
Abortive Lytic Reactivation of KSHV in CBF1/CSL
Deficient Human B Cell Lines
Barbara A. Scholz1, Marie L. Harth-Hertle1, Georg Malterer2, Juergen Haas2, Joachim Ellwart3,

Thomas F. Schulz4, Bettina Kempkes1*

1 Department of Gene Vectors, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany, 2 Division of Pathway Medicine,

University of Edinburgh, Edinburgh, United Kingdom, 3 Institute of Molecular Immunology, Helmholtz Zentrum München, German Research Center for Environmental

Health, Munich, Germany, 4 Institute of Virology, Hannover Medical School, Hannover, Germany

Abstract

Since Kaposi’s sarcoma associated herpesvirus (KSHV) establishes a persistent infection in human B cells, B cells are a critical
compartment for viral pathogenesis. RTA, the replication and transcription activator of KSHV, can either directly bind to DNA
or use cellular DNA binding factors including CBF1/CSL as DNA adaptors. In addition, the viral factors LANA1 and vIRF4 are
known to bind to CBF1/CSL and modulate RTA activity. To analyze the contribution of CBF1/CSL to reactivation in human B
cells, we have successfully infected DG75 and DG75 CBF1/CSL knock-out cell lines with recombinant KSHV.219 and selected
for viral maintenance by selective medium. Both lines maintained the virus irrespective of their CBF1/CSL status. Viral
reactivation could be initiated in both B cell lines but viral genome replication was attenuated in CBF1/CSL deficient lines,
which also failed to produce detectable levels of infectious virus. Induction of immediate early, early and late viral genes was
impaired in CBF1/CSL deficient cells at multiple stages of the reactivation process but could be restored to wild-type levels
by reintroduction of CBF1/CSL. To identify additional viral RTA target genes, which are directly controlled by CBF1/CSL, we
analyzed promoters of a selected subset of viral genes. We show that the induction of the late viral genes ORF29a and
ORF65 by RTA is strongly enhanced by CBF1/CSL. Orthologs of ORF29a in other herpesviruses are part of the terminase
complex required for viral packaging. ORF65 encodes the small capsid protein essential for capsid shell assembly. Our study
demonstrates for the first time that in human B cells viral replication can be initiated in the absence of CBF1/CSL but the
reactivation process is severely attenuated at all stages and does not lead to virion production. Thus, CBF1/CSL acts as a
global hub which is used by the virus to coordinate the lytic cascade.
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Introduction

Kaposi’s sarcoma associated herpesvirus (KSHV) establishes a

persistent infection in the human host. Infected human B cells in

the circulation of the infected host are likely to constitute a

major latent reservoir, from where KSHV can reactivate and

spread. In addition, the strong association of KSHV with

primary effusion lymphoma (PEL) and the plasma cell variant of

multicentric Castleman’s disease strongly suggests a causative

role of the virus in the pathogenesis of these B cell diseases [1–

4]. Thus, human B cells are likely to comprise a very important

compartment for the persistent KSHV infection. The study of

latent and lytic life cycle in B cells has been the focus of many

studies in the past.

The replication and transcription activator (RTA) is a KSHV

immediate early protein that activates a broad spectrum of lytic

viral genes and thereby induces lytic reactivation. RTA can

either directly bind to RTA-responsive elements or use cellular

DNA binding factors like Ap-1, C/EBP-a, Oct-1 and CBF1/

CSL as adaptors to DNA as reviewed [5]. The DNA binding

factor CBF1/CSL (C-promoter binding factor, Suppressor of

hairless, and Lag1 also designated CSL or RBP-Jk) is a highly

conserved ubiquitously expressed protein and the major effector

of Notch receptor signaling. In the following we will use the

term CBF1 for this protein. It can serve as adaptor for

transactivators but also can recruit corepressor complexes and

thereby silence gene expression [6,7]. Two general experimental

strategies focussing on the cellular interaction partner or the

viral genome have been used to study the functional implica-

tions of the RTA-CBF1 interaction. Initially, infection and virus

production of CBF1 proficient and deficient murine fibroblasts

was studied in isogenic systems. These studies suggested lytic

reactivation is blocked while establishment of latency is not

impaired in cells lacking CBF1 [8,9]. Alternatively, computa-

tional prediction of potential CBF1 binding sites in the viral

genome was followed by biochemical and mutational analysis of

the respective viral promoters in promoter reporter assays or in

the context of the viral genome by recombinant virus

technologies. In addition, activation of viral targets by activated

Notch defined further sets of CBF1 dependent promoters. In

summary, these studies convincingly showed, that CBF1

contributes to the activation of ORF6, ORF8, ORF19,
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ORF47, ORF50, ORF57, ORF59, ORF61, ORF70, K2, K5,

K6, K8, K14 and PAN as well as the latency transcript cluster

(summarized and referenced in Table 1). Importantly, these

genes control multiple stages in the viral latent and lytic life

cycle. The relevance of the contribution of CBF1 to target gene

control varied among the individual genes that were studied.

Thus, the question remained to which extent the activity of

CBF1 contributes to the process of viral reactivation and virus

production in human B cells.

In vitro a broad spectrum of cell lines derived from diverse tissues

can be infected with KSHV but human B cells and B cell lines

appeared to be refractory to infection [4,10–13]. Most recently,

the productive infection of primary B cells could be accomplished

but did not lead to long term proliferation of the infected cells [14–

17]. After infection of the lymphoblastoid B cell line BJAB with

cell-associated recombinant virus and cultivation of these infected

BJAB cells in selective medium stable latently infected cultures

were generated. However, viral reactivation was attenuated and

virion production was almost blocked in these human B cells,

rendering them unsuitable to address the role of CBF1 in lytic

reactivation [18].

The goal of this study was to analyze the contribution of

CBF1 to viral lytic reactivation in KSHV infected human B

cells. To this end, we have infected isogenic CBF1 deficient

and proficient human B cell lines with recombinant KSHV

and compared them for viral reactivation and virus produc-

tion. Our results indicate that viral reactivation is initiated in

both CBF1 proficient and deficient B cells but viral gene

expression is severely attenuated and virus production is below

the detection level in the absence of CBF1. In addition to the

viral genes already known to be controlled by CBF1, we could

identify two further direct CBF1 dependent RTA target genes,

ORF29a and ORF65.

Results

CBF1 deficient and proficient human B cell lines can be
infected with recombinant KSHV, express viral latent
antigens and maintain the viral genome in the presence
of selective cell culture medium

In order to analyze the contribution of CBF1 to viral

reactivation in KSHV infected B cells we used a CBF1 negative

human somatic B cell line. This cell line had been generated

previously by gene targeting of the cellular CBF1 gene in the EBV

negative Burkitt’s lymphoma B cell line DG75 [19]. For infection

of CBF1 proficient parental (DG75 wt) and CBF1 deficient (DG75

CBF1 ko) DG75 cells we used cell culture supernatants of the

recombinant virus rKSHV.219 produced in Vero cells. The

recombinant virus rKSHV.219 is a derivative of the KSHV strain

obtained from JSC-1 cells [20]. rKSHV.219 encodes for red

fluorescent protein (RFP) under the control of a CBF1 indepen-

dent fragment of the KSHV early lytic PAN promoter,

constitutively expresses green fluorescent protein (GFP), and

carries a puromycin resistance cassette as a selectable marker.

DG75 wt and DG75 CBF1 ko cells were infected with

rKSHV.219 at a multiplicity of infection (MOI) of factor 5. GFP

expression was monitored by flow cytometry during a time course

of 12 weeks. A GFP positive cell population could be detected 1

week post infection. The intensity of the GFP signals recorded by

flow cytometry was initially weak but increased over time in both,

CBF1 proficient and deficient B cell lines (Fig. 1A). The results

suggest that stable homogenous KSHV infected B cell cultures are

generated within 4–6 weeks post infection irrespective of the CBF1

status. High GFP expression remained stable as long as the

cultures were maintained in media containing puromycin (Fig. 1A).

If the established rKSHV.219 infected DG75 wt and DG75 CBF1

ko cell lines (K-DG75 wt and K-DG75 CBF1 ko) were cultivated

in the absence of puromycin a GFP negative population

developed. Only 30% of CBF1 proficient and 22% of CBF1

deficient B cells were still GFP positive after they had been

cultivated in puromycin free media for 10 weeks (Fig. 1B). Hence,

viral maintenance required selection in both B cell lines. Viral

genome copy numbers of established K-DG75 wt and K-DG75

CBF1 ko cell lines were determined and compared to data

obtained from two independent KSHV infected PEL cell lines,

BCBL-1 and BC-1. As expected 50 to 60 intracellular genomes

were detected in BCBL-1 and BC-1 cells [21,22]. K-DG75 wt and

CBF1 ko cells carried approximately 10 viral copies per cell

(Fig. 1C). Both K-DG75 cell lines, CBF1 proficient and deficient,

expressed the KSHV latent marker genes ORF73/LANA and

K10.5/vIRF3 at similar levels (Fig. 1D). ORF73/LANA is

consistently expressed in latently infected cells of different tissue

origin and required to maintain episomal viral genomes during cell

division [23–25]. Latent expression of K10.5/vIRF3 is only seen

in KSHV infected B cells [26]. The relative transcript levels of

both viral genes were lower than in BCBL-1 and BC-1 cells but

readily detectable. These distinct expression levels might partially

reflect the lower viral genome copy numbers in the K-DG75 cell

lines compared to BCBL-1 and BC-1.

Next we examined if the virus can reactivate in K-DG75 cell

lines. Upon treatment with sodium butyrate (NaB) the surrogate

early lytic marker gene RFP was induced and expressed with

similar frequencies in two independent K-DG75 wt and K-DG75

CBF1 ko cell lines (Fig. 2A). The combination of 12-O-

Tetradecanoylphorbol-13-acetate (TPA) and NaB further en-

hanced RFP expression with a negligible difference between wt

and CBF1 ko cells (Fig. 2B). Initiation of lytic reactivation thus

does not appear to be a CBF1 dependent process in these B cells.

Author Summary

Kaposi’s sarcoma associated herpesvirus (KSHV) establishes
a life-long persistent infection in B cells, which constitute
the viral reservoir for reactivation and production of
progeny virus. Viral reactivation is associated with multiple
AIDS related malignancies including Kaposi’s sarcoma, an
endothelial tumor, and two B cell lymphoproliferative
malignancies, the primary effusion lymphoma and the
multicentric Castleman’s disease. CBF1/CSL is a cellular
DNA binding protein that can recruit transactivators or
repressors to regulatory sites in the viral and cellular
genome. The replication and transcription activator (RTA)
plays an essential role in the switch between latency and
lytic reactivation. RTA can either bind to DNA directly or is
recruited to DNA via anchor proteins like CBF1/CSL and
activates transcription. In this study we used a novel cell
culture model to analyze the contribution of the CBF1/CSL
protein to the process of viral reactivation in human B
cells. Two isogenic CBF1/CSL proficient or deficient B cell
lines were latently infected with recombinant KSHV. Lytic
viral gene expression, viral replication and virus production
were compared. Our results suggest that viral lytic gene
expression is severely attenuated but not abolished at
multiple stages before and after the onset of lytic
replication while virus production is below detection
levels in CBF1/CSL deficient B cells.

KSHV Reactivation in Human B Cells
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We next analyzed if CBF1 proficient and deficient K-DG75 cell

lines exhibit similar rates of viral replication upon lytic reactivation

by TPA/NaB treatment. The rate of dead cells was determined for

treated and untreated cell populations by trypan blue exclusion

assays. The TPA/NaB treatment caused similar rates of dead cells

in both populations (Fig. S1A). Viable subpopulations were

defined by forward and sideward scatter signals (Fig. S1B) and

RFP+/GFP+ cells were separated from RFP2/GFP+ cells by cell

sorting. Equal numbers of sorted cells were compared for the

number of intracellular viral genomes. Viral copy numbers

increased in CBF1 proficient and deficient cells, but the increase

in CBF1 proficient cells was two fold stronger (Fig. 2C).

Since lytic viral replication was impaired in CBF1 deficient B

cells we investigated whether virus production was also attenuated.

K-DG75 B cells were treated with TPA and NaB for 4 days,

supernatants were harvested, concentrated 100-fold and used to

infect HEK293 cells. These HEK293 cells were cultured either in

the presence or absence of puromycin for 48 h and subsequently

analyzed for GFP expression by fluorescence microscopy (Fig. 2D).

In addition, cellular viability was monitored by flow cytometry

using forward and sideward scatter to visualize viable and dead

cell populations (Fig. 2E). GFP positive HEK293 cells were readily

detected after infection with K-DG75 wt cell supernatants. K-

DG75 CBF1 ko cells produced no or extremely low numbers of

virions that conferred GFP expression. As a second marker for

successful infection we tested whether the viral supernatants

conferred puromycin resistance (Fig. 2D and E). Indeed, HEK293

cells infected with viral supernatants harvested from K-DG75 wt

cells could be expanded in the presence of puromycin while

HEK293 cells infected with supernatants from K-DG75 CBF1 ko

cells lost their typical shape and their adherent phenotype and

subsequently died (Fig. 2E). These results suggest that supernatants

derived from CBF1 deficient K-DG75 cells contain no or only low

amounts of infectious virus. To further confirm this assumption,

extracellular viral genome copy numbers in K-DG75 wt and

CBF1 ko derived supernatants were quantified and compared to

virion DNA produced by BC-1. Virus production was induced

,165-fold upon chemical reactivation of K-DG75 wt cells,

Table 1. CBF1 regulated KSHV genes.

Genea Functionb References

Viral DNA replication

ORF6 ssDNA binding protein [8]

K8/K-bZIP Origin binding protein [52]

ORF57/MTA Post-transcriptional regulator of gene expression [53][8]

ORF70 Thymidylat-synthase [54]

ORF59 DNA replication processivity factor [41]

ORF61 Ribonucleotide reductase [52]

ORF21c Thymidine kinase [55]

Virus assembly

ORF8/gB Glycoprotein B [56]

ORF19 Tegumentprotein [54]

ORF47 Glycoprotein L [57] [54]

ORF65 Capsomer-interacting protein shown in this study

ORF29a Packaging protein shown in this study

Modulation of Immune response

K5/vMIR2c viral modulator of immune recognition [58]

K6/vMIP-I viral macrophage inflammatory protein-II [53]

K2/vIL-6 viral Interleukin-6 [58]

Cell cycle and apoptosis

LTi (latency transcript cluster)d ORF71/Flice inhibitory protein [59]

ORF72/cyclin-D homologue [59]

ORF73/Latency associated nuclear antigen [60]

K14/ORF74 (bicistronic Promoter)e K14/OX-2-Glycoprotein homologue [36]

ORF74/viral G-protein coupled receptor [36]

Lytic Transactivator

ORF50/RTA replication and transcription activator [9]

unknown

nut-1/PAN - [8]

aThese KSHV genes contain one or more functional CBF1 binding sites.
bGene functions are taken from Jenner and Boshoff (Jenner and Boshoff, 2002).
cThese genes contain functional CBF1 binding sites, but activation in response to RTA still needs to be addressed.
dThe latency transcript cluster encodes for the latent genes ORF71, ORF72 and ORF73.
eThe bicistronic K14/ORF74 transcript encodes for ORF74 and K14.
doi:10.1371/journal.ppat.1003336.t001

KSHV Reactivation in Human B Cells
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approximately 3-fold higher than in BC-1 cells. In contrast, virion

production by CBF1 deficient cells was barely detectable (Fig. 2F).

In summary, our data show that K-DG75 cells can produce

infectious virus. Genome replication was attenuated in CBF1

deficient K-DG75 cells and later processes required for morpho-

genesis of infectious virus were blocked.

Lytic viral gene expression is severely attenuated in CBF1
deficient KSHV infected B cells

In order to examine how the differences in viral reactivation

were reflected by alterations in viral gene expression patterns we

analyzed lytic viral gene expression in CBF1 proficient and

deficient K-DG75 cells before and 2, 4, 8, 16 or 32 h post

induction by NaB. The viral gene expression profile was analyzed

using a previously developed real-time RT-PCR array for KSHV

that represents 86 viral genes [27,28]. The results of this genome

wide analysis of viral reactivation in CBF1 proficient and deficient

K-DG75 cells are shown as heat map (Fig. 3). The genes were

arranged into groups of latent, early and late lytic genes as

reviewed [29]. Induction of lytic viral genes could be observed in

CBF1 proficient and deficient K-DG75 cells but was severely

attenuated and delayed in CBF1 deficient cells. The difference

between CBF1 proficient and deficient K-DG75 cells was most

pronounced 32 h post induction.

A selection of viral genes was retested by real-time RT-PCR

choosing primers distinct from those primers used for the array

Figure 1. CBF1 proficient and deficient human B cell lines infected with recombinant KSHV maintain the viral genome and express
viral latent genes when cultivated in selective media. DG75 wt and DG75 CBF1 ko cells were infected with recombinant rKSHV.219 virus at a
MOI of 5. (A) GFP expression of DG75 wt and DG75 CBF1 ko cells infected with rKSHV.219 was analyzed by flow cytometry 1, 2, 4, 6, and 12 weeks
post infection. Three independent experiments were performed and one representative experiment is shown. (B) rKSHV.219 infected DG75 wt (K-
DG75 wt) and DG75 CBF1 ko (K-DG75 CBF1 ko) cells were transferred to puromycin free medium and analyzed for GFP expression by flow cytometry
after 0, 1, 2, 4, 6, 8, and 10 weeks. Two independent experiments were performed and one representative experiment is shown. (C) Genomic DNA
from BCBL-1, BC-1 and two independently generated K-DG75 wt and K-DG75 CBF1 ko cell lines (designated a and b) was used to quantify intracellular
KSHV copy numbers by real-time PCR using primers specific for the ORF50 promoter and normalized to b-actin gene fragments. Results are presented
as mean values calculated from 2 independent experiments. (D) Transcript levels of ORF73/LANA and K10.5/vIRF3 were determined by real-time RT-
PCR analyses of DG75, BCBL-1, BC-1, K-DG75 wt and K-DG75 CBF1 ko cell lines. Results were normalized to b-actin transcript levels and are presented
as mean values calculated from 2 independent experiments.
doi:10.1371/journal.ppat.1003336.g001

KSHV Reactivation in Human B Cells
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Figure 2. CBF1 deficient KSHV infected B cells initiate lytic reactivation but fail to produce detectable levels of infectious virus. (A)
Six independent K-DG75 wt and K-DG75 CBF1 ko cell lines were treated with 3 mM NaB for 32 h and analyzed for GFP and RFP expression by flow
cytometry. (B) K-DG75 wt and K-DG75 CBF1 ko cells were treated with increasing amounts of NaB and TPA for 32 h and analyzed for GFP and RFP
expression. (A and B) Results are displayed as percentage of lytically reactivated cells as determined by RFP expression and are given as mean values
of 2 independent experiments. For the following experiments (C, D, E and F) K-DG75 wt and K-DG75 CBF1 ko cells were treated with 10 mM NaB and
20 ng/ml TPA. (C) RFP2/GFP+ and RFP+/GFP+ cells were separated by cell sorting 32 h post induction of the lytic cycle by TPA/NaB treatment.
Genomic DNA of both populations was analyzed for viral copy numbers by real-time PCR. The increase of viral copy numbers of lytically reactivated
RFP+/GFP+ cells compared to latent RFP2/GFP+ cells is shown. The results represent two independent experiments performed in duplicates. (D and E)
Four days post chemical induction the virus supernatants of two K-DG75 wt and K-DG75 CBF1 ko cells (designated a and b) were harvested,
concentrated and used to infect HEK293 cells. The HEK293 cells were cultivated in the absence or presence of puromycin for 48 h and analyzed for
GFP expression by fluorescence microscopy and flow cytometry. (D) Phase contrast and fluorescence microscopy images of untreated and viral
supernatant treated HEK293 cells. Numbers in the lower panels indicate the percentage of GFP positive HEK293 cells as determined by flow
cytometry. (E) Viability of infected HEK293 cells was measured by flow cytometry using forward and sideward scatter. Numbers indicate the average
percentage of living (black) and dead (red) cells as determined in 3 independent experiments. (F) Virion associated extracellular viral genome copy
numbers of concentrated cell culture supernatants obtained from non-induced or induced BC-1, K-DG75 wt and K-DG75 CBF1 ko cells were
determined by real-time PCR. Results are presented as mean values calculated from 2 independent experiments.
doi:10.1371/journal.ppat.1003336.g002

KSHV Reactivation in Human B Cells
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analysis (Fig. 4A). These results confirmed that all lytic genes

were induced in CBF1 proficient and deficient K-DG75 cells but

the degree of induction was different. Again the difference was

best seen at late time points, when viral replication had already

been initiated. The latent ORF73/LANA expression was not

changed dramatically by chemical induction. Latent K10.5/

vIRF3 was only induced in CBF1 proficient K-DG75 cells. As

already seen by the array analysis, CBF1 dependent gene

induction was not confined to a specific gene class. Thus,

CBF1 appears to be required at multiple stages during the

reactivation process.

Chemical induction of KSHV infected cells typically leads to

reactivation of only a subset of the cellular population. We thus

sorted RFP2/GFP+ latent and RFP+/GFP+ lytic populations and

tested them for induction of the immediate early gene ORF50/

RTA and the early lytic genes ORF57 and ORF59. As expected

the difference in gene expression between CBF1 proficient and

deficient K-DG75 cells was more pronounced if selected subsets

were analyzed (Fig. 4B).

In order to confirm our results we reintroduced a Flag-tagged

version of the CBF1 protein into K-DG75 CBF1 ko cell lines. The

expression construct, pRTS-2, we used carries a bidirectional

doxycycline responsive promoter [30]. Induction of the gene of

interest can be monitored by flow cytometry of a surrogate

marker, a truncated version of the NGF-receptor, on the cell

surface. Stable cell lines carrying the Flag-CBF1 expression

construct showed doxycycline dependent NGF-receptor and

Flag-CBF1 expression while cells carrying a control vector only

expressed the NGF-receptor (Fig. 5A and B).

Next the induction of a series of lytic viral genes (ORF50/RTA,

ORF57, ORF59, ORF65, ORF29a and ORF4) was tested in K-

DG75 CBF1 ko cells in which Flag-CBF1 was induced by

doxycycline. Two independent inducible cell lines were tested and

compared to two control cell lines. Induction of lytic viral genes

was restored by Flag-CBF1 and even exceeded the levels reached

in K-DG75 wt (Fig. 5C). This observation indicates that the

endogenous cellular CBF1 protein level is rate limiting for viral

reactivation in DG75 cells.

ORF50/RTA is the major transactivator of ORF57 and

ORF59. In addition, both, ORF57 and ORF59, are known to

enhance RTA functions. ORF57 is a multifunctional protein

which enhances splicing and translation efficiencies and supports

the export of intronless viral mRNA and stabilizes transcripts [31].

ORF59 is one of the DNA polymerase processivity factors which

are necessary for origin dependent viral replication [32]. Since

ORF50/RTA induction was diminished in CBF1 deficient cells

Figure 3. Genome-wide viral gene expression profiles of CBF1
proficient and deficient KSHV infected B cells. K-DG75 wt and K-
DG75 CBF1 ko cells were treated with 3 mM NaB for 0, 2, 4, 8, 16, or
32 hours. Total RNA was harvested, enriched for the poly-adenylated
fraction and transcribed into cDNA. Viral transcripts were quantified by
real-time PCR and normalized to b-actin [51]. Viral gene expression
patterns are shown as dCt values (Ct post lytic induction for individual
time span - Ct prior lytic induction) in a heat map presentation after
normalization to b-actin expression. Induction of viral genes results in
negative dCt values. Negative dCt values represent high expression
levels and are marked in red, intermediate expression levels are marked
in black and positive values represent low expression levels and are
marked in green. Vertical columns represent data obtained for serial
time points post chemical induction for CBF1 proficient and deficient K-
DG75 cells. Horizontal rows represent data for all tested KSHV genes.
The heat map is split according to their classification into latent (n = 5),
immediate early (n = 1), early (n = 40) and late (n = 35) genes and viral
genes which have not yet been classified (n = 5) as reviewed [29].
doi:10.1371/journal.ppat.1003336.g003

KSHV Reactivation in Human B Cells
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Figure 4. Confirmation of gene expression patterns for selected viral genes in CBF1 proficient and deficient K-DG75 cells. (A) The
expression levels of 21 selected KSHV genes which are active in the latent state or different phases of the lytic cycle (ORF73/LANA, K10.5/vIRF3 (latent,
LA), ORF50/RTA (immediate early, IE), ORF6, ORF8, ORF9, ORF57, ORF59, ORF74, K1, K2, K5, nut-1/PAN, K8, K10, K14 (early, E), ORF4, ORF29a, ORF65
(late, L), ORF37 and ORF62 (not classified, n.c.)) were determined by real-time RT-PCR analysis using primers distinct from the set of primers used for
the genome-wide PCR array. Results were normalized to cellular b-actin expression and presented as x-fold increase post induction by 3 mM NaB for
the indicated time periods. The results are shown as the mean values of 2 experiments performed with 2 independent cell lines. (B) K-DG75 wt and K-
DG75 CBF1 ko cells were treated with 3 mM NaB for 48 h and relative transcript levels for ORF50/RTA, ORF57 and ORF59 were determined by real-
time RT-PCR before and after treatment (left panels). A fraction of the chemically treated cells was separated into uninduced RFP2/GFP+ and induced
RFP+/GFP+ populations and again transcript levels were determined (right panels). Two independent experiments were performed and mean values
of duplicate PCR reactions of a representative experiment are shown.
doi:10.1371/journal.ppat.1003336.g004

KSHV Reactivation in Human B Cells
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this defect in RTA expression could already cause a severe

phenotype in CBF1 deficient DG75 cells. We hence wanted to ask

if ORF50/RTA expression might rescue the deficiency of the

CBF1 deficient K-DG75 cells. We thus expressed ORF50/RTA in

K-DG75 cells and induced the lytic cycle by NaB. ORF50/RTA

could strongly enhance ORF57 and ORF59 expression in NaB

treated CBF1 proficient cells but induction in the absence of CBF1

was weak (Fig. 6). These results suggest that the lack of induction

of ORF50 is not the only rate limiting factor for viral reactivation

in CBF1 deficient B cells.

ORF29a and ORF65 are novel CBF1 dependent target
genes of RTA

In summary, the analysis of viral gene expression profiles had

shown that the induction of lytic genes of all classes was not

blocked but attenuated in CBF1 deficient B cells. Viral genes that

had been previously defined as genes which need CBF1 to recruit

either RTA or Notch are listed in Table 1. In order to identify

additional CBF1 dependent viral target genes the promoters of 4

selected genes which carried at least one CBF1 binding site

predicted by using the MatInspector software of Genomatix were

analyzed. Since the transcriptional start site of these genes had not

been defined experimentally in the past a fragment of 1000 bp

upstream of the translational start site was tested as a putative

promoter. Transactivation of these putative promoter fragments

by ORF50/RTA was tested in transient reporter gene assays using

KSHV negative DG75 cells. For comparison the promoter of

ORF59, a well known CBF1 dependent target gene, was included

in the analysis. All promoters responded to ORF50/RTA even in

the absence of CBF1 in a dose dependent manner indicating that

there is no absolute requirement for CBF1 to recruit RTA to these

target genes and activate transcription. Promoter activation of

ORF59, ORF29a and ORF65 was significantly diminished in

CBF1 deficient DG75 cells while transactivation of the ORF9 and

ORF62 promoters was not impaired (Fig. 7A). By reintroducing

CBF1, transactivation of the ORF59, ORF29a and ORF65

promoters was strongly enhanced confirming that CBF1 is a rate

limiting factor for efficient activation of these promoters (Fig. 7B).

Since we wanted to prove that CBF1 is recruited to the promoters

of ORF29a and ORF65 we performed chromatin immunopre-

cipitations followed by real-time PCR for viral promoter fragments

(Fig. 7C). While CBF1 could be readily detected on the promoter

of its cellular target gene CD23 in KSHV positive and negative

DG75 wt cells, as expected CBF1 was seen on viral promoters in

KSHV infected DG75 wt cells only. In summary, these results

suggest that the promoters of ORF29a and ORF65 are directly

bound by CBF1.

Discussion

The CBF1 protein is a DNA binding factor which is highly

conserved in evolution. In mammals CBF1 is ubiquitously

expressed in all tissues. Thus, CBF1 provides a central hub in

every mammalian cell that is used by the cell to integrate

information transmitted by external and internal stimuli. The two

human c-herpesviruses, EBV and KSHV, use CBF1 as a DNA

adaptor for viral nuclear transcription factors to control the

activity of viral and cellular target genes. EBV requires the CBF1

protein to enter and maintain the latent life cycle. In contrast, lytic

infection and reactivation are CBF1 dependent processes in

KSHV infected cells [8,9]. RTA, the initiator of viral lytic

replication, can bind to DNA directly but also uses CBF1 as an

adaptor to regulatory elements of target genes. RTA expression is

controlled by CBF1 binding sites within the RTA promoter.

Thereby RTA initiates a positive feed back loop driving lytic

reactivation [33]. On the other hand, LANA expression is also

controlled by RTA via CBF1 dependent activation while LANA

represses RTA expression via binding to CBF1 at the RTA

promoter. However, subsequent studies using infective recombi-

nant KSHV which lacked CBF1 binding sites in the RTA

promoter demonstrated that these viruses had an enhanced

capacity to infect and establish latency in primary human B cells

in short term experiments [33]. In summary, CBF1 serves as the

mediator of a negative and positive feed back loop that balances

RTA and LANA expression and hence lytic and latent life cycle of

the infected cell [34,35]. Consequently, targeting CBF1 signaling

by antiviral drugs could be highly attractive if critical stages of the

virus life cycle relevant for pathogenesis could be efficiently

blocked.

The functional analysis of CBF1 dependent processes has been

hampered by the ubiquitous expression of CBF1 in human cells.

Thus, the first report which described the interaction of RTA with

CBF1 used CBF1 deficient fibroblasts derived from knock-out

mice to study the contribution of CBF1 to establishment of

latency, reactivation and lytic infection [9,36]. While establish-

ment of latency was not impaired in mouse fibroblasts reactivation

was blocked at the stage of delayed early gene expression. In

summary, our data confirm and extend the results of previous

studies. Unlike murine fibroblasts, KSHV infected CBF1 deficient

B cells can enter the lytic cycle with low efficiency but no specific

block before the onset of viral replication or late gene expression is

installed. Using the identical recombinant rKSHV.219 virus it has

been described most recently that viral reactivation is blocked at

multiple stages before viral DNA synthesis in CBF proficient

murine fibroblasts [37]. These multiple blocks attenuated the

induction of the lytic cascade in CBF1 deficient murine fibroblasts

in the previous study and most likely explain why reactivation in

human B cells can still be initiated.

The goal of our study was to identify CBF1 dependent processes

that are rate limiting for viral reactivation and production of

infectious viruses specifically in B cells. Both, CBF1 proficient and

CBF1 deficient KSHV infected DG75 B cell lines could be

established, carried similar numbers of intracellular viral genomes,

and expressed similar amounts of the latent marker genes ORF73/

LANA and K10.5/vIRF3.

During the first weeks post infection GFP expression was low

but detected readily by flow cytometry and increased during the

following weeks (Fig. 1). Since it was not relevant for the process of

viral reactivation we have not analyzed the switch from GFP low

to GFP high cultures in detail. At this point of our studies we do

not want to exclude that GFP was transferred passively by viral

particles and measured by flow cytometry early after infection.

Future studies should reveal whether GFP expression levels

changed during in vitro cell culture due to changes in viral genome

copy numbers or were caused by epigenetic modifications of the

viral chromatin. Since all KSHV infected DG75 cells were grown

in selective media the infection process as well as establishment of

the latent state in these cells may not reflect all features of the

infection process under physiological conditions. Thus, at present

the DG75 infection system cannot yet be used to study the

potential role of CBF1 during early phases of the establishment of

latency.

While CBF1 proficient and deficient B cell lines could induce

the RFP reporter gene controlled by the early lytic PAN promoter

of rKSHV.219, only CBF1 proficient DG75 B cells could produce

infectious virus. Virus produced from K-DG75 wt cells induced a

bright GFP signal but also conferred puromycin resistance to

infected HEK293 cells (Fig. 2). Reactivation of the lytic cycle was
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initiated in both cell lines. However, activation of lytic genes was

delayed in CBF1 deficient cells and did not reach the same

expression levels as the CBF1 proficient cells 32 h post induction.

Even 4 days after induction neither extracellular viral genomes nor

release of infectious virus was detectable. Transcription of CBF1

dependent genes (ORF50/RTA, ORF57, ORF59, ORF65,

ORF29a or ORF4) could be rescued or even enhanced by

conditional expression of CBF1.

Thus, we could formally prove that the phenotype of CBF1

deficient K-DG75 cells is truly caused by the lack of CBF1.

Ectopic expression of ORF50/RTA in K-DG75 CBF1 ko cells

induced ORF57 and ORF59 expression weakly but induction

rates never reached the levels obtained in K-DG75 wt cells. Thus,

ORF50/RTA induction in K-DG75 CBF1 ko cells is essential but

not the single rate limiting factor for reactivation. Our results

suggest that the attenuated lytic gene expression levels are caused

Figure 5. Ectopic expression of CBF1 rescues induction of lytic viral genes in K-DG75 CBF1 ko cells. K-DG75 CBF1 ko cells were stably
transfected with an expression vector for Flag-tagged CBF1 (tet-CBF1) under the control of a bidirectional promoter, which allows the simultaneous
expression of NGF-receptor (NGF-R) and Flag-CBF1, or transfected with a control vector (tet-ctrl). Stable cell lines were cultivated in the presence of
doxycycline or left untreated. Untransfected (2) K-DG75 wt and CBF1 ko cells are shown for comparison. (A) The expression of NGF-R was monitored
by flow cytometry. (B and C) The cells were treated with 3 mM NaB. (B) 30 mg of total cellular protein extract of K-DG75 wt or CBF1 ko cells or 10 mg of
protein extract of doxycycline induced K-DG75 CBF1 ko tet-CBF1 and tet-ctrl cells were analyzed by immunoblotting using CBF1, Flag or GAPDH
specific antibodies. (C) The transcript levels of ORF50/RTA, ORF57, ORF59, ORF29a, ORF65 and ORF4 were determined by real-time RT-PCR. Results are
shown as x-fold induction compared to values obtained from cells not treated with NaB. Results are given as mean values for data obtained from 2
independent experiments.
doi:10.1371/journal.ppat.1003336.g005
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by additive effects of genes that can only be weakly activated by

RTA in the absence of CBF1. While virus replication is still

detected in K-DG75 CBF1 ko cells at reduced levels, virion

production is entirely abolished. Interestingly, we could not

identify a single gene that is not activated in K-DG75 CBF1 ko

cells during reactivation and thus completely dependent on CBF1

for activation (Fig. 3). We conclude that the lack of CBF1 has

pleiotropic effects during the reactivation process caused by direct

and indirect effects triggered by ORF50/RTA or perhaps other

viral CBF1 binding proteins like ORF73/LANA or vIRF4

[38,39]. While LANA is an antagonist of RTA function, vIRF4

cooperates and enhances RTA activities [40]. Whether this

cooperation of vIRF4 and RTA is CBF1 dependent still needs

to be clarified.

As summarized in Table 1 there is a growing list of lytic viral

genes requiring CBF1 for activation. In search for additional viral

ORF50/RTA responsive and CBF1 dependent promoters, the

putative promoters of ORF29a, ORF65, ORF9 and ORF62 were

analyzed in reporter gene assays. The promoter of ORF59 was

studied in parallel since ORF59 is a well characterized target gene

of RTA (Fig. 7A). While activation of the endogenous ORF59

gene requires CBF1, ORF59 promoter activation is attenuated if

CBF1 binding sites are deleted but RTA DNA binding sites are

retained [9,41]. Our experiments confirm that the requirement for

CBF1 is much more pronounced if endogenous ORF59 gene

expression is studied. These results might suggest that the

chromatin state of the ORF59 gene has an important impact on

promoter responses to RTA. If so, this could be relevant for the

biology of the virus since the viral DNA in the infectious virus is

chromatin free and unmodified.

While activation of the endogenous transcripts of ORF9 and

ORF62 was CBF1 dependent, activation of the promoter reporter

constructs of these genes by RTA was CBF1 independent. For

ORF9 and ORF62 we cannot exclude that we have used

incomplete promoter fragments which recruit RTA directly but

do not carry the relevant CBF1 responsive elements. Perhaps these

CBF1 binding sites are located in remote enhancers as it has been

demonstrated recently for the CBF1 interaction partner Epstein-

Barr virus nuclear antigen 2 in the context of the cellular genome

[42]. Alternatively, the CBF1 dependent effects measured on

endogenous gene expression were chromatin dependent, post-

transcriptional, and caused by the attenuated lytic cascade in

CBF1 deficient cells.

In contrast, RTA activation of the promoters of ORF29a and

ORF65 was strongly impaired in the absence of CBF1 but could

be rescued by ectopic expression of CBF1. In addition, CBF1

binding to these promoters could be demonstrated. Thus,

ORF29a and ORF65 are RTA target genes which require direct

binding of CBF1 to promoter sites. Both are late viral genes which

are critical for viral morphogenesis and virus production.

For this study, we have developed a new cell culture model to

study KSHV reactivation in human B cells. The DG75 human B

cell line will be a versatile tool to study KSHV mutants in a

cellular background that permits to inactivate genes by gene

targeting. In the future individual KSHV loss of function mutants

can be tested and these experiments can be combined with specific

DG75 variants deficient for selected cellular proteins.

In summary, the results obtained with this novel B cell system

strongly suggest that CBF1 signaling in human B cells has

pleiotropic effects that coordinate and enhance the course of

Figure 6. Ectopic expression of ORF50 does not rescue ORF57 and ORF59 expression in CBF1 deficient K-DG75 B cells. 16107 K-DG75
wt or K-DG75 CBF1 ko cells were transiently transfected with increasing amounts of an ORF50/RTA expression construct (15, 30 and 60 mg), the
corresponding control vector (ctrl) or left non-transfected (2). 24 h post transfection cells were cultured with 3 mM NaB for 12 or 24 h. The transcript
levels for ORF50/RTA, ORF57 and ORF59 were determined by real-time RT-PCR. Results are shown as x-fold induction compared to values obtained
from non-transfected and uninduced cells. Three independent experiments were performed and mean values of duplicates of a representative
experiment are shown.
doi:10.1371/journal.ppat.1003336.g006
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KSHV lytic viral gene induction at multiple stages. As exemplified

by the two novel CBF1 dependent late genes ORF29a or ORF65

it appears that CBF1 is a global player, required at multiple stages

to coordinate the lytic cascade. If antivirals targeting CBF1

signaling could be established we would expect that KSHV

reactivation is severely impaired.

Materials and Methods

Cell lines and culture conditions
The cell lines BC-1 [1], BCBL-1 [22], HEK293 [43], DG75 wt

[44], and DG75 CBF1 ko (SM224.9) [19] have been described.

Routinely all cell lines were grown in RPMI 1640 supplemented

with 10% fetal calf serum (FCS), penicillin (100 U/ml), strepto-

mycin (100 mg/ml), and glutamine (4 mM) and maintained at

37uC in a 5% CO2 atmosphere. BC-1 and BCBL-1 were cultured

in media containing 20% FCS. K-DG75 wt a (BS532.2a) and b

(BS854.2b) and K-DG75 CBF1 ko a (BS532.1a) and b (BS648.1e)

were cultured in media containing 20% FCS and puromycin

(4 mg/ml). K-DG75 CBF1 ko tet-CBF1 a (BS1177.3) and b

(BS1177.7) or tet-ctrl a (BS1247.8) and b (BS1247.9) were cultured

in media containing 20% FCS, puromycin (4 mg/ml) and

hygromycin B (400 mg/ml). Vero cells containing rKSHV.219

were kindly provided by J. Vieira (University of Washington) [20]

and grown in DMEM supplemented with 10% FCS and 5 mg/ml

puromycin.

Plasmids
The Gateway compatible destination vectors pHACR3 [45] as

well as the CBF1 expression vector (AJ247) have been published

previously [19]. The vector pcDNA3.1-lacZ (Invitrogen) is

commercially available. The pENTRY construct encoding

ORF50/RTA has been published [46]. For expression in

mammalian cells ORF50/RTA was transferred into destination

vector pHACR3 by LR reaction (Invitrogen). A Triple-Flag-CBF1

ORF was cloned into pRTS-2 containing a hygromycin B

Figure 7. The late viral genes ORF29a and ORF65 are CBF1 dependent ORF50/RTA target genes. (A) 56106 KSHV negative DG75 wt or
CBF1 ko cells were cotransfected with increasing amounts (0.05, 0.1, 0.5 and 1 mg) of ORF50/RTA expression or control vectors (pHACR3) and 3 mg of
a luciferase promoter reporter construct containing a fragment of 1000 bp upstream of the translational initiation codon of the KSHV genes ORF59-p,
ORF9-p, ORF29a-p, ORF62-p and ORF65-p. (B) KSHV negative DG75 CBF1 ko cells were cotransfected with 0.1 mg of a ORF50/RTA expression vector,
5 mg of a CBF1 expression vector or a control vector (pHACR3) and 3 mg of the ORF59, ORF29a-p and ORF65-p luciferase promoter reporter
constructs. The ORF29a-p promoter constructs were cotransfected with 0.5 mg of the ORF50/RTA. The results in (A) and (B) represent means 6
standard deviations derived from two independent experiments performed in triplicates. They are shown as x-fold induction compared to promoter
activation by control vector and normalized to ß-galactosidase activity. The significance of changes of the promoter activities in the absence of CBF1
was calculated by student’s t test (*p = 0.05–0.01, **p,0.01 or ***p,0.005). (C) Chromatin immunoprecipitation with CBF1 specific antibodies was
performed to analyze CBF1 binding to promoters of the cellular CD23 gene, a well characterized CBF1 target, and the viral ORF29a and ORF65
promoters. As control, chromatin of KSHV negative DG75 cells was included. Co-immunopreciptiated DNA fragments were subsequently quantified
by real-time PCR. Enrichment of CBF1 on specific genomic regions was calculated as percentage of the immunoprecipitated DNA compared to input
DNA after subtraction of the isotype control signal and normalization to actin. The data represent the mean value of 3 independent experiments.
doi:10.1371/journal.ppat.1003336.g007
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resistance cassette and a bidirectional doxycycline (Dox)-regulated

promoter which drives the simultaneous expression of a truncated

NGF-receptor and Flag-CBF1 after addition of Dox [30]. In order

to generate KSHV promoter constructs (ORF59-p, ORF9-p,

ORF29a-p, ORF62-p and ORF65-p) fragments of 1000 bp

upstream of the translational initiation codon of the KSHV genes

were amplified by PCR using genomic DNA isolated from BC-1

cells as template and specific primers containing restriction sites.

The PCR products were ligated into a luciferase reporter plasmid

carrying a minimal silent promoter (Ga50-7). Primers used for

cloning are listed in supplementary Table S1. The prediction of

potential CBF1 binding sites in these KSHV promoter fragments

was done by using the MatInspector software provided by

Genomatix (matrices V$RBPJK.01 (cgTGGGaa) and

V$RBPJK.02 (gTGGGaaa), core similarity 1.0 and matrix

similarity .0.8). The position of the promoter fragments and

the potential CBF1 binding sites in the viral genome are listed in

supplementary Table S2.

Induction of the lytic cycle, preparation and
quantification of rKSHV.219 supernatant

For lytic cycle reactivation cells were treated with sodium butyrate

(NaB) and/or 12-O-Tetradecanoylphorbol-13-acetate (TPA) as

indicated. 1.56105 cells per ml were induced. Virus was harvested

as described before [47]. Briefly, 4 days post induction cells were

pelleted and the supernatant was filtered through a 0.45 mm pore-size

filter. The virus was concentrated and washed twice in RPMI 1640

media without supplements by ultracentrifugation at 25,000 rpm in a

Beckman SW28 rotor for 3 hours. Finally, the virus pellet was

resuspended in 1/100 volume of the initial volume in cell culture

medium. To determine the number of infectious virus HEK293 cells

were infected with serial dilutions of the viral supernatants and the

number of GFP positive cells was counted [20].

Infection of DG75 wt or CBF1 ko cells with rKSHV.219 and
puromycin selection

26105 DG75 wt or CBF1 ko cells per ml were seeded in a

volume of 100 ml in a 96-well plate. The following day cells were

infected with virus supernatant of Vero-rKSHV.219 cells with a

multiplicity of infection (MOI) of factor 5. The culture plate was

centrifuged at 300 g for 40 min at 32uC. One day post infection

medium was replaced. 7 days post infection selection for

rKSHV.219 positive cells was started by adding puromycin

(1 mg/ml). Every 7 days half of the culture medium was replaced

with medium supplemented with an increasing concentration of

puromycin up to 4 mg/ml. Stable GFP positive cell lines were

designated K-DG75 wt a (BS532.2a) and b (BS854.2b) or K-

DG75 CBF1 ko a (BS532.1a) and b (BS648.1e).

Dox-inducible Flag-CBF1 expression in K-DG75 CBF1 ko
cells

K-DG75 CBF1 ko cells were transfected with the Triple-Flag-

CBF1 pRTS-2 vector or a Triple-Flag control pRTS-2 vector by

electroporation. Cells were selected in the presence of hygromycin

B (400 mg/ml) and puromycin (4 mg/ml). Stable cell lines were

designated K-DG75 CBF1 ko tet-CBF1 a (BS1177.3) and b

(BS1177.7) or tet-ctrl a (BS1247.8) and b (BS1247.9).

Immunofluorescence microscopy
Digital images were acquired using the Openlab acquisition

software (Improvision) and a microscope (Axiovert 200 m, Carl

Zeiss MicroImaging, Inc.) connected to a 5 charge-coupled device

camera (ORCA-479, Hamamatsu).

Flow cytometry and cell sorting
Infection of DG75 wt or CBF1 ko cells by rKSHV.219 or of

HEK293 cells was monitored by GFP expression. NGF-receptor

expression of K-DG75 CBF1 ko tet-CBF1 or tet-ctrl cells after

Dox treatment was analyzed using a primary a-NGF-receptor

antibody (HB8737-1, ATCC) or an isotype control and a Cy5-

coupled secondary antibody (Dianova). Fluorescence of cells was

detected and analyzed using a FACSCalibur system and CellQuest

Pro software (BD Bioscience). To determine the percentage of

lytically induced RFP+/GFP+ K-DG75 cells or to separate RFP2/

GFP+ and RFP+/GFP+ K-DG75 cells, cells were sorted and

analyzed using FACSAria III cell sorter (BD Bioscience) and

FlowJo software (version 7.6.4).

Isolation and quantification of intracellular and
extracellular KSHV genomes

For determination of intracellular KSHV DNA copy numbers

16106 cells were harvested, washed in PBS, resuspended in

solution A (10 mM Tris-HCl, pH 8.3, 100 mM KCl, 2.5 mM

MgCl2) and lyzed in solution B (10 mM Tris-HCl, pH 8.3,

2.5 mM MgCl2, 1% Tween 20, 1% NP-40) supplemented with

RNase A (0.2 mg/ml) and Proteinase K (1.5 mg/ml) and incubated

for 30 min at 37uC and subsequently for 60 min at 50uC. DNA

was purified by phenol-chloroform extraction. Extracellular

virion-associated KSHV genomes in culture supernatants of

lytically induced cells were isolated as described [48]. Intracellular

and extracellular viral DNA was analyzed by real-time PCR as

described below. For quantification a standard curve with defined

numbers of PCR fragments of the KSHV genome corresponding

to the ORF50 promoter region and b-actin was generated and

analyzed in parallel. The intracellular KSHV copy number per

cell was determined after normalization to b-actin. Primers used

for real-time PCR are listed in supplementary Table S3.

Analysis of viral gene expression by a KSHV real-time PCR
Array

K-DG75 wt or CBF1 ko cells were lytically induced with 3 mM

NaB for 0, 2, 4, 8, 16 or 32 hours. RNA of was extracted, mRNA

was enriched and cDNA was synthesized by reverse transcription

as described [27]. The KSHV real-time PCR Array was

performed in collaboration with D. Dittmer (Lineberger Compre-

hensive Cancer Center, Chapel Hill) as described previously [27].

dCt values of each primer pair of 86 KSHV genes were

normalized to b-actin. Heat map representation of the viral gene

expression profile was generated using the software Genesis [49].

Relative quantification of viral transcripts by real-time RT-
PCR

RNA of 56106 cells was extracted, treated with DNase and

cDNA was synthesized using the High Capacity cDNA Reverse

Transcription Kit (Applied Biosystems) according to the manu-

facturer’s protocol. Relative quantification of the transcripts by

real-time PCR was performed with the LightCycler 480 II system

and the data were processed by LightCycler 480 software, version

1.5.0.39 (Roche). cDNA was amplified using the LightCycler 480

SYBR Green I Master mix according to the manufacturer’s

protocol (Roche). Cycling conditions were 1 cycle of 95uC for

10 min and 45 cycles of denaturation (95uC for 2 s), annealing

(63uC for 10 s), and extension (72uC for 20 s). All PCR products
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were examined by melting curve analysis and the expected PCR

fragment size was verified by agarose gel electrophoresis. To

account for differences in reaction efficiencies, a standard curve

was generated for each primer pair by using the serial dilutions of

PCR products as templates for amplification and plotting the

crossing points versus the known dilutions. All data were

normalized to the relative abundance of the b-actin transcript.

Primers used for real-time RT-PCR are listed in supplementary

Table S3.

Transfection of cells and reporter gene assays
16107 DG75 wt or CBF1 ko cells were transfected with the

indicated plasmid DNA by electroporation (220 V, 950 mF) using

a gene Pulser II (Bio-Rad). Luciferase reporter gene assays were

performed as described previously [39]. Briefly, cells were

transfected with 3 mg luciferase reporter construct, 1 mg

pcDNA3.1-lacZ and the indicated expression plasmid. The

DNA amounts were adjusted by adding the corresponding empty

vector. Cells were harvested 48 h after transfection and luciferase

and b-galactosidase activity was measured. Transfections were

done in triplicates and results were normalized to ß-galactosidase

activity derived from the reporter construct pcDNA3.1-LacZ

included in each sample.

Western blot analysis
Western blot analysis was performed as described [19]. The a-

CBF1 rat monoclonal antibody RBP-7A11 (produced in collab-

oration with E. Kremmer, Helmholtz Center Munich) has been

published [19]. The a-Flag (Sigma-Aldrich) and a-GAPDH

(Millipore) antibodies were purchased. .

Chromatin immunoprecipitation (ChIP) analysis
ChIP analysis was performed as described [50] with minor

modifications using a mixture of hybridoma supernatant of the a-

CBF1 rat monoclonal antibodies RBJ-1F1 and RBJ-6E7 (see

supplementary text and Table S4 for details).

Supporting Information

Figure S1 Cell death rates of NaB/TPA treated CBF1 proficient

and deficient K-DG75 cells. K-DG75 wt and K-DG75 CBF1 ko

cells were treated with increasing concentrations of NaB/TPA for

32 h. (A) Dead cells were identified by trypan blue staining and

counted. The results are given as the mean percentage of dead

cells from two independent experiments analyzed in triplicates. (B)

Forward/sideward scattering of treated and untreated cells was

monitored by FACS analysis. The gates indicate the homogenous

and viable cell populations that were used for isolating RFP+/

GFP+ cells for the experiments described in Figure 2.

(TIF)

Text S1 Chromatin immunoprecipitation (ChIP) analysis.

(DOC)

Table S1 Primers used for generation of luciferase reporter gene

constructs.

(DOC)

Table S2 Localization of the KSHV promoter fragments and

the predicted CBF1 binding sites corresponding to the BC-1

genome (PEL, NCBI accession no. NC_U75698).
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Table S3 Primers used for real-time RT-PCR and quantifica-

tion of KSHV copy numbers.

(DOC)

Table S4 Primers used for real-time PCR of ChIP DNA.
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