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Abstract

Carotid intima media thickness (cIMT) is a biomarker of subclinical atherosclerosis and a predictor of future cardiovascular
events. Identifying associations between gene expression levels and cIMT may provide insight to atherosclerosis etiology.
Here, we use two approaches to identify associations between mRNA levels and cIMT: differential gene expression analysis
in whole blood and S-PrediXcan. We used microarrays to measure genome-wide whole blood mRNA levels of 5647 European
individuals from four studies. We examined the association of mRNA levels with cIMT adjusted for various potential
confounders. Significant associations were tested for replication in three studies totaling 3943 participants. Next, we applied
S-PrediXcan to summary statistics from a cIMT genome-wide association study (GWAS) of 71 128 individuals to estimate the
association between genetically determined mRNA levels and cIMT and replicated these analyses using S-PrediXcan on an
independent GWAS on cIMT that included 22 179 individuals from the UK Biobank. mRNA levels of TNFAIP3, CEBPD and
METRNL were inversely associated with cIMT, but these associations were not significant in the replication analysis.
S-PrediXcan identified associations between cIMT and genetically determined mRNA levels for 36 genes, of which six were
significant in the replication analysis, including TLN2, which had not been previously reported for cIMT. There was weak
correlation between our results using differential gene expression analysis and S-PrediXcan. Differential expression analysis
and S-PrediXcan represent complementary approaches for the discovery of associations between phenotypes and gene
expression. Using these approaches, we prioritize TNFAIP3, CEBPD, METRNL and TLN2 as new candidate genes whose
differential expression might modulate cIMT.
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Introduction
As a marker of atherosclerosis, carotid intima media thickness
(cIMT) is a predictor of coronary heart disease (CHD) and stroke
(1,2). cIMT can be used to evaluate the progression of subclinical
atherosclerosis before symptoms become clinically evident. Like
CHD and stroke, cIMT has a moderate heritability (3–7), and
numerous genetic loci for cIMT have been identified through
genome-wide association studies [GWAS (8–17)]. However, the
genetic variants at these loci collectively explain only a small
fraction of the heritability of cIMT (8–17) and the ability of these
variants to predict incident cardiovascular disease remains lim-
ited (18–21). Furthermore, most variance in cIMT is not explained
by traditional cardiovascular risk factors, signaling that cIMT
may represent an alternative modulator of cardiovascular dis-
ease that should be investigated (22–25). Besides genetic associ-
ation studies, alternative approaches harnessing genomic data
may yield new loci associated with atherosclerosis.

One such approach is transcriptome-wide differential
gene expression analysis, in which phenotypes are tested for
association with gene expression levels in terms of mRNA
levels, as measured by microarrays or RNA sequencing, in a
hypothesis-free manner. No large-scale transcriptome-wide
differential expression study has been performed on cIMT,
although several differential expression studies in whole blood
have already identified genes whose expression is associated
with cardiovascular disease (26–32). Emerging techniques
for imputing the association of genetically determined gene
expression values from GWAS summary statistics, such as
S-PrediXcan (33), hold promise to improve discovery of gene
expression-phenotype associations by studying regulation of
gene expression in a broader set of tissues and detecting
the sharing of regulatory mechanisms across multiple tissues
(34–39). To date, neither of these two approaches has been used
to study genetic associations with cIMT.

In this study, we sought to compare the findings of each
approach and their implications for the etiology of carotid inti-
mal thickening and atherosclerosis. To this end, we comprehen-
sively examined the transcriptome for associations with cIMT,
by performing an ex vivo study of directly measured gene expres-
sion in whole blood of 5647 individuals and an in silico study of
predicted gene expression in 48 tissues using S-PrediXcan.

Results
Baseline characteristics

Our discovery analysis included 5647 individuals of European
descent from four different cohorts. The replication analysis
included a total of 3953 individuals of European descent across
three cohorts. All studies measured cIMT using similar methods;
detailed descriptions are given in the Supplemental Methods.
Baseline characteristics of the studies included in the discovery
and replication differential expression analyses are shown in
Table 1. The mean age of participants across the studies ranged
from 45.3 to 70.2 years. The percentage of women ranged from
35.1 to 65.0%, and the mean body-mass index (BMI) ranged
from 25.2 to 29.9 kg/m2. The percentage of participants with
cardiovascular disease ranged from 0.6 to 39.2%.

Discovery analysis

All four studies using Illumina arrays used a linear mixed
model where cIMT was transformed and adjusted for var-
ious confounders. We ran a separate model for each gene

expression probe with cIMT and gene mRNA levels as the
independent and dependent variables, respectively. Results
were meta-analyzed using an inverse-variance fixed effects
model implemented in METAL and adjusted for multiple testing
(40). A quantile-quantile (QQ) plot of the discovery analysis
is provided in Supplementary Material, Fig. S1. As shown in
Table 2, after Bonferroni correction (P-value < 9.2 × 10−7) four
probes were significantly associated with cIMT: ILMN_1780861
and ILMN_1688775 mapping to METRNL (P-value = 4.8 × 10−10

and P-value = 2.8 × 10−8), ILMN_1702691 mapping to TNFAIP3
(P-value = 1.2 × 10−7) and ILMN_1782050 mapping to CEBPD
(P-value = 2.8 × 10−7). Forest plots illustrating the association
of the four probes in each of the discovery cohorts are
provided in Supplementary Material, Fig. S2. The association of
ILMN_1782050 (CEBPD) with cIMT showed strong heterogeneity
across the included studies (I2 = 0.81, P-value = 0.001), whereas
the two probes mapping to METRNL, ILMN_1780861 (I2 = 0.27, P-
value = 0.2) and ILMN_1688775 (I2 = 0.24, P-value = 0.3), showed
moderate heterogeneity, and ILMN_1702691 (TNFAIP3) showed
no heterogeneity (I2 = 0, P-value = 0.7) Intensities of all four
probes were inversely associated with cIMT (Supplementary
Material, Fig. S3). There was widespread correlation between
the probes, with pairwise correlations ranging from low to
high (Pearson’s r: 0.05–0.89), indicating partially independent
effects (Fig. 1).

Replication

For the replication phase, probe-level results from FHS were
combined with gene-level results from LIFE-Heart and NESDA,
and meta-analyzed in METAL. None of the four probes indicating
significantly associated mRNA levels in the discovery analysis
replicated after adjusting for multiple testing (P-value < 0.0125).
However, the direction of effects were consistent with the dis-
covery analysis.

Additional adjustments

For studies using Illumina arrays, we performed additional
analyzes adjusting for other atherosclerosis-relevant covariates.
As shown in Supplementary Material, Fig. S4A, most effect
sizes did not change substantially when we additionally
adjusted for total/high-density lipoprotein (HDL) cholesterol
ratio, systolic blood pressure, BMI, prevalent type 2 diabetes,
lipid-lowering medication and antihypertensive medication
(correlation r2 = 0.93). As shown in Supplementary Material, Fig.
S4B, effect sizes also remained stable when we repeated the
analysis excluding participants with prevalent CHD (correlation
r2 = 0.96). For the four significant probes in particular, effect
sizes decreased when adjusted for additional covariates, though
all probes remained nominally significant (Supplementary
Material, Table S1A). When participants with prevalent CHD
were excluded, effect sizes remained stable or slightly increased.
Of the four probes, the probe mapping to TNFAIP3 was the most
stable, with effect estimates changing by <10% after adjustment
(Supplementary Material, Table S1A).

Pathway analysis

We performed an analysis using ConsensusPathDB to identify
pathways with an overrepresentation of genes mapping to the
73 probes (see Supplementary Material, Table S1B) that were
suggestively associated [false discovery rate (FDR) < 0.25] with
cIMT across the five studies that used Illumina arrays (41). The
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Table 1. Baseline characteristics of the participants of the seven studies included in the discovery, and replication analyses

Discovery Replication

KORA F4 LIFE-Adult Rotterdam study SHIP-TREND FHS LIFE-Heart NESDA

Sample size 836 2973 856 982 1958 1752 243
Age 70.2 (5.3) 57.6 (12.5) 59.7 (8.0) 50.1 (13.7) 66.6 (8.9) 62.7 (10.9) 45.3 (12.6)
Sex (% women) 50.5 48.1 53.4 56.0 54.2 35.1 65.0
BMI (kg/m2) 29.0 (4.5) 27.4 (4.6) 27.7 (4.6) 27.3 (4.5) 28.4 (5.3) 29.9 (5.0) 25.2 (3.3)
HDL cholesterol (mmol/l) 1.4 (0.4) 1.6 (0.5) 1.4 (0.4) 1.5 (0.4) 1.5 (0.5) 1.3 (0.4) 1.7 (0.4)
Total cholesterol (mmol/l) 5.7 (1.0) 5.6 (1.1) 5.5 (1.1) 5.5 (1.1) 4.8 (1.0) 5.4 (1.2) 5.1 (1.0)
Lipid-lowering medication use (% yes) 24.3 15.2 27.0 7.3 49.0 35.6 NA
Systolic blood pressure (mmHg) 128.5 (19.1) 129.0(16.8) 134.5 (20.1) 124.3 (16.9) 128.8 (17.5) 138.3 (19.4) 134.0 (19.8)
Diastolic blood pressure mmHg) 73.9 (9.8) 75.5 (9.9) 82.9 (11.6) 76.5 (9.7) 73.4 (10.2) 83.8 (11.5) 81.5 (11.4)
Antihypertensive medication use (% yes) 56.8 44.5 27.3 29.3 53.6 81.3 14.0
Type 2 diabetes (% yes) 13.9 14.5 9.23 0.2 13.9 31.6 3.0
Current smoking (% yes) 6.2 20.9 27.1 18.4 7.7 16.8 30.0
Prevalent cardiovascular disease (% yes) 5.4 4.8 6.0 0.6 15.7 39.2 NA
cIMT 0.97 (0.13) 0.75 (0.15) 0.96 (0.19) 0.73 (0.17) 0.71 (0.18) 0.79 (0.15) 0.61 (0.12)

Values are mean (SD) or percentages.
Abbreviations: BMI refers to body-mass index. HDL refers to high-density lipoprotein. cIMT refers to carotid intima media thickness.

Table 2. Association of cIMT with significant probes in the differential gene expression discovery (N = 5647) and replication (N = 3953) analyses

Discovery Replication

Probe ID Locus Gene Beta P-value Z score P-value

ILMN_1702691 6q23.3 TNFAIP3 −0.46 1.2 × 10−7 −1.70 0.090
ILMN_1782050 8q11.21 CEBPD −0.39 2.8 × 10−7 −2.16 0.031
ILMN_1780861 17q25.3 METRNL −0.57 4.8 × 10−10 −1.63 0.10
ILMN_1688775 17q25.3 METRNL −0.49 2.8 × 10−8 −1.70 0.089

Figure 1. Correlation (Pearson’s r) between the four probes that were significantly associated with cIMT in (A) the Rotterdam Study and (B) LIFE-Adult. ∗Indicates that

the correlation is statistically significant.

associated genes were overrepresented in 43 pathways, many
of which were related to inflammation and immunity (Supple-
mentary Material, Table S2). The five most significant pathways

were ‘Natural killer cell mediated cytotoxicity’, ‘Graft-versus-
host disease’, ‘Allograft rejection’, ‘Type I diabetes mellitus’ and
‘Exercise-induced Circadian Regulation’.
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Associated genetic variants

To identify genetic variants associated with the expression levels
of genes found in whole blood, we used an existing database of
cis- and trans-expression quantitative trait locus (eQTL) associ-
ated with complex diseases (42). The association of genetic vari-
ants with mRNA levels of METRNL, TNFAIP3 and CEBPD is shown
in Supplementary Material, Table S4A. We identified variants
associated with the expression levels of METRNL and TNFAIP3.
For METRNL only nearby genetic variants (cis) were associated,
whereas for TNFAIP3 both nearby variants as well as a distant
(trans) variant were associated. None of the three variants was
associated with cIMT in a large published GWAS, which was
based on data from 71 128 individuals [Supplementary Material,
Table S4B; (13)].

S-PrediXcan analysis

S-PrediXcan uses summary statistics from GWAS studies and
models developed using gene expression data from the geno-
type tissue expression (GTEx) project to identify associations
between predicted gene expression and a phenotype of interest.
We used S-PrediXcan on summary statistics from a CHARGE
GWAS of cIMT with 71 128 European individuals to compute
the association between cIMT and genetically predicted gene
expression. The number of genes that passed quality control and
were included in the S-PrediXcan analysis ranged from 1633 in
kidney cortex tissue to 9980 in tibial nerve tissue (Supplemen-
tary Material, Table S5), and the median predicted performance
r2 ranged from 0.064 (interquartile range (IQR): 0.03–0.142) for
skeletal muscle tissue to 0.135 (IQR: 0.094–0.213) in kidney cortex
tissue (Supplementary Material, Table S5). QQ-plots for each of
the tested tissues are shown in Supplementary Material, Fig. S5A.
After Benjamini–Hochberg correction, 86 tissue-gene pairs were
significantly (FDR < 0.05) associated with cIMT, involving 36 dif-
ferent genes and 33 different tissues (Supplementary Material,
Table S6). Limiting these results to a single lead tissue-gene pair
at each locus, corresponded to 22 loci that were significantly
associated with cIMT. Descriptions of the associated loci are
provided in Supplementary Material, Table S6. Of the 86 tissue-
gene pairs found to be significantly associated with cIMT, 21%
(18/86) involved artery-related tissues, more than what would
be expected by chance (P-value: 5.24 × 10−6). In addition, 12 out
of the 22 genes have not, to our knowledge, been previously
associated with cIMT (Supplementary Material, Table S6).

We replicated these results by applying S-PrediXcan to an
independent GWAS of cIMT in the UK Biobank. Of the 86 tissue-
gene pairs, 34 replicated after Bonferroni correction (P-value
< 5.8E−4; Supplementary Material, Table S7). Comparing z-
scores for the 86 significant gene pairs in the discovery and
replication S-PrediXcan results, we observed high concordance,
with a pairwise correlation of 0.78. After limiting the results to
a single lead tissue-gene pair, six loci successfully replicated,
including the MCPH1-AS1, CBFA2T3, BCAR1, KIAA1462, CDH13
and TLN2 loci (Table 3). Forest plots showing S-PrediXcan effect
estimates for the six replicating genes across all tissues assessed
are shown in Supplementary Material, Fig. S6. All six replicating
genes showed a consistent direction of effect. Of the replicating
loci, one gene, TLN2, has not previously been associated with
cIMT. Regional plots for the associations of genetic variants
at these six loci in the CHARGE and UK Biobank GWAS are
shown in Supplementary Material, Fig. S7. The single variant
association results for variants in the S-PrediXcan models for the
six replicating loci are shown in Supplementary Material, Table
S8A and B, for the CHARGE and UKBB GWAS studies, respectively.

Comparison of differential expression and S-PrediXcan
analyses

We examined the correlation of the regression coefficients in
the CHARGE whole blood differential gene expression analysis
with those from the whole blood component of our S-PrediXcan
study. The overall pairwise correlation between beta coefficients
was low (Pearson’s r: 0.024). When stratified by quartiles of
model fit r2, the beta coefficients had a mixed upward trend
(Pearson’s r: Q1: 0.024; Q2: 0.034; Q3:0.011 and Q4:0.059) with
a dip in correlation observed in the third quantile. There was
modest enrichment of concordance between effect size for genes
that were more significantly associated with trait in one or both
analyses. For genes where the association P-value from both
analyses was ≤ 0.05, the correlation of the beta coefficients was
0.167. When including all genes that were nominally significant
(P-value ≤ 0.05) in each method regardless of significance in
the other analysis, the correlation was 0.087 and 0.073 for S-
PrediXcan and differential gene expression analysis, respectively
(Supplementary Material, Fig. S8A and B).

We then explored the six replicating genes found in the S-
PrediXcan analyses to determine how their association with
cIMT compared with our findings in the CHARGE differential
gene expression analysis study. None of these genes identified
in S-PrediXcan were significant (P < 0.0071; 0.05/7) in the
differential gene expression results (Supplementary Material,
Table S9A). When exploring the three significant genes found
in the CHARGE differential gene expression analysis in our
S-PrediXcan analysis, none of the genes were significant at
P < 0.0042; (0.05/12; Supplementary Material, Table S9B). We
correct for multiple testing using a Bonferroni correction
in the DE analysis and FDR in the S-PrediXcan analysis. To
test the sensitivity of these comparisons with the multiple
testing correction approach used, we performed an additional
Benjamini–Hochberg FDR-based multiple testing correction
for the differential gene expression analysis. Using this
approach, we find two additional probes that were significantly
associated with cIMT: ILMN_1661599 (P-value = 1.6 × 10−6) and
ILMN_1876266 (P-value = 4.4 × 10−6), mapping to DDIT4 and GJA3,
respectively (Supplementary Material Table S2). These genes
were not significantly associated using S-PrediXcan and neither
gene has previously been associated with cIMT in GWAS.

We also compared the proportion of genes previously iden-
tified in GWAS in each approach, with the hypothesis that our
S-PrediXcan results are enriched for genes previously implicated
in GWAS, and we find that for nominally significant genes (i.e.
P < 0.05 in our results), there is no significant enrichment of
GWAS-identified loci, P = 0.22. When we restrict to more signif-
icant genes (i.e. P < 0.005 in our results), we see a statistically
significant enrichment, P = 0.042, of GWAS loci for S-PrediXcan,
relative to DE (Supplementary Material, Table S10).

Discussion
We performed the first large-scale differential gene expression
study meta-analysis of cIMT based on whole-blood mRNA levels
of over 5600 participants. We complemented this ex vivo study
of differential gene expression in whole blood with an in silico
study of predicted gene expression using S-PrediXcan across
48 tissues. In our ex vivo study of differential gene expression,
we identified four oligonucleotide probes indicating differen-
tial mRNA levels associated with cIMT that mapped to three
genes, namely: TNFAIP3, CEBPD and METRNL, although these
associations did not convincingly replicate in an independent
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Table 3. Replication analysis of CHARGE significant S-PrediXcan genes in UK Biobank

CHARGE UK Biobank

Gene Tissue Effect size P-value FDR Effect size P-value FDR Novel

MCPH-AS1 Nerve Tibial 0.008 6.73E−06 0.0278 0.023 2.62E−11 7.26E−06 No
CBFA2T3 Testis −0.155 1.41E−08 0.0003 −0.241 3.40E−07 0.006 No
BCAR1 Esophagus Mucosa −0.013 4.35E−07 0.0039 −0.027 3.44E−07 0.006 No
KIAA1462 Artery Tibial 0.039 2.85E−09 0.0002 0.061 1.83E−06 0.022 No
CDH13 Artery Aorta 0.012 1.53E−05 0.0494 0.020 1.32E−04 0.249 No
TLN2 Adipose Subcutaneous −0.084 7.16E−06 0.0291 −0.138 1.97E−04 0.280 Yes

sample. In our in silico study of predicted gene expression, we
were able to identify five known loci and one novel locus that
were significantly associated with cIMT and that replicated in
an independent dataset. These results lend further support to
previous findings that predicted gene expression association
methods like S-PrediXcan can both identify novel loci through
increased power to aggregate smaller effects and also replicate
previous GWAS results (43).

Results from our differential expression analysis have
compelling functional evidence of involvement in inflammation.
TNFAIP3 is involved in the negative feedback regulation of
NF-kappaB (44), but it may also inhibit IFNγ /STAT1 signaling
(45). Thus, it represents an anti-inflammatory protein, and low
expression of TNFAIP3 has been associated with inflammatory
disorders such as rheumatoid arthritis (46,47). Furthermore,
a study in mice found that Tnfaip3 slowed the progression
of atherosclerosis by reducing NF-kappaB activity (48). The
proposed protective effects of TNFAIP3 are in line with our
study, in which expression was inversely associated with cIMT.
CEBPD encodes CCAAT/Enhancer Binding Protein Delta (C/EBP-
Delta), a transcription factor regulating several inflammatory
genes (49). Previous studies suggest that C/EBP-Delta can be
both pro-inflammatory and anti-inflammatory: C/EBP-Delta
may amplify the NF-kappaB response (50,51), however, C/EBP-
Delta has been shown to have an anti-inflammatory role
in pancreatic β-cells and brain pericytes (52,53), inhibiting
the accumulation of amyloid plaques in Alzheimer’s disease
(54). In our study, increased expression of CEBPD in blood is
associated with less atherosclerosis as measured by cIMT.
METRNL encodes meteorin-like protein, which increases
thermogenesis in brown and beige adipocytes, and increases
the expression of genes encoding anti-inflammatory proteins
(55). Recent studies have also shown that serum METRNL
concentrations are negatively correlated with TNF-a and IL-6
in patients with type 2 diabetes mellitus and coronary artery
disease (56,57), as well as negatively associated with cIMT
(57), which is consistent with our observations. The potential
effects on both adiposity and inflammation could explain the
inverse association of METRNL expression with cIMT in our
study (52,53).

All three genes identified in the differential gene expression
analysis thus appear to be related to inflammation. This is not
surprising, given the importance of inflammation in atheroscle-
rosis, and the fact that expression levels were measured in the
blood, where we expect most mRNA to originate from white
blood cells. None of the three genes was reported to be sig-
nificantly associated with interleukin-6 levels in a whole blood
differential gene expression study (58). There has been no pre-
vious large-scale differential gene expression study of cIMT,
but several studies of CHD have been conducted. None of the

three genes we report were significant in these previous studies
(26–32).

The genes identified in the ex vivo differential expression
analysis also did not include genes that had been previously
identified by GWAS of cIMT, CHD or stroke (13,59,60). This lack of
overlap may have several possible explanations. First, the genetic
background of atherosclerosis and CHD may be differentially
reflected through genetic variation and gene expression levels.
In a large-scale transcriptome-wide association study of blood
pressure, only 2 out of 34 genes were previously reported to
be linked to hypertension, and none were identified through
GWAS (61). This pattern may hold for other traits, including cIMT.
Second, although blood is a relevant tissue for atherosclerosis, it
may not be the tissue in which the genes identified by GWAS are
primarily expressed.

In contrast, five of the six associated loci that were sig-
nificantly associated with cIMT using S-PrediXcan had been
previously identified by GWAS on cIMT (13,14,17), supporting the
validity of our in silico approach and revealing that variation in
gene expression because of genetic variants is likely involved in
disease pathogenesis (62). The one gene that had not been pre-
viously reported by GWAS was TLN2, encoding Talin-2. Although
the function of Talin-2 is less clearly understood than that of
Talin-1, Talin-1 and Talin-2 are closely related isoforms that are
part of a family of cytoskeletal proteins that are important for
organ and vascular tissue development (63–65). Talins help inte-
grin proteins to connect the cytoskeleton with the extracellular
matrix and are thought to provide tension transmission between
the contractile apparatus of the actin cytoskeleton and the extra-
cellular matrix (66–68). Talins are major constituents of the
focal adhesion molecules present in the endothelial cells that
line blood vessels (68,69). Altered expression of Talins, including
TLN2, may impair the ability of adhesion molecules in endothe-
lial cells to withstand variations in blood pressure, speed and
force (68). A number of genes encoding proteins involved in cell
mechanostability, including adhesion molecules and TLN2, have
been linked with the progression of atherosclerosis (70–73). The
reduction of TLN2 in endothelial cells may impair the intercel-
lular gap junctions and allow macrophage accumulation and
consequent arterial wall thickening and plaque formation (73–
75), consistent with our observed negative association between
cIMT and genetically determined expression of TLN2. We exam-
ined results across all assessed tissues for TLN2 and each of
the other five replicating genes from the S-PrediXcan analysis
(Supplementary Material, Fig. S5A–F). We found that results for
available artery tissue models for all replicating genes showed
evidence of effect, as the 95% confidence interval for the effect
size did not include a null effect, even if they did not survive
multiple testing corrections. The effect direction was also the
same across arterial tissues for each gene.
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To our knowledge, this is the first report of a direct com-
parison between the results of S-PrediXcan and transcriptome-
wide differential gene expression analysis in the same tissue. We
note that comparison of the two approaches is complicated by
factors outside of differences in the methods themselves, includ-
ing differences in the number of tissues assessed and sample
sizes available for each, however, we did not observe a strong
correlation between results for these different analysis methods.
One possible explanation is that effect estimates from geneti-
cally predicted expression models capture the intrinsic effects
of genetic variation on gene expression with cIMT, whereas the
effect estimates from differential gene expression analysis of
measured gene expression levels also represent changes that
may be the result of the tissue-specific environment, in this case,
atherosclerotic vascular disease. As a result, associations with
gene expression levels using the ex vivo approach are likely to
be affected by confounding and reverse causation. Additionally,
the genetic component of gene expression as computed by S-
PrediXcan is often quite minor (median r2 = 0.088), meaning that
differences in expression of some genes may not be captured
using this approach. Indeed, total cis- and trans-heritability of
gene expression is quite variable (76), depending on the prop-
erties of regulation of expression, each approach may be better
suited to examining the impact of changes in expression for
different genes.

Strengths of our differential expression analysis include
the large sample sizes for both discovery and replication, the
hypothesis-free approach and the strict correction for multiple
testing. Although we consider blood to be a relevant tissue for the
expression of genes associated with atherosclerosis, not having
access to microarray or RNA sequencing data for other, less
easily accessible tissues is a limitation of this study. Microarray
transcriptomic data also have known limitations for detection
of low abundance transcripts and a narrower dynamic range
compared with RNA sequencing (77), which may have reduced
power in our differential expression analysis. Use of RNA
sequencing in future studies would reduce these limitations.
Furthermore, the interpretation of the results is challenging
because it is difficult to distinguish the direction of causality:
genes whose expression influences atherosclerosis and genes
whose expression is influenced by atherosclerosis may both be
differentially expressed in this type of study. Likewise, probes
that are associated with cIMT may not be captured because of
the stochastic nature of gene expression. A host of intrinsic and
extrinsic factors, including environmental stimuli, host factors
and batch effects, could lead to underestimation of true effects
at some probes (76–78). Although this documented low signal-
to-noise ratio of gene expression data are not expected to lead
to spurious associations, it is likely to reduce statistical power
and prevent some probes from reaching significance thresholds.
Comparatively, genetically determined gene expression is defi-
nitionally unaffected by questions of causality and other similar
confounders; this may explain the low level of concordance
between S-PrediXcan and differential gene expression analysis.
Finally, although we adjusted for batch effects, cell types, and, in
an additional analysis, traditional cardiovascular risk factors, the
associations described in our differential expression study may
be affected by residual confounding, environmental variation
and experimental variation.

We attempted to mitigate some of the limitations of our
differential expression analysis by using S-PrediXcan, which
examines multiple tissues and is not affected by reverse
causation or confounding. A limitation of using S-PrediXcan
is that the statistical power to detect associations between cIMT

and gene expression is constrained by the degree to which
gene expression of each gene is genetically determined. This
approach will miss associations with genes for which gene
expression is determined mostly by environmental factors, even
those where gene expression changes precede development
of disease and may in fact be causal. Considering blood tissue
procurement in GTEx was pre-mortem for some donors and
post-mortem for others, the donor’s cause of death and timing
of tissue procurement can influence the quality of collected
tissues, like whole blood (78). This could help explain the low
correlation observed between the differential gene expression
analysis and S-PrediXcan results.

We performed a transcriptome-wide differential gene
expression analysis and for the first time detected three genes
whose mRNA levels in whole blood were associated with
atherosclerosis as measured by cIMT. The proteins encoded by
all three genes are reported to be involved in inflammation, with
TNFAIP3 and METRNL having well described anti-inflammatory
properties. We also applied S-PrediXcan to existing GWAS
studies of cIMT in CHARGE and the UK Biobank, implicating
TLN2 as a novel gene involved in intimal thickening. Notably,
we identified a lack of concordance between results from our
ex vivo differential gene expression analysis and our in-silico S-
PrediXcan analysis. There was only a very modest enrichment
of concordance of effect for genes that were more significantly
associated with cIMT in one or both approaches, suggesting
that these approaches capture different components of gene
expression and its association with cIMT.

Materials and methods
Whole blood differential expression study population

This study was conducted within the framework of the
Cohorts for Heart and Aging Research in Genomic Epidemiology
(CHARGE) consortium (79). Individuals from four population-
based cohort studies were included in the discovery analysis:
836 from the Cooperative Heath Research in the Region of
Augsburg (KORA F4) study (79), 2973 from LIFE-Adult (80,81),
856 from the Rotterdam Study (82) and 982 from the Study
of Health in Pomerania [SHIP-TREND (83)]. The total discovery
sample size was 5647. The replication analysis was done in 1958
individuals from the Framingham Heart Study [FHS (84)], 1752
individuals from the LIFE-Heart study (85) and 243 individuals
from the Netherlands Study of Depression and Anxiety (NESDA)
study (86). Further details are provided in the Supplemental
Methods. All studies were approved by appropriate research
ethics committees and all participants signed informed consent
prior to participation.

Measurement of cIMT

cIMT of the common carotid artery was measured with high-
resolution B-mode ultrasonography. cIMT was calculated as the
mean of the maximum cIMT of the near and far walls of the
right and left common carotid arteries. When the intima media
thickness of the near walls was unavailable, only the far walls
were used. Further details are provided in the Supplemental
Methods.

Measurement of gene expression levels

Genome-wide gene expression levels in whole blood, detected by
up to 54 124 oligonucleotide probes that detected gene-specific
mRNA levels of more than 25 000 genes were determined using
the Illumina HumanHT-12 Gene Expression BeadChip v3.0 or
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v4.0, except in FHS and NESDA, where the Affymetrix Exon Array
ST 1.0 and Affymetrix Human Genome U219 Array were used. In
LIFE-Heart peripheral blood mononuclear cells were used. Gene
expression levels were measured in blood that was drawn at the
same time as cIMT was measured. See Supplemental Methods
for additional details.

Differential expression analysis

Analyses were conducted separately in each study using a
standardized analysis plan. cIMT was natural log transformed,
and each study used a linear mixed model adjusting for batch
effects (examples: array ID and position on array) as random
effects and adjusting for further technical covariates (examples:
RNA quality and storage time between sampling and RNA
isolation), cell types (examples: granulocytes, lymphocytes and
monocytes), age, sex, fasting state and smoking status as fixed
effects (Model 1). In addition, FHS included familial relatedness
as a random effect. We ran a separate model in R for each gene
expression probe, using cIMT and the covariates as independent
variables, and gene mRNA levels as the dependent variable.
The study-specific results were meta-analyzed using inverse-
variance fixed effects meta-analysis implemented in METAL (40).
We used a Bonferroni correction to adjust for multiple testing.

In the replication, probe-level results in LIFE-Heart were com-
bined with gene-level results from FHS and NESDA using meta-
analysis of P-values (taking sample size and direction of effect
into account), as implemented in METAL (40). We used a Bon-
ferroni correction to correct the significance threshold for the
number of probes included in the replication.

Among the five studies that used Illumina arrays, we
performed additional analyses including further covariates
relevant to atherosclerosis: total/HDL cholesterol ratio, systolic
blood pressure, BMI, prevalent type 2 diabetes, lipid-lowering
medication and antihypertensive medication (Model 2). We also
repeated the original model in only those individuals with data
available on all the additional covariates (Model 1). Finally, we
reran the full model excluding individuals with prevalent CHD
(Model 3). All meta-analyses were performed using inverse-
variance fixed effects meta-analysis implemented in METAL
(40).

We computed pairwise correlations (Pearson’s r) between
any significantly associated probes in the participants from the
Rotterdam Study and LIFE-Adult. We used ConsensusPathDB to
identify pathways that showed an overrepresentation of genes
mapping to probes that were suggestively associated (FDR < 0.25)
with cIMT across the five cohorts that used Illumina arrays
(41,87). Pathways with an FDR < 0.05 were considered significant.

Finally, we used an existing database (http://genenetwork.nl/
bloodeqtlbrowser/) to identify genetic variants associated with
expression levels of significant genes in whole blood of over
5000 individuals (42). Both genetic variants closer than (cis) and
further than (trans) 250 kb were included, but only suggestive
associations (FDR < 0.05) are included in the database. We then
queried variants identified in a published GWAS of cIMT (8).

S-PrediXcan

We applied S-PrediXcan to summary statistics from a CHARGE
GWAS of cIMT that included 71 128 individuals of European
ancestry originating from 31 different studies (13,79,88). In the
CHARGE GWAS, cIMT was defined as the mean of the maxi-
mal measurements from the near and far walls of the internal
carotid arteries for both the left and right sides (8). For the
S-PrediXcan replication analysis we used summary statistics

from an independent GWAS of cIMT in the UK Biobank, including
22 179 individuals of British ancestry (14). In the UK Biobank
GWAS, cIMT was defined as the largest of the four maximum
measurements of the far wall from both the left and right of
the distal common carotid artery (14). Summary statistics for
the CHARGE GWAS study have been made publicly available and
can be accessed here https://www.ncbi.nlm.nih.gov/projects/ga
p/cgi-bin/study.cgi?study_id=phs000930.v9.p1.

We used S-PrediXcan to estimate the association of genet-
ically determined mRNA levels with cIMT using S-PrediXcan
models built in tissue-specific gene expression data from the
GTEx project (33). The GTEx v8 models include gene expres-
sion samples of 48 different tissues with at least 65 samples
(89). S-PrediXcan model-building methods have been previously
described (90). These models assign weights to each cis-eQTL
variant, and include measures of variances and covariances
of genetic markers in the GTEx data to account for linkage
disequilibrium between SNPs. All model files are stored in a
publicly available resource (http://predictdb.org/). We applied S-
PrediXcan models for 48 different tissues to results from GWAS
on cIMT in the CHARGE (14,79). The tissue-specific results were
filtered to include genes with a cross-validation correlation >0.1.
Genetically determined mRNA levels in a given tissue were
considered to be significantly associated with cIMT and were
taken forward for replication if the FDR was < 0.05. A Bonferroni
correction was used to adjust the significance threshold for the
number of statistical tests performed in the replication analysis.

We tested for enrichment of GWAS-identified genes in the
S-PrediXcan results relative to the DE results by first creating a
list of genome-wide significant single variants associated with
IMT in Strawbridge et al. (14) and Franceschini et al. (13) We
then created regions ±500 kb surrounding the reported single
variants and queried our artery tissue (aortic, coronary and
tibial) S-PrediXcan results and DE results for genes or probes that
overlapped those regions with P < 0.05 and again with P < 0.005.
We performed a one-sided Fisher’s exact test to test that the
proportion of genes that overlapped with GWAS loci was higher
in S-PrediXcan than in DE.

Supplementary Material
Supplementary Material is available at HMG online.
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