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Abstract
We apply adversarial domain adaptation in unsupervised setting to reduce sample bias in a
supervised high energy physics events classifier training. We make use of a neural network
containing event and domain classifier with a gradient reversal layer to simultaneously enable
signal versus background events classification on the one hand, while on the other hand
minimizing the difference in response of the network to background samples originating from
different Monte Carlo models via adversarial domain classification loss. We show the successful
bias removal on the example of simulated events at the Large Hadron Collider with t̄tH signal
versus t̄tbb̄ background classification and discuss implications and limitations of the method.

1. Introduction

Many measurements and searches for new phenomena performed by the experiments at the Large Hadron
Collider (LHC) use a classification algorithm, such as Boosted Decision Trees or Neural Networks, to
discriminate the physics process of interest (signal) from other physics processes with similar signature
(background). The algorithms are optimized using supervised training on detailed Monte Carlo (MC)
simulation data sets, containing samples labeled as signal or background. The resulting classifier is applied to
unlabeled data to separate signal and background, and to measure the statistical significance of the signal or
its strength, assuming that the simulated and the real data sets are identically distributed.

However, significant differences between domains of real and simulated data sets always exist and the
learner may pick up those domain-specific discriminating features that perform well on classification task in
one domain while being not suitable for classification in the other, introducing a bias via the source samples
used for training when attempting to classify samples from target domain. This problem is similar to that of
visual recognition where, for instance, training may be performed on artificially generated images, the source
domain, and applied to real photographs, the target domain. In order to avoid training a model that is
suitable for classification on the source domain only, while failing when employed on target domain,
algorithms of domain adaptation have been developed.

In this paper we apply the method of domain adaptation to a problem of classification on high energy
physics data using a Domain Adversarial Neural Network [1] to classify events in the search for the
t̄tH(H→ bb̄) process at the LHC, which is very rare and hard to separate from the abundant t̄t+ jets
background [2]. In the cited measurement work, a classifier is trained on labeled MC predictions to separate
signal from background. The trained classifier is applied on MC where signal and background events are
mixed according to the theoretical predicted fraction, and on data to obtain binned distributions of classifier
output. The ratio of the resulting spectra is used in a profile likelihood fit to measure the signal ratio in data.
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The effect on the final result caused by the bias for the specific MC background model of the source domain
used for training is estimated using an alternative simulation of a target domain, based on a different physics
model, which was not used for training. The difference between the classifier outputs of the different
background MCs is taken as uncertainty on the classification in the fit. This uncertainty happens to be the
largest on the measurement, hampering the observation of the searched process. Therefore a solution to
minimize this sample bias is of high importance. For the study presented here, the two background
simulations correspond to the different domains. The domain adaptation is applied to reduce mentioned
training bias.

The network structure consists of a common feature extractor part and separate branches for label
classification and domain adaptation, implemented via a gradient reversal layer as presented in [1]. This
network structure differs from other adversarial approaches by including domain adaptation in the learning
process via the shared feature extractor part used by both label and domain classifier as proposed on
theoretical grounds in [3]. This way, the network model is pushed to extract discriminant features for the
classification that are at the same time invariant to the different domains. The use case presented here differs
from [1] as we provide a set of physical jet properties instead of images as input and the use of a bigger and
more complex data set. Additionally, we make detailed performance analyses, evaluating the influence of
several hyper-parameters and also exploring training issues that appear for this kind of architecture.

Adversarial classifiers without domain adaptation were used in high energy physics before, e.g. to reduce
theoretical uncertainties [4], to decorrelate a jet tagger from the jet mass [5] and to tune a classifier against a
nuisance parameter [6]. An adversarial set-up involving domain adaptation without labels has been used for
multi-class classification in a search for long lived particles [7]. In this paper, we systematically study the
algorithm taking advantage of the two domains being labeled to control the results achieved without use of
labels. We address the challenges for learning algorithms in domain adaptation, the dependence of the
hyper-parameters specific to domain adaptation and potential bias of the classifier. Furthermore, since the
use of domain adaptation without labels for multi-modal distributions can be a problem as pointed out in
e.g. [8], we chose to use the domain adaptation algorithm for binary classification and proof its applicability
for this use case in contrast to the multi-class application mentioned above.

In this paper we describe the network used in section 2, followed by the details of the data sets used in
section 3. We systematically study the dependence on hyper parameters in section 4, including some issues
observed during the training. In section 5, we expose the performance through different figure of merits
related to physics searches and we include a feasibility study for a potential use with real unlabeled data.
Finally, a summary and some conclusions are given in section 6.

2. The deep adversarial neural network

We follow the architecture presented in [1] with a feed-forward neural network composed of three parts as
shown in figure 1: a feature extractor which splits into the label predictor, performing the signal-background
classification, and the domain classifier. Domain adaptation is enabled via an adversarial interplay between
domain classifier and feature extractor. For training and testing we have two data sets (domains): source and
target, both containing signal and background events. The target domain is constructed as a representative
pseudo-data, meaning that it is treated as unlabeled and it has a signal to background proportion similar to
the one expected in a real data sample. For measuring our algorithm performance we make use of the target
labels in the final test.

For the label classification we train the network only using events from the source domain. The gate layer
stops the target events propagation making the label predictor loss being evaluated only on the source events.
This allows training the network on mixed samples of both domains. The classification is adapted to the
target domain by connecting the feature extractor with the domain classifier through a gradient reversal layer.
This layer does nothing during the forward propagation but inverts the sign of the gradients flowing from
domain classifier during the backpropagation. The domain classifier is trained to determine which domain
the events belong to. Due to the gradient reversal, the feature extractor is pushed to form such feature
representation that do not allow to distinguish between two different domains, thus avoiding the sample bias.
As a result of such adversarial training, the features in the last layer of the feature extractor will both allow the
classification between signal and background and become domain invariant, rendering classification model
domain-independent. The gradients of the reversal layer are scaled by the parameter λ allowing to regularize
their influence and hence tune the importance of the label classification versus the domain invariance.

In order to have balanced classes for each classification the event weights of the source domain are scaled
as required according to class ratios. For the label predictor the weights are such that the effective number of
signal and background events are the same. For the domain classifier, the weights are scaled to match the
signal to background ratio existing in the target domain.
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Figure 1. Domain-adversarial network as an alternative to reduce classification bias. Reproduced from [1]. CC BY 4.0.

3. Data sets

The feature selection for the input of the network was inspired by the analysis presented in [2] to separate t̄tH
from the t̄t+ bb̄ background. In total 41 geometrical and kinematic quantities are used as input to the
network, such as the angular distance between different jets and/or leptons, the mass of various jet and
lepton systems and the event topology. The complete list of features, their correlations and the relative
importance are given in [9].

We use MC samples provided by the HepSim Group [10]. The ttH signal sample containing 13× 106

events was generated with MadGraph [11] matched to the Herwig6 parton shower [12]. Two background
samples were generated, significantly differing in the theoretical predictions. One, used for the source
domain, with 2× 106 events of top quark pair production with additional light quarks using MadGraph
matched to the Herwig6 merged with 107 top quark pair events with additional bottom-quarks using
MadGraph matched to Pythia6 [13]. The other background sample, which is used for the target domain,
contains 3× 107 events of top quark pair production in association with bottom quark pairs, generated with
the PowhegBox+OpenLoops [14] and is matched to Pythia8 for the full event generation including the
prediction of additional light quarks.

The ATLAS detector response was simulated using Delphes simulation [15]. For this study, reconstructed
leptons, jets and bottom6 quark initiated jets (called b-jets in the following) are used. Jets are reconstructed
using the anti-kT algorithm [16] with a radius of R= 0.4. The identification efficiency of b-jets was taken
from [17], assuming the reconstructed b-jets to have a 70% tagging probability with a corresponding light
jet/c-jet rejection probability parameterization.

Events selected for the neural network training were required to fulfil the following criteria:

• one electron or muon with transverse momentum pT ⩾ 20 GeV
• at least five jets with pT ⩾ 25 GeV
• at least three b-jets.

With this selection applied the source and target data sets where constructed with 546× 103 signal each
and same amount of background events, using statistically independent events from the same simulation as
signal but different background simulations for source and target. One half from each data set was left for
testing purposes, the remaining were used for training. For the target domain only 14 368 signal events were
randomly selected for training, to match the 5:95 ratio of signal to background estimated in real data.

4. Network set-up and training

The network was implemented using the Keras v2.2.4 [18] with TensorFlow v1.12 [19] as back-end library.
The training set-up is described in section 4.1. A hyper-parameter scan was done to optimize the

6 bottom stands for bottom and anti-bottom quarks.
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performance of the network, as described in section 4.2. Some special considerations for the loss function
and its optimization are described in sections 4.3 and 4.4, respectively.

4.1. Training set-up
The initial weights of the network were set by the Xavier initializer, as suggested in [20]. The number of
training epochs was dynamically selected with the following condition applied: the training were stopped if
the running average over 50 epochs in the total loss does not decrease more than 0.05% with respect to the
previous 50 epochs. This number was restricted to the interval [200, 1000]. The lower limit was set to skip
some random fluctuations at the beginning. The upper limit is just a big value that was never reached with
the specified condition. After the training was stopped the weights of the network in the epoch with the
lowest label predictor loss were selected. A batch size of 16 384 was used. Each batch was composed by source
and target events in a 1:1 proportion. The events were randomly shuffled at each epoch, resulting in a
different batch selection each time. The domain classifier and label predictor outputs were set to have two
neurons each, using softmax activation function and cross-entropy loss in both (section 4.3 describes an
alternative). The RMSProp Keras optimizer was used, with the parameters: learning_rate= 0.001 and
rho= 0.9.

4.2. Hyper-parameter optimization
The hyper-parameters of the network were chosen with the help of the Hyperopt library [21], using the Tree
of Parzen Estimators algorithm implemented on it. The number of layers in each part of the network was let
vary from 1 to 8. Each layer could have a number of neurons between 5 and 100, but having a linear behavior
in each part of the network (either decreasing or increasing). For the activation function of the hidden layers
ReLU, tanh and ELU were tested. Each of this hyper-parameters were sampled from a uniform distribution.
Additionally, the λ parameter was sampled from a log-uniform distribution in the range [1, 1000], with this
giving more priority to low values as these were found to give better results.

The additive inverse of the label label predictor area under the receiver operating characteristic curve for
the target domain was used as the loss to minimize. Three independent optimizations where performed in
parallel in order to have a better view of the hyper-parameter space. This also helps to detect if the global
minimum of the loss is found. Approximately 1000 iterations where performed in each case.

By analyzing the sets of parameters with good performance and the decisions made by the sampling
algorithm, we were able to draw the following conclusions:

• The optimal number of layers in the label predictor is one: only the output layer. Two is also good in cases of
a very complex feature extractor.

• Higher complexity in the feature extractor provides performance improvement but also makes the network
more prone to over-training.

• The number of neurons in the last layer of the feature extractor should be at most the same that in the
input. We think this number is also related to the correlations in the input features: a smaller number for
high correlations could provide a better optimized feature extraction.

• An increase in the domain classifier complexity does not cause significant improvements, but it needs at
least a similar complexity than the feature extractor in order to provide good corrections.

• The performance with ELU and tanh as activation function for the hidden layers was very similar. ReLU was
significantly worse.

Finally the feature extractor was chosen to have four layers with 20, 16, 13 and 10 neurons respectively, the
label predictor with only the output layer (2 neurons) and the domain classifier with four layers of 20, 35, 50
and 2 neurons respectively. The ELU activation function was used in all the hidden layers.

Note that due to the non-deterministic nature of the training process, results during the optimization
were sometimes not representative of the behavior for each set of hyper-parameters tested. Set-ups with
higher performance were found, but its results were not reproduced in further tests. Therefore, we chose a
configuration with stable results instead of the best one reported by the optimization process. It also had the
advantage of being not complex enough to be affected by over-training.

4.3. Loss and activation functions for the outputs
The total loss of the network (L) is given by the sum of the individual losses of the label predictor (Ly) and
domain classifier (Ld):

L= Ly + Ld. (1)
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The gradient reversal layer affect the backpropagation in such a way that the gradients of the total loss with
respect to the feature extractor weights (θf ) are computed as:

∂L

∂θf
=

∂Ly
∂θf

−λ
∂Ld
∂θf

. (2)

Two alternatives were used for computing the loss: set-up A with a softmax activation and cross-entropy
loss in both outputs, and set-up B with softmax and cross-entropy loss in the label predictor, and linear loss
in the domain classifier.

The cross-entropy loss for a single event Ei is given by:

Li =

{
− ln(yi) if Ei ∈ class 1

− ln(1− yi) if Ei ∈ class 0
(3)

where yi represents the network output for that event. Note that even though we have a two-neuron output
we refer to yi as a single value since the second neuron behaves as 1 minus the first. Class 0 corresponds to
background and class 1 to signal for the label predictor. A perfect classification yields a loss of 0, value toward
which the loss is optimized.

Set-up A also uses this loss for the domain classifier, with yi in equation (3) corresponding to the domain
classifier output and classes 0 and 1 corresponding to target and source domains respectively. In this case,
perfect separation also results in a loss of 0 but a separation between the domains is not intended. Instead,
the network response should be the same for both classes of events which is provided as an additional
restriction via the gradient reversal layer. The domain classifier loss is minimized but, under this restriction,
the lowest achievable loss is when the response for both classes, i.e. source and target, is yi = 0.5, resulting in
a loss of− ln0.5≈ 0.693. This behavior is visible in figure 2(b), where the predicted loss of 0.693 is reached
in the first epochs and kept most of the training. It should be noted that this poses an extra requirement on
the feature extractor, which besides providing domain independent features, is also optimized to provide
features for which the domain classifier output are exactly 0.5 for all events.

We found that deviations in the output of the domain classifier from the optimal value of yi = 0.5 had
severe influences on the classification in general. Analyzing at a lower level we found that these changes were
driven by huge gradients back-propagated from the domain classifier loss, further amplified by λ as λ> 1 was
used. To avoid the change in the gradients under yi deviations we tested a set-up where the derivatives of the
domain classifier loss were independent of the yi values. To achieve this behavior, we removed the activation
function from the domain classifier output and changed the loss to a linear function, computed for a single
event (Ei) as:

Li =

{
−yi if Ei ∈ source

yi if Ei ∈ target.
(4)

This new set-up has also the advantage that yi is not limited to 0.5 in the optimized case, since now, if the
condition of no domain separation is met, this loss has a value of 0 for any value of the domain classifier
output so the feature extractor has more freedom during the optimization.

4.4. Training of the neural network
The ADAM optimizer [22], being commonly used nowadays, was used as starting point. ADAM is an
extension of RMSProp with SGDMomentum i.e. adding momentum terms defined as decaying average of
the past gradients. The momentum terms should help to faster escape from highly sub-optimal loss regions.
However, when we used the default values of the momentum term (µ= 0.9) we noticed severe oscillations of
the label predictor loss, as shown in figure 2(a). These oscillations seem to be caused by fluctuations in the
domain classifier loss part on which the label predictor has then to react in the common effort to minimize
the global loss. We switched to RMSProp, which does not use a momentum term, resulting in a more stable
loss course during the training. We therefore did not attempt to further use ADAM.

Beside those small fluctuation described above, infrequent large spikes where found. One of them is
shown in figure 2(b), where Ly minimizes smoothly for over 300 epochs but suddenly Ly raise to huge values
together with Ld. Running 3000 independent trainings we found that these spikes appear in around a 0.7% of
the cases for set-up A and 1.6% for set-up B.

Performing analyses we found that changing the weights of the network to the ones used ten epochs
before makes the spikes vanish. This indicates that the cause of the spikes involves initial random fluctuation
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Figure 2. Examples of fluctuations observed during training of the network using set-up A. (a) Training and validation loss for the
label predictor using the ADAM and RMSprop optimizers. (b) Big spikes of the label predictor and domain classifier losses (case
with λ= 20).

Figure 3. Label predictor loss in 20 different trainings starting from different random seeds for (a) set-up A with λ= 20 and (b)
set-up B with λ= 10−5. For better visibility, the y-axis is limited to 0.66 cutting off high fluctuations. Note that set-up B reaches
better label predictor loss.

related to the adversarial training with the gradient reversal layer. Backing up this assumption, we also found
that the frequency of these spikes increases by increasing the value of λ.

Furthermore, comparing set-ups A and B, we found in A stronger dependence of the learning curves on
the randomization (initial weights, data shuffling, etc), which is demonstrated in figure 3. The learning
curves for set-up B agree better indicating a more stable training. They also converge faster. The stopping
criterion is reached in set-up A after around 600 epochs but after about 400 epochs in set-up B.

4.5. Tuning impact of the adversarial domain classification
The parameter λ controls the influence of the label predictor and domain classifier responses on the total
loss. It determines how much the responses to source and target data input produced by feature extractor
should agree. High λ values forces a strong agreement but may impair the ability of the feature extractor to
provide useful features for the classification, low values give more freedom for the feature representation
density distribution but might not be enough for obtaining a good agreement between the domains and thus
introduce a bias for source domain samples. To give an example, figure 4 shows the discriminant output for
the set-up A for values of λ between 0 and 20. A large difference between source and target domain feature
extractor response density can be observed for λ= 0, while with increasing values of λ the influence of the
domain classifier on the density alignment and consequently also on label prediction increases and finally a
very strong agreement between feature extractor responses to both background samples is reached at the
highest value of λ, while label predictor performance deteriorates. The optimal lambda value is specific to the
problem and the performance measure applied as will be discussed in the following.
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Figure 4. Label predictor response to signal (blue) and background (orange) for different values of λ. The label predictor is
trained on the source domain and applied to a statistically independent part of the source domain (lines) and the target domain
(area). Each of the distribution is normalized to 1. (a) λ= 0. (b) λ= 0.58. (c) λ= 1.5. (d) λ= 20. Discussion see text.

5. Results

The performance of the network depends on the relative importance of the adversarial branch containing
domain classifier steered by the parameter λ. As for any hyper-parameter, the values of λ are specific to the
network architecture and data sets used and need to be determined for each particular use case. We consider
three measures of performance, demonstrating the bias without the adversarial treatment and their
improvement when the adversarial branch is included.

First we report AUC which is a common performance measure for binary classifiers. Since a good value
for λ was still not selected we made a scan over a range of possible values (figure 5). We extend it with the
Kolmogorov–Smirnov distance as a measure of agreement between the response of the two domains. This
distance is given by the maximum absolute difference between the cumulative distributions of the
normalized label predictor response for the two domains. The best choice of λ is the value for which the
maximum source domain AUC is achieved among those with the lowest Kolmogorov–Smirnov distance.
This criterion for the optimal λ has the advantage that it can be computed without using the target labels, i.e.
using labeled source and unlabeled target data. To demonstrate that the criterion for λ selection leads to
desired behavior on target data, we compute the AUC for the target domain, as in our study target labels were
provided by the simulation. As depicted in figure 5, the closest match between source and target domain
and highest AUC performance is achieved when using lambda values obtained from the criterion
procedure.

With λ= 0, corresponding to absence of adversarial network, an AUC on the target domain of 0.657 is
achieved. This value is improved to 0.756 using λ= 20 for set-up A, and 0.760 using λ= 10−5 for set-up B.
This improvements have the cost of reducing the AUC obtained for the source domain from 0.776 in the no
adversarial case, to 0.757 and 0.760 for set-ups A and B respectively with the selected λ values. Increasing λ
above those values only decreases the performance, but in the case of set-up B a plateau exist such that taking
λ values up to 100 times the selected one keeps the same performance.
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Figure 5. Performance measured as the area under the ROC curve (AUC) for several values of λ. The difference between the
response for source and target is measured as the Kolmogorov–Smirnov distance. (a) set-up A, (b) set-up B. Each point represent
the average over ~200 independent training processes (with different random numbers). The error bars represent the 15.8 and
84.2 percentiles, corresponding to±1σ in a normal distributed variable.

Figure 6. Approximate median significance (in units of standard deviations) as a function of λ, computed for 50 000 events
consisting of 5% signal and 95% background. (a) set-up A, (b) set-up B. Each point represent the average over ~200 independent
trainings and the error bars represent the 15.8 and 84.2 percentiles.

To further approximate the significance as reported in Higgs discovery searches as performance measure,
we use the approximate median significance (AMS) as proposed in [23]. This definition corresponds to a test
of the signal discovery versus background only hypothesis by taking systematic uncertainties into account. It
is calculated as:

AMS=

√∑
i

{
2

[
(si + bi) ln

si + bi
b0i

− si − bi + b0i

]
+

(bi − b0i)2

σ2
bi

}
(5a)

b0i =
1

2

(
bi −σ2

bi +
√
(bi −σ2

bi)
2+ 4(si + bi)σ2

bi

)
(5b)

where the sum is over the bins in the histogram of the response, si and bi represents the signal and
background counts in the bin i for the source domain and σ2

bi
= 1

2 (bi − b alt.
i )2+(0.1 bi)2 is an estimator of

the variance on the background counts. The variance is computed from the difference between bi and the
background count for the target domain in the same bin (b alt.

i ) plus a flat 10% uncertainty on the
background, approximating the values of the reference analysis. The AMS is a valid simplification of the
significance in the context of this paper as long as we consider only the qualitative behavior, not the absolute
values. The AMS as a function of λ is shown in figure 6. A low significance is observed in the case when the
response for both domains disagree. The significance increases with λ until reaching a maximum at similar
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Figure 7. Signal purity psig versus signal efficiency εsig of the label predictor, calculated for the source (solid, upper line) and target
(dashed, lower line) sample, with (blue) and without (orange) the adversarial architecture. (a) set-up A, (b) set-up B.

positions of the maximal AUC where source and target values agree (figure 5). For higher values of λ the
significance decreases, reflecting the loss of classification power.

Using the optimized λ setting we measure the performance in terms of signal purity, which is related to
the sensitivity of the measurement. It is defined as the ratio between number of signal events (s) and the total
of events (s+ b) that fall above a specific cut in the label predictor response: psig =

s
s+b . Each possible cut

corresponds to a signal efficiency (ϵsig =
s
Ns
), which is defined as the fraction of signal selected (s) from the

total number of signal events (N s). Figure 7 shows the whole profile of the signal purity as a function of the
signal efficiency. The expected signal to background composition of 5:95 is taken into account. Classification
without the adversarial part reaches around a 9% higher purity on the source domain, but very low values for
the target domain. The adversarial network yields very close values for both source and target domains.

To give a numerical example taking the signal purity as an approximation of the analysis sensitivity, we
take the results for the source domain as the central value and the difference between the two domains as a
1σ uncertainty. For ϵsig = 0.5 we get:

• no adversarial network: psig = 0.148 ± 0.069
• adversarial set-up A: psig = 0.137 ± 0.005
• adversarial set-up B: psig = 0.1369 ± 0.0004

The relative uncertainty due to the choice of the background model on the signal purity, ignoring other
sources of uncertainty, can be improved from 47% to 4% (0.3%) by employing the adversarial network in
set-up A (set-up B).

5.1. Extension of the method toward training with real collision data
In this study, no labels were used for computing loss of the domain classifier (except its alignment for signal
and background ratio that was so far taken to be the same as for the source domain). One natural extension
of the method would be to use real collision data to train domain classifier for adaptation to real data
domain. However, in real collision data the ratio of signal to background is only known with limited
precision obtained from previous measurements or theoretical predictions. For the results presented so far,
the signal to background ratio was set to the predicted value of 5:95 in the target domain, while scaling the
source to the same ratio in the domain classifier. To check the stability of our results, the dependence of the
label predictor output on the chosen signal to background ratio was tested. It was found that a change in its
value had no impact, as long as it is the same in both source and target (figure 8(a)).

However, if there is a discrepancy in the signal to background fraction between the two domains, a small
bias is introduced. This behavior is shown in figure 8(b), where a fixed value of 5% was used for the source
signal fraction, while varying signal fraction in the target domain. By varying the signal-to-background ratio
by a factor of two away from the ratio in the source domain, a 1.4% bias was introduced on AUC which is
however, still small compared to case without adversarial training. It becomes therefore important to get a
good estimate for the signal to background ratio in the target domain when using unlabeled data and to
properly account for the effect of this bias on the final result.
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Figure 8. AUC ROC for the label predictor (a) as a function of the signal fraction in source and target and (b) as a function of the
varying signal fraction in target with a fixed 5% signal fraction in the source. These plots were produced for set-up B with
λ= 10−5. Set-up A exhibits a similar behavior.

We hypothesized that the gap we observe between performance for classifying events in the source or in
the target domain when signal and background ratio do not match across domains may be caused by the shift
of label distribution. Following number of works attempting to address this issue in unsupervised setting [8],
we applied one such approach to see whether gap issue can be tackled. The implicit alignment approach [24]
points out that, among other issues, the differences in label distribution may provide a harmful shortcut to
identify the respective domain just on the basis of differences in label frequencies. This may strongly impair
domain adaptation by ignoring actual differences in data distributions and thus not handling properly data
distribution shift. To circumvent that, authors propose creating re-balanced mini-batches for training
domain classifier using pseudo-labels delivered by the label predictor for target inputs, arguing for removing
label frequency differences between domains in this way. We saw however that generated pseudo labels have
very low reliability, which in turn seems to strongly impair the composition of re-balanced mini batches and
do not result in reduction of the classification gap between domains in our case—on the contrary, the gap
falls back to the state observed without any domain adaptation. This is not suitable for use case of real
collision data adaptation in unsupervised setting, and makes the method in the current form rely on faithful
estimate of signal to background ratio in the real collision data as pointed out above.

6. Conclusion

We successfully built a feed-forward fully connected adversarial neural network for performing domain
adaptation on high energy physics data to enable event classification in the search for the t̄tH(H→ bb̄)
process at the LHC. We demonstrate that adding a domain classifier sub-network with a gradient reversal
layer helps removing training bias while retaining most of the nominal classification power. We analyzed the
dependence on the hyper-parameters of the network. We studied the training stability issues that appear due
to the addition of a gradient reversal layer. We demonstrated that by using linear activation and loss
functions, stability and convergence can be significantly improved and better performance of the network
can be achieved.

For the example use case of the ttH(bb) analysis, we demonstrate that the adversarial domain adaptation
can produce a label predictor that is almost completely independent of the domain background model while
preserving most of the classification power for target domain. We report the improvements using different
measures. Taking the expected signal purity for a signal efficiency of 50% as a proxy measure for the
sensitivity of the analysis, the uncertainty due to the choice of background model can be strongly reduced
from a 47% to a 0.3% with the MC samples used in this study. Significant improvements are also reached in
the approximated median significance. Although not demonstrated, we do not expect limitations when
extending this approach to adapt to multiple alternative domains, i.e. sources of uncertainty, during training.

Application of our approach to target samples from real collision data was discussed where no explicit
label information from target is required for training of the domain classifier. For the selection of optimal
value for hyperparameter λ that controls the impact of adversarial domain classifier on label predictor, we
designed a procedure that does not require labeled target data. However, while per input event example labels
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from the real target are not necessary for training procedure, we show that in absence of a faithful estimate of
the signal to background ratio for the real data target domain, misalignment of the signal to background
ratio between source and target domains may lead to a small bias in the classification. This small bias and its
impact has then to be addressed in a further downstream analysis.

Using a different ratio of signal to background in source and target domains introduces label distribution
shift to the original formulation of the problem, in addition to the already existing data distribution shift
given by the different background models in the two domains. Handling both data and label distribution
shift for domain adaptation is still a largely unresolved problem in machine learning. For the unsupervised
domain adaptation setting we have worked with here, our observations with a recently introduced implicit
alignment approach [24] that makes use of pseudo-labels suggests that quality of pseudo labels required for
such an approach to cope with both data and label distribution shift is not sufficient for our case. Application
of our method to real experimental collision data adaptation in unsupervised setting in its current form will
have to therefore rely on fair estimates of signal to background ratio in the real data.

As discussed above, we see the differences in label frequency between the domains which provides a
shortcut for domain identification [24] and harms domain adaptation, as one central issue hampering
successful domain adaptation given unknown, different signal background ratios in our case. One potential
solution that we envisage for the follow-up work may employ a network architecture that uses yet another
adversarial branch dealing explicitly with the task to erase harmful signal-background label information
from domain classifier. Given the current progress, we anticipate that this and other advanced
approaches [25] will render our method also capable of handling label shift as well and enable successful
adaptation to real collision data in fully unsupervised manner.
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