities between tumor pairs or different tumor 

groups, we found a significant difference between different tumor stages for the SBS2 signature 

which is attributed to the activity of the AID/APOBEC family of cytidine deaminases. Members 

of these cytidine deaminases are recognized as a major cause for genomic mutations in many 

cancers (https://cancer.sanger.ac.uk/cosmic/signatures/SBS/). The increased prevalence of this 

signature in tumors of advanced stages is in line with a higher mutational burden in advanced 

HNSCCs. 

A substantial proportion of primary/recurrent tumor pairs (21%) also significantly changed their 

CNV profiles. Genetically unrelated tumor pairs have also been found before in the study by 

deRoest et al. (5) who showed a higher proportion (80%) of unrelated tumor pairs, though in a 

smaller number of tumor pairs (n=10) than in the present study. The authors proposed CNV 

profiles as markers of genetic relationship due to their huge variations between independent tumors 

and between primary/recurrent tumor pairs. We observed this partially loose genetic relationship 
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between the tumor pairs was also on the transcriptomic level. The dominating transcriptional 

subtypes indicated a genuine development of recurrences based on clonal selection and 

evolutionary processes in tumors which was also postulated from a study on cellular populations 

in local recurrences from a surgical HNSCC xenograft model (19). Our additional analysis of 

clonal compositions of matched pairs of primary tumors and recurrences revealed up to five tumor 

subclones in some bulk samples. Indeed, the majority of tumor pairs showed signs of clonal 

expansion suggesting a possible clonal selection process during radiotherapy in those cases. 

However, in the remaining monoclonal cases molecular reprogramming might play a more 

important role. In our data, the estimated extent of subclonality was increased in recurrences, and 

the estimated average cellular fractions with subclonal alterations were smaller in recurrences 

compared to primary tumors, thus supporting this assumption. The cancer hallmark ‘genomic 

instability’, besides structural and small nucleotide variants, also manifests in the extent of CNVs. 

In our data, the estimate of chromosomal instability is reflected by the proportion of the genome 

affected by CNVs which was more pronounced in CL and BA subtypes compared to IMS. This 

suggests that the transcriptional subtypes are associated with – and presumably a consequence of 

- the extent of genomic instability.  We further estimated tumor cellularity from the exome data, 

which were increased in recurrent (all biopsied) compared to primary tumors (n=4 biopsied, n=24 

resected) – presumably due to differences in tissue sampling. However, we also observed a 

strikingly reduced cellularity of the IMS tumors, which is probably caused by immune-cell 

infiltrations in these tumors. In general, cellularity estimated from the WES data and that 

determined from histological slides were in good agreement which supports plausibility of the 

data. With regard to single CNVs none was associated with primary/recurrence status. 29 amplified 

regions, most of them clustering within the same regions on chromosomes 3, 12 and 20, were 
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associated with the CL subtype. The low extent of statistical association points to pronounced 

inter-tumor heterogeneity at the genomic level. 

In summary, our study demonstrates genetic diversity and dynamics at the genomic and 

transcriptomic level in a cohort of paired primary and recurrent HNSCCs. Although this is the 

largest published cohort of tumor pairs explored in depth so far, there are certainly a number of 

limitations. Firstly, the sample size is small even though patients from two different clinics were 

included. Secondly, the biomaterial was very limited and only available as FFPE tissues, which 

provides DNA and RNA in limited yields and quality. Therefore, we performed serial sections and 

intense quality control measurements at multiple levels. Thirdly, variations in therapeutic 

treatments between patients required a strict definition for the selection of tumor recurrences 

related to the high-dose field of radiotherapy. Fourthly, somatic mutations reported previously 

might have been missed because a strict filtering scheme towards somatic mutations was applied 

to avoid any technical artifacts (sequencing depth of at least 40 reads, variant allele frequency of 

10%, filtering for rare mutations).  

Our reported key findings (genetically unrelated tumor pairs, subtype switchers, prevalence of the 

BA subtype in recurrences) raise the question about clinical translation. Most importantly, the 

observed heterogeneity within the same patient suggests that therapeutic decisions should be taken 

from molecular profiles of the recurrent, not the primary tumor. Additionally, HNSCC of the BA 

subtype may demand for harsher treatment and/or require a tighter clinical follow-up schedule. 

Also, alternative therapy of the BA subtype is a great challenge and of utmost importance since 

further dose escalation is not possible in recurrences, and immune checkpoint inhibition therapy 

is successful in only 20% of cases (49). Comparative GSEA maps between primary/relapsed 

tumors and between the BA and the other subtypes provided first hints for a therapeutic targeting 
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in BA subtype-driven recurrences. Finally, the major role of transcriptomic reprogramming in 

recurrent HNSCC far outweighs the information from genome analysis, the latter being the focus 

of current molecular tumor boards standard operating procedures. Transcriptomics for clinical use 

in cancer diagnostics are currently rare and neither part of clinical guidelines (50) nor covered by 

health insurance. Therefore, as a consequence and perspective of our study, a stratification of 

recurrences based on RNA sequencing and transcriptional subtype classification of recurrent 

HNSCC represents a future clinical need. 
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Table 1: Patient data of tumor pairs (primary and recurrent tumors) 

 
Patient Primary Tumor Recurrent Tumor 

Patient 

ID 

Age 1) Sex 2) Site 3) TNM stage 4) UICC 

stage 5) 

Radiotherapy dose (Gy) 

/treatment 6) 

Chemotherapy Predominant 

Transcriptional 

Subtype 7) 

PD-L1 8) Type 9) Time to 

Relapse 

(days) 10) 

Predominant 

Transcriptional 

Subtype 7) 

PD-L1 8) 

 

P01 48 m OC pT2N1M0 III 64/adj. EBRT no IMS 75 LR 201 BA 75 
 

P02 68 f HP pT1N2bM0 IVa 64/adj. EBRT Cisplatin/5-FU IMS 3 LRR 215 IMS 20 
 

P03 51 m OC pT3N0M0 III 64/adj. EBRT no BA 25 LR 204 CL 10 
 

P04 60 m OP cT4N0M0 IVa 70/def. EBRT 5-FU/MMC BA 15 LR 416 BA 20 
 

P05 58 f OC pT2N0M0 II 64/adj. EBRT no BA 15 LRR 315 BA 5 
 

P06 60 m LA cT4N1M0 IVa 70/def. EBRT 5-FU/MMC IMS 30 LR 779 CL 1 
 

P07 55 m OP cT4N2bM0 IVa 69.96/def. EBRT Cisplatin weekly BA 10 LR 254 BA 0 
 

P08 47 m OC pT2N1M0 III 64/adj. EBRT no BA 20 LR 199 BA 20 
 

P09 69 f HP cT3N1M0 III 69.96/def. EBRT Cetuximab mono IMS 10 LR 461 IMS 20 
 

P10 47 m OC pT2N0M0 II 64/adj. EBRT no IMS 35 LR 236 BA 10 
 

P11 64 m OP cT4N2bM0 IVa 70/def. EBRT MMC mono IMS 25 LR 399 BA 15 
 

P12 60 m HP pT4N2cM0 IVa 64/adj. EBRT Cisplatin/5-FU CL 0 LRR 323 IMS 25 
 

P13 55 m OC pT4a/N2cM0 IVa 64/adj. EBRT Cisplatin/5-FU BA 20 LRR 303 BA 85 
 

P14 60 m OP pT3N2bM0 IVa 64/adj. EBRT Cisplatin/5-FU BA 20 LR 233 BA 25 
 

P15 53 f OP pT1N1M0 III 64/adj. EBRT Cisplatin/5-FU IMS 85 LRR 492 BA 10 
 

P16 66 m OP cT4N2bM0 IVa 70/def. EBRT Cetuximab mono BA 10 LR 360 BA 20 
 

P17 59 m LA pT2N0M0 II 73.5/adj. EBRT no IMS 1 LR 439 BA 0 
 

P18 58 m OP pT4aN0M0 IVa 67.2/adj. EBRT no BA 2 LR 237 BA 33 
 

P19 63 f OC pT2N2cM0 IVa 67.8/adj. EBRT no BA 33 LR 112 BA 63 
 

P20 53 m LA pT2N0M0 II 62.4/adj. HDBT no BA 100 LR 97 BA 30 
 

P21 71 m OP pT4aN2cM0 IVa 70.29/adj. EBRT Cisplatin/Carboplatin weekly BA 0 LRR 231 BA 0 
 

P22 48 m OC pT3N2cM0 IVa 75.6/adj. EBRT no IMS 0 LRR 362 CL 0 
 

P23 68 f OP pT2N2cM0 IVa 70.4/adj. EBRT/HDBT no IMS 67 LRR 333 IMS 67 
 

P24 66 m LA pT1N2bM0 IVa 64.8/adj. EBRT Cetuximab mono IMS 1 LR 370 CL 0 
 

P25 54 m LA pT2N2aM0 IVa 69.63/adj. EBRT Cisplatin weekly CL 0 LR 590 CL 0 
 

P26 70 m OC pT4aN1M0 IVa 69.3/adj. EBRT no BA 67 LRR 163 BA 10 
 

P27 78 m HP pT3N2bM0 IVa 75.5/adj. EBRT/HDBT no IMS 83 LR 359 IMS 0 
 

P28 55 m OC cT3N2bM0 IVa 73.95/def. EBRT Docetaxel/Cisplatin IMS 3 LR 1146 BA 40 
 

P29 59 m OP pT3N1M0 III 69.96/adj. EBRT no BA 93 LR 368 BA 70 
 

P30 47 f OP cT4aN2cM0 IVa 80.5/def. EBRT/HDBT Cisplatin weekly IMS 0 LR 415 BA 0 
 

P31 61 m OP pT4aN0M0 IVa 66/adj. EBRT Cisplatin weekly IMS 87 LR 787 BA 90 
 

P32 47 m OP pT1N2bM0 IVa 68.7/adj. EBRT/HDBT no BA 1 LR 274 BA 0 
 

P33 55 m OC cT1N2bM0 IVa 74/def. EBRT/HDBT Cisplatin weekly BA 16 LR 374 IMS 0 
 

P34 58 f LA pT3N2bM0 IVa 64/adj. EBRT Cisplatin/5-FU CL 0 LR 147 BA 0 
 

P35 87 m LA pT4aN0M0 IVa 64/adj. EBRT no NA NA LR 671 CL NA 
 

P36 55 m LA pT3N0M0 III 64/adj. EBRT no BA NA LR 138 NA NA 
 

P37 74 m OP pT2N0M0 II 64/adj. EBRT no NA NA LRR 239 NA NA 
 

P38 63 m OC pT2N2bM0 IVa 64/adj. EBRT MMC mono NA NA LR 182 BA NA 
 

 
1) years; 2) m=male, f=female; 3) LA=larynx, OP=oropharynx, OC=oral cavity, HP=hypopharynx; 4) TNM according to UICC TNM Classification of Malignant Tumors, 7th edition; 5) 

UICC stage 6) EBRT=external beam radiation therapy, HDBT=high-dose-rate brachytherapy, adj.=adjuvant, def.=definitive; 7) Subtype according to Keck et al. (2015), IMS=inflamed 

mesenchymal, BA=basal, CL=classical; 8) Tumor proportion score (TPS) %; 9) LR=local recurrence, LRR=loco-regional recurrence; 10) Time to LR or LRR relapse in days calculated 

from the start of radiotherapy treatment. 
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Figure 1: Transcriptomic tumor heterogeneity of three primary HNSCC ex vivo cultures and 

different tumor areas of matched primary and recurrent HNSCC tissue specimens. 3’RNA 

and single-cell mRNA sequencing (scRNA-seq) were performed on ex vivo cultures of three 

HNSCC cases (patients P39_ex_vivo, P40_ex_vivo and P41_ex_vivo). To assess possible 

heterogeneity within tumors we used the subtype defining genes for dimensionality reduction and 

visualized the first two components. Thus, spatial distance of symbols in (A,B,D) corresponds to 

difference in characteristics of the transcriptional subtype. 3’RNA sequencing of bulk mRNAs (A; 

PCA, principal component analysis; PC1, PC2: Principal component 1 or 2) revealed similar 

results than scRNA-seq (B; tSNE plot for individual tumor cells) for the predominant 

transcriptional subtype in each case (color code: red for BA=basal, green for CL=classical, blue 

for IMS=inflamed-mesenchymal subtypes, grey for NA=not applicable). (A) Individual patient 

derived cultures are shown magnified on the right, with the bulk samples outlined in black for 

distinction from the derived subclones. Both sequencing approaches revealed a distinct 

heterogeneity of transcriptional subtypes either for different subclones of the bulk analysis (A) or 

individual tumor cells (B). Different tumor areas (n=19) from three selected matched primary and 

recurrent HNSCC tissue specimens were microscopically defined. Neither intra- (between PT and 

R) nor inter-tumoral (between the individual defined areas) histomorphological heterogeneity was 

visible (C). 3’RNA-seq analysis revealed (D; PCA) heterogeneity of assigned transcriptional 

subtypes in different tumor areas of one FFPE tumor block for one primary tumor and two 

recurrent tumor specimens along with a stability of the predominant subtype. 
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Figure 2: Transcriptional subtypes of primary and recurrent tumors. mRNA sequencing was 

performed on matched primary/recurrent tumor pairs and on several cohorts of primary tumors 

(n=126 patients/160 samples). (A). Principal component analysis (PCA) of predominant 

transcriptional subtypes for all samples, showing a clustering of individual subtypes (BA=basal 

n=66 samples, CL=classical n=42 samples, IMS=inflamed-mesenchymal n=52 samples) and of 
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HPV+-related subtypes (CL n=12 samples, IMS n=9 samples). (B). PCA of predominant 

transcriptional subtypes of primary and recurrent tumor pairs (n=34 patients/68 samples) 

indicating either low or high correspondence which is apparent from the bar lengths linking 

primary and recurrent tumor pairs. (C). Same as (B), but depicting only the 15 tumor pairs 

changing the transcriptional subtype between primary tumor and recurrence. 19 tumor pairs 

maintained the initial subtype (subtypes between primary and relapsed tumor: BA-BA n=14, CL-

CL n=1, IMS-IMS n=4; IMS-BA n=8, IMS-CL n=3, CL-BA n=1, BA-CL n=1, CL-IMS n=1). (D, 

H) Differential gene expression (DGE) analysis and gene set enrichment analysis (GSEA) between 

primary and recurrent tumor pairs (n= 34 patients/68 samples). DGE (volcano plot) shows 

differentially expressed genes between primary and recurrent tumors (D), GSEA reveals a 

diminished PD1 SIGNALING as well as enriched DNA REPAIR and METABOLIC processes in relapses 

(H). (E, I) Differentially expressed genes between CL and BA subtypes (volcano plot, E), gene 

sets mainly for DNA REPAIR and METABOLIC processes are differentially expressed between CL and 

BA subtypes (GSEA, I). (F, J) DGE shows differentially expressed genes between IMS and BA 

subtypes (volcano plot, F), GSEA reveals enriched PD1 SIGNALING and diminished GLUCOSE 

METABOLISM in IMS (J). (G, K) Differentially expressed genes between IMS and CL subtypes 

(volcano plot, G), showing an enriched PD1 SIGNALING and diminished DNA REPAIR processes in 

IMS (GSEA, K).  NES: enrichment score normalized to mean enrichment of random samples of 

the same size; log2(FC): log2 fold change of gene expression; DGE and GSEA are represented by 

plots (D – K) in which significantly different expression values are indicated above the red dashed 

line representing an adjusted p-value (FDR) <0.1. Log2-fold changes of gene expressions <2 and 

>2 are indicated by perpendicular dashed lines within the volcano plots (D – G) 
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Figure 3: Association of transcriptional subtypes with gene signatures. Pairwise comparisons 

between primary and recurrent tumor pairs were performed for activity scores of prognostic 

signatures for hypoxia (n=34 patients/68 samples) (A) HYPOXIA, (B) P-EMT, (C) RADIATION 

RESISTANCE, (D) TUMOR INFLAMMATION. P-values < 0.05 indicate significantly different activity 

scores between tumor pairs. The activity scores of the same prognostic signatures were compared 

between basal (BA), classical (CL) and inflamed-mesenchymal (IMS) subtypes; significant 

differences between individual subtypes were indicated by p < 0.05 (E-H). Kaplan-Meier analysis 

depicting the development of tumor relapses dependent on time (days) and activity scores for each 

prognostic signature (I-L). Kaplan-Meier analysis (loco-regional recurrence) also demonstrates 

significantly different latencies for transcriptional subtypes (n=34 primary tumors; BA n=16, CL 

n=3, IMS n=15) (M) and a longer latency for subtype switcher (primary tumors with subtype 

change n=15; without subtype change n=19) (N).   



 42 

 

 

 
 

Figure 4: Landscape of genomic mutations, mutational signatures, and heterogeneity among 

samples. (A) Genomic mutations of HNSCC for matched tumor and recurrence pairs and number 

of variants per sample. Each column represents a sample and the most frequent DNA mutations 

after removing the top 20 frequently mutated genes in public exomes. Primary tumor and 

corresponding recurrence are shown next to each other for each sample. Additionally, subtype 

information inferred from RNA-seq data is shown for samples where RNA-seq data was available. 

Color codes at the bottom indicate patient-IDs, tumor type (index tumor and recurrence per patient 

next to each other), variant classification and transcriptional subtype. (B) Single Base Substitution 

(SBS) signatures in primary and recurrent tumor pairs for SBS2. The SBS2 contribution in UICC 

tumor stages I – IV is indicated.  
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Figure 5: Genomic copy number variations (CNV) in primary and recurrent tumors and 

analysis of heterogeneity. (A) Heatmap and hierarchical cluster analysis of CNVs detected from 

whole exome sequencing data in 28 primary/recurrent tumor pairs. CNVs in different copy number 

regions consisting of one or more genes were indicated (blue: deletion, red: amplification, purple: 

focal amplifications). The main clusters after unsupervised hierarchical clustering were not 

associated with tumor site, sex, transcriptional subtype or primary/recurrent tumor type. (B) 

Heatmap with clonal compositions of matched pairs of primary tumors and recurrences. Given are 

the proportions of normal cells and up to five tumor subclones of the bulks. For each tumor-

recurrence pair, the presence of clonal expansion probability is noted in addition to transcriptional 

subtype change. (C) Chromosomal instability for all primary and recurrent tumors according to 

the transcriptional subtypes. Chromosomal instability remains similar between primary tumors and 

recurrences, but is significantly decreased in IMS subtype. (D) Mean proportions for all primary 

and recurrent tumors according to the transcriptional subtypes. Recurrences show a higher mean 

proportion of subclonal variants compared to primary tumors with CL and IMS having the highest 

and lowest proportion of subclonal variants. (E) Ploidy for all primary and recurrent tumors 

according to the molecular subtypes. Ploidy remain unchanged between primary and recurrent 

tumors but are lowest in IMS subtype. (F) Size of the cellular fractions for all primary and recurrent 

tumors according to the molecular subtypes. The sizes are opposite to the proportions of subclones 

and was lowest in recurrences and highest in the IMS subtype. 
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