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The complexity of single-cell omics datasets is increasing. 
Current datasets often include many samples1, generated 
across multiple conditions2, with the involvement of multiple 

laboratories3. Such complexity, which is common in reference atlas 
initiatives such as the Human Cell Atlas4, creates inevitable batch 
effects. Therefore, the development of data integration methods that 
overcome the complex, nonlinear, nested batch effects in these data 
has become a priority: a grand challenge in single-cell RNA-seq data 
analysis5,6.

Batch effects represent unwanted technical variation in data that 
result from handing cells in distinct batches. These effects can arise 
from variations in sequencing depth, sequencing lanes, read length, 
plates or flow cells, protocol, experimental laboratories, sample 
acquisition and handling, sample composition, reagents or media 
and/or sampling time. Furthermore, biological factors such as tis-
sues, spatial locations, species, time points or inter-individual varia-
tion can also be regarded as a batch effect.

A single-cell data integration method aims to combine 
high-throughput sequencing datasets or samples to produce 
a self-consistent version of the data for downstream analysis7. 
Batch-integrated cellular profiles are represented as an integrated 
graph, a joint embedding or a corrected feature matrix.

Currently, at least 49 integration methods for scRNA-seq data 
are available8 (as of November 2020, Supplementary Table 1). In 
the absence of objective metrics, subjective opinions based on visu-
alizations of integrated data will determine method evaluation. 
Benchmarking integration methods facilitates this process to pro-
vide an unbiased guide to method choice.

Previous studies on benchmarking methods for data integration 
have focused on the simpler problem of batch effect removal7 in 
scRNA-seq9–11. These studies benchmarked methods on simple inte-
gration tasks with low batch or biological complexity and did not 

compare different output options such as corrected features or joint 
embeddings, finding that ComBat11 or the linear, principal compo-
nent analysis (PCA)-based, Harmony method9 outperformed more 
complex, nonlinear, methods.

Here, we present a benchmarking study of data integration 
methods in complex integration tasks, such as tissue or organ 
atlases. Specifically, we benchmarked 16 popular data integration 
tools on 13 data integration tasks consisting of up to 23 batches and 
1 million cells, for both scRNA- and single-cell ATAC-sequencing 
(scRNA-seq and scATAC-seq) data. We selected 12 single-cell 
data integration tools: mutual nearest neighbors (MNN)12 and its 
extension FastMNN12, Seurat v3 (CCA and RPCA)13, scVI14 and its 
extension to an annotation framework (scANVI15), Scanorama16, 
batch-balanced k nearest neighbors (BBKNN)17, LIGER18, 
Conos19, SAUCIE20 and Harmony21; one bulk data integration tool 
(ComBat22); a method for clustering with batch removal (DESC23) 
and two perturbation modeling tools developed previously by one 
of the authors (trVAE24 and scGen25). Moreover, we use 14 metrics 
to evaluate the integration methods on their ability to remove batch 
effects while conserving biological variation. We focus in particu-
lar on assessing the conservation of biological variation beyond 
cell identity labels via new integration metrics on trajectories or 
cell-cycle variation. We find that Scanorama and scVI perform 
well, particularly on complex integration tasks. If cell annotations 
are available, scGen and scANVI outperform most other methods 
across tasks, and Harmony and LIGER are effective for scATAC-seq 
data integration on window and peak feature spaces.

Results
Single-cell integration benchmarking (scIB). We benchmarked 
16 popular data integration methods on 13 preprocessed inte-
gration tasks: two simulation tasks, five scRNA-seq tasks and six 
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scATAC-seq tasks (Fig. 1). Each task posed a unique challenge (for 
example, nested batch effects caused by protocols and donors, batch 
effects in a different data modality and scalability up to 1 million 
cells) that revolved around integrating data on a particular bio-
logical system from multiple laboratories (Table 1). Our simulation 
tasks allowed us to assess the integration methods in a setting where 
the nature of the batch effect could be determined and the ground 
truth is known. In real data, we predetermined the ground truth by 
preprocessing and annotating data from 23 publications separately 
for each batch (Methods).

Each integration method was evaluated with regards to accuracy, 
usability and scalability (Methods). Integration accuracy was evalu-
ated using 14 performance metrics divided into two categories: 
removal of batch effects and conservation of biological variance  
(Fig. 1). Batch effect removal per cell identity label was measured via 
the k-nearest-neighbor batch effect test (kBET)11, k-nearest-neighbor 
(kNN) graph connectivity and the average silhouette width (ASW)11 
across batches. Independently of cell identity labels, we further 
measured batch removal using the graph integration local inverse 
Simpson’s Index (graph iLISI, extended from iLISI21) and PCA 
regression11. Conservation of biological variation in single-cell data 
can be captured at the scale of cell identity labels (label conserva-
tion) and beyond this level of annotation (label-free conservation). 
Therefore, we used both classical label conservation metrics, which 
assess local neighborhoods (graph cLISI, extended from cLISI21), 
global cluster matching (Adjusted Rand Index (ARI)26, normal-
ized mutual information (NMI)27) and relative distances (cell-type 
ASW) as well as two new metrics evaluating rare cell identity anno-
tations (isolated label scores) and three new label-free conservation 
metrics: (1) cell-cycle variance conservation, (2) overlaps of highly 
variable genes (HVGs) per batch before and after integration and 
(3) conservation of trajectories (Methods).

Two central challenges to benchmarking data integration meth-
ods are: (1) the diversity of output formats28, and (2) the inconsistent 
requirement on data preprocessing before integration. We addressed 

these challenges in three ways. First, all integration outputs were 
treated as separate integration runs. For example, Scanorama out-
puts both corrected expression matrices and embeddings; these are 
evaluated separately as Scanorama gene and Scanorama embed-
ding. Some methods output more than an integrated graph, joint 
embedding or corrected feature space; for example, scANVI outputs 
predicted labels where these are not provided, and DESC outputs 
a clustering of the data. These outputs are explicitly not evaluated 
in our study. Second, we developed new extensions to kBET and 
LISI scores that work on graph-based outputs, joint embeddings 
and corrected data matrices in a consistent manner (Supplementary 
Notes 1 and 2). Thus, multiple metrics could be computed for each 
category of batch effect removal, label conservation and label-free 
conservation (Supplementary Table 2). Overall accuracy scores were 
computed by taking the weighted mean of all metrics computed for 
an integration run, with a 40/60 weighting of batch effect removal to 
biological variance conservation (bio-conservation) irrespective of 
the number of metrics computed. Third, we also included prepro-
cessing decisions in our benchmark: each integration method was 
run with and without scaling and HVG selection. We considered 
that some methods cannot accept scaled input data (LIGER, trVAE, 
scVI and scANVI) and that others require cell-type labels as input 
(scGen and scANVI). Thus, we tested up to 68 data integration 
setups per integration task, resulting in 590 attempted integration 
runs. All performance metrics, integration methods with param-
eterizations and preprocessing functions have been made available 
in our scIB Python module. Furthermore, the generated outputs are 
visible on our scIB website and our workflow is provided as a repro-
ducible Snakemake29 pipeline to allow users to test and evaluate data 
integration methods in their own setting (Code availability).

Benchmarking data integration: the human immune cell task. To 
demonstrate our evaluation pipeline, we first focus on the human 
immune cell integration task (Supplementary Note 3). This task 
comprises ten batches representing donors from five datasets with 

cells

G
en

es
/fe

at
ur

es

13 integration tasks

Preprocessing

HVG (yes/no)
scaling (yes/no)

Data integration

Graph
embedding

corrected features

Batch cell type

Scoring

Batch removal

Label conservationLabel-free conservation 

Cell cycle

BBKNN, Conos, scGEN, scVI, 
Harmony, Scanorama, 

Seurat v3, MNN ...

Highly variable genes

Trajectories

Usability 

?

Scalability 

T
im

e/
m

em
or

y

Dataset size

Pre Post

Pre Post

HVG 
pre

HVG 
post

Bad integration

Good integration

HVG 
pre

HVG 
post

HVG 
pre

HVG 
post

Biological variance conservation 

Good integration

Bad integration
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cells from peripheral blood and bone marrow on which Scanorama 
(embedding), FastMNN (embedding), scANVI and Harmony per-
formed best.

Comparing the metric results (Fig. 2a) to the integrated data 
plots (Fig. 2b,c) shows a consistent picture: all high-performing 
methods successfully removed batch effects between individuals 
and platforms while conserving biological variation at the cell-type 
and subtype levels. kBET and iLISI batch removal metrics separate 
the top performers: Scanorama scored higher in these metrics as it 
integrated the Villani (Smart-seq2), Oetjen et al.30 batches and 10X 
batches better compared to scANVI and FastMNN, which showed 
residual 10X batch structure in CD14+ monocytes. Additionally, 
scANVI exhibited residual Oetjen batch structure in erythrocytes 
and separated the Villani batch. This scANVI behavior is expected 
given the method is not designed for full-length Smart-seq2 
data. Further, Harmony exhibited the lowest isolated label F1 
bio-conservation score among top performers. The isolated labels 
in this task were CD10+ B cells, erythroid progenitors, erythrocytes 
and megakaryocyte progenitors, which are exclusive to the Oetjen 
et al.30 batches. While Harmony kept each isolated cell label together, 
it overlapped these populations.

We also focused on the conservation of trajectories. In this inte-
gration task, we assessed erythrocyte development from hematopoi-
etic stem and progenitor cells via megakaryocyte progenitors and 
erythroid progenitors to erythrocytes (Extended Data Figs. 1–3 and 
Supplementary Fig. 1). All of the top-performing methods exhib-
ited high trajectory conservation scores, whereas DESC (on scaled/
HVG data), scGen (on scaled/full feature data) and Seurat v3 CCA 
(on scaled/HVG data), produced poor conservation of this trajec-
tory due to overclustering (DESC), merging of cell types (Seurat v3 
CCA) or lack of relevant biological latent structure (scGen). Notably, 
Seurat v3 CCA introduced an unexpected branching structure into 
the trajectory in diffusion map space (Extended Data Fig. 3).

Balancing batch removal and biological variance conservation. 
Considering the results of the five scRNA-seq and two simulation 
tasks (Supplementary Note 3 and Supplementary Figs. 2–15), we 
found that the varying complexity of tasks affects the ranking of 
integration methods: while Seurat v3 and Harmony perform well 
on simpler real data tasks and some simulations, Scanorama and 
scVI performed particularly well on more complex real data. Only 
scGen and scANVI, which additionally use cell-type information 

to improve integration results, performed well across tasks. In gen-
eral, the simulations contained less nuanced biological variation but 
exhibited clearly defined, often strong, batch effects. Specifically, 
simulation task 1 posed little difficulty to most methods indepen-
dent of preprocessing decisions (Supplementary Figs. 4 and 11). 
Similarly, the widely used pancreas integration task contains dis-
tinct cell-type variation and batch effects; thus, even methods that 
perform poorly overall, performed well on this task (Supplementary 
Figs. 6 and 13 and Supplementary Note 3).

Particularly in more complex integration tasks, we observed 
a tradeoff between batch effect removal and bio-conservation  
(Fig. 3a and Supplementary Data 1). While methods such as 
SAUCIE, LIGER, BBKNN and Seurat v3 tend to favor the removal 
of batch effects over conservation of biological variation, DESC 
and Conos make the opposite choice, and Scanorama, scVI and 
FastMNN (gene) balance these two objectives. Other methods strike 
different balances per task (Extended Data Fig. 4). This tradeoff is 
particularly noticeable where biological and batch effects overlap. 
For example, in the lung task, three datasets sample two distinct 
spatial locations (airway and parenchyma). Particular cell types 
such as endothelial cells perform different functions in these loca-
tions (for example, gas exchange in the parenchyma). While Seurat 
v3 and BBKNN integrated across the locations to merge these cells, 
providing a broad cell-type overview, Scanorama preserved the spa-
tial variation in endothelial cells and other cell types that have func-
tional differences across locations (Supplementary Note 3). Methods 
that use cell identity information (scGen and scANVI) must be con-
sidered separately in this tradeoff. These methods preserved bio-
logical variation most strongly. Yet, performance depended on the 
resolution of the cell identity labels: if specific biological variation is 
not encoded in cell identity labels (for example, spatial location in 
lung endothelial cells), scGen in particular will remove biological 
variation confounded with batch effects. However, if this variation 
is encoded (for example, neutrophil states in the lung), scGen and 
scANVI are the only methods that are able to preserve cell state dif-
ferences that are each present only in a single batch.

The most challenging batch effects across the integration tasks 
were due to species, sampling locations and single-nucleus versus 
single-cell data. These batch effect contributors can also be inter-
preted as biological signals rather than technical noise. While the 
top-performing methods across integration tasks were largely 
unable to integrate across these effects (unless they received cell 

Table 1 | Integration tasks for benchmarking

Integration task Cell number Batches Tested features

Pancreas 16,382 9 batches Widely used test data, protocols

Lung 32,472 16 donors Human variation, protocols, spatial locations, 
high resolution subtypes, laboratories

Immune (human) 33,506 10 donors Tissues, laboratories, similar cell types

Immune (human and mouse) 97,952 23 samples Tissues, laboratories, similar cell types, species

Mouse brain (RNa) 978,734 4 datasets Large dataset, spatial locations, nucleus versus 
cell, protocols

Mouse brain small (aTaC, 3 tasks: windows, 
peaks, gene activity)

10,761, 11,597, 11,270 3 datasets Different modality, laboratories, technologies 
and feature spaces

Mouse brain large (aTaC, 3 tasks: windows, 
peaks gene activity)

84,813 11 samples Different samples from 3 unbalanced datasets; 
different modality, laboratories, technologies 
and feature spaces

Simulation 1 12,097 6 batches Variation in cellular compositions

Simulation 2 19,318 16 batches Nested batch effects, composition variation

Overview of the tasks used to benchmark data integration methods. The tested feature describes the unique challenge presented by the integration task. Donor refers to human individuals, sample is used 
when mice are involved and batches is the general term that includes dataset and sample batches. The six aTaC tasks are summarized in two entries.
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identity annotations; Supplementary Figs. 10, 14 and 15), LIGER, 
BBKNN and Seurat v3 RPCA were successful. These integration 
results, however, often remove biological variation along with the 
batch effect, showcasing the aforementioned tradeoff between batch 
removal and bio-conservation. This effect was particularly notice-
able for the immune cell human and mouse and mouse brain tasks. 
For immune cells, only LIGER, BBKNN, Seurat v3 RPCA and scGen 
integrated across species, but removed nuanced biological variation 
to varying degrees. While LIGER and BBKNN retained only broad 

cell-type variation on integration, Seurat v3 RPCA conserved more 
distinct cell identities, but merged neutrophils with various pro-
genitor populations. Even scGen, the top-performing integration 
output for this task, separated CD4+ and CD8+ T cells as well as 
erythrocyte progenitors and erythrocytes, while otherwise integrat-
ing mouse and human cells as expected (Supplementary Figs. 10 
and 16 and Supplementary Note 3). When subtle cell states were 
not annotated in the data, we found that Scanorama, scANVI, scVI 
and Harmony could, however, integrate across strong batch effects 

Harmony (embedding)
HVG (unscaled)

scANVI* (embedding)
Full (unscaled)

fastMNN (embedding)
HVG (unscaled)

Scanorama (embedding)
HVG (scaled)

Method Overall Batch correction Bio conservation

O
ve

ra
ll 

sc
or

e

O
ve

ra
ll 

sc
or

e

P
C

R
 b

at
ch

B
at

ch
 A

S
W

G
ra

ph
 iL

IS
I

kB
E

T

O
ve

ra
ll 

sc
or

e

N
M

I c
lu

st
er

/la
be

l

A
R

I c
lu

st
er

/la
be

l

C
el

l t
yp

e 
A

S
W

Is
ol

at
ed

 la
be

l F
1

Is
lo

at
ed

 la
be

l s
ilh

ou
et

te

N
am

e

C
el

l c
yc

le
 c

on
se

rv
at

io
n

H
V

G
 c

on
se

rv
at

io
n

T
ra

je
ct

or
y 

co
ns

er
va

tio
n

S
ca

lin
g

G
ra

ph
 c

LI
S

I

G
ra

ph
 c

on
ne

ct
iv

ity

55 additional rows not shown

Output

Genes

Embedding

Graph

Scaling

Scaled

Unscaled

Ranking

1

69

Score

0% 100%F
ea

tu
re

s

a

b

c

Unintegrated

Cell types

CD10+ B cells
CD14+ monocytes
CD16+ monocytes
CD20+ B cells
CD4+ T cells
CD8+ T cells

Erythrocytes NK cells 10X
Freytag
Oetjen_A
Oetjen_P
Oetjen_U
Sun_sample1_CS

Sun_sample2_KC
Sun_sample3_TB
Sun_sample4_TC
Villani

NKT cells
Plasma cells
Plasmacytoid dendritic cells

Erythroid progenitors
HSPCs
Megakaryocyte progenitors
Monocyte progenitors
Monocyte-derived dendritic cells

Batches

O
ut

pu
t

Scanorama +

–

–

–

–

–

+

+

–

–

–

–

+

+

HVG

HVG

FULL

HVG

HVG

HVG

HVG

HVG

HVG

FULL

FULL

FULL

FULL

HVG

fastMNN

scANVI*

scANVI*

Harmony

Harmony

scGen*

scGen*

scGen*

SAUCIE

SAUCIE

SAUCIE

SAUCIE

SAUCIE

–

+

Fig. 2 | Benchmarking results for the human immune cell task. a, Overview of top and bottom ranked methods by overall score for the human immune 
cell task. Metrics are divided into batch correction (blue) and bio-conservation (pink) categories. Overall scores are computed using a 40/60 weighted 
mean of these category scores (see Methods for further visualization details and Supplementary Fig. 2 for the full plot). b,c, Visualization of the four 
best performers on the human immune cell integration task colored by cell identity (b) and batch annotation (c). The plots show uniform manifold 
approximation and projection layouts for the unintegrated data (left) and the top four performers (right).

NATuRe MeThODS | VOL 19 | JaNUaRy 2022 | 41–50 | www.nature.com/naturemethods44

http://www.nature.com/naturemethods


AnAlysisNATurE METhODS

from single nuclei and single cells while retaining biological varia-
tion on spatial locations and rare cell types (see the mouse brain task 
in Supplementary Note 3).

Methods that favor bio-conservation and output corrected 
expression matrices tended to better conserve cell state variation. 
Indeed, Scanorama (gene), ComBat and MNN consistently per-
formed well at conserving cell-cycle variance and HVGs in the inte-
grated data. Trajectory structure was slightly better conserved in the 
overall high-performing methods Scanorama, scGen and FastMNN, 
while poor performers were consistent across label-free metrics 
(Supplementary Figs. 1–3, Extended Data Fig. 3 and Supplementary 
Data 1). These methods placed cells in the expected order per 
batch and reconstructed the global trajectory structure on human 
immune cells (Supplementary Fig. 17). Additionally, scVI also per-
formed well per batch in the human and mouse immune cell task, 
but did not generate an integrated continuum of states across human 
and mouse erythrocyte development in a single trajectory. Thus, 
while local trajectory structure was well-represented, the global 
trajectory structure was not robustly conserved (Supplementary  
Fig. 18). Even methods that did integrate datasets across species 
failed to reconstruct a consistent global trajectory structure (scGen 
and FastMNN) or poorly reflected the trajectory (LIGER). Overall, 
performing an integrated trajectory across species is challenging 
due to the strong species batch effect.

Scaling shifts integration performance toward batch removal. 
Given the lack of best-practice for preprocessing raw data for data 
integration, we assessed whether integration methods perform bet-
ter with HVG selection or scaling. Comparing the performance 
between integration runs that only differed in one preprocessing 
parameter, we found that HVG selection generally outperformed 

data integration of the full gene set across RNA and simulation 
tasks: for HVGs, 74% of comparisons had a higher overall score; 
81% had better batch removal and 66% had better bio-conservation 
scores. Notable exceptions were trajectory and cell-cycle conserva-
tion scores, which tended to favor full feature integration runs.

We also found that whether or not a method performs bet-
ter with previous scaling depends on the method of choice  
(Fig. 3b). Independent of the method, scaling resulted in higher batch 
removal scores (79% of comparisons) but lower bio-conservation 
(72% of comparisons). This observation is consistent with unscaled 
data performing better in our label-free conservation metrics. 
Although scaling aided integration across species in several meth-
ods, it did not lead to a better conservation of the trajectory, as even 
the best trajectory-conserving methods did not integrate perfectly 
across species in the human or mouse task.

scANVI, Scanorama and scVI perform best for scRNA-seq. 
To evaluate overall performance of data integration methods 
across scRNA-seq and simulation tasks, methods can be ranked 
by their overall scores. Assuming there is a single, optimal way in 
which to run an integration method, we ranked methods by their 
top-performing preprocessing combination, which also indicated to 
users how best to run each integration method (Fig. 3b). The opti-
mal preprocessing combinations of scGen, BBKNN, Scanorama, 
trVAE, scVI, scANVI, Seurat v3 CCA, FastMNN, Harmony and 
SAUCIE were consistent across tasks. Conos, which incorporates 
HVG selection and scaling within its method, performed slightly 
better on full feature input with scaling applied depending on 
the task. In comparison, the performance of MNN, ComBat and 
Seurat RPCA was better using HVG selection, with scaling having 
little effect on the output except a slightly improved performance 
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well as their usability and scalability. Methods that failed to run for a particular task were assigned the unintegrated ranking for that task. an asterisk after 
the method name (scaNVI and scGen) indicates that, in addition, cell identity information was passed to this method. For ComBat and MNN, usability and 
scalability scores corresponding to the Python implementation of the methods are reported (Scanpy and mnnpy, respectively).
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in tasks with stronger batch effects. The performance of DESC and 
LIGER was not consistently better with a particular preprocessing 
combination, although preprocessing did affect their performance 
in some tasks.

Given that the complexity of a task affects the appropriateness 
of a method, we ranked methods excluding simulations, based 
only on real data tasks that better represent the challenges typically 
faced by analysts. Overall, the embeddings output by Scanorama, 
scANVI and scVI perform best, whereas SAUCIE and DESC per-
form poorly. These results are remarkably consistent across tasks for 
integrating real data. Of note, the corrected gene-expression matrix 
from scGen was ranked first most frequently, but it was penalized 
for not running on the 1 million mouse brain task in 4 days on a 
CPU. In contrast, Harmony ranked outside the top third of methods 
for more complex real data tasks, but was favorable for simulations 
and real data with less complex biological variation.

The methods with a higher level of abstraction tended to rank 
higher (in particular comparing Scanorama and FastMNN’s embed-
dings and corrected expression matrix output). In general, methods 
based on mutual nearest neighbors to find anchors between batches 
(for example, Scanorama and FastMNN) tended to perform well. 
Similarly, the deep learning-based methods that were aided by cell 
annotations produced integrated outputs that could integrate even 
across the strongest batch effects while conserving biological varia-
tion. Other autoencoder-based frameworks such as scVI and trVAE 
tended to perform better in tasks with more cells and complex 
batch structure. This was particularly noticeable for scVI, as trVAE 
did not scale to tasks of this size without graphical processing unit 
(GPU) hardware.

scATAC-seq integration performance depends on feature space. 
Several of the benchmarked data integration methods have been used 
to integrate datasets across modalities13,18. With the growing avail-
ability of datasets, removing batch effects within scATAC-seq data 
is also becoming an application of interest. To test whether perfor-
mance of scRNA-seq integration methods transfers to scATAC-seq 
data, we integrated three datasets of chromatin accessibility for 
mouse brain generated by different technologies (Methods).

In contrast to gene expression that is only defined on genes, 
chromatin accessibility is measured across the whole genome and 
can thus be represented in different feature spaces. To evaluate the 
impact of feature spaces on data integration, we preprocessed each 
of our scATAC-seq datasets into peaks, windows and genes (that is, 
gene activity; Methods). In each feature space, we considered two 
integration scenarios: the small integration scenario with three bal-
anced batches (one batch from each dataset), and the large integra-
tion scenario with 11 nested batches from the three datasets of very 
different sizes (proportion of cells per dataset of 5%, 20% and 75%; 
Supplementary Data 2). To restrict the feature space, we used only the 
most variable peaks, windows or genes that overlap between datas-
ets (Methods and Supplementary Note 3). In summary, we evaluated 
the performance of 19 data integration outputs on six scATAC-seq 
tasks (Table 1) using 11 evaluation metrics (feature-level metrics 
were not applicable, see Supplementary Table 2).

Overall, most of the methods performed poorly for batch cor-
rection across ATAC tasks (Fig. 4, Extended Data Figs. 5 and 6, 
Supplementary Figs. 19–30 and Supplementary Note 3). Indeed, 
many methods worsened the data representation: only 27% of inte-
gration outputs performed better than the best unintegrated result 
(on peaks, Fig. 4a and Extended Data Figs. 5 and 6) compared to 
85% on RNA tasks. Gene activities were particularly poorly suited 
to represent scATAC-seq data. Even unintegrated data in gene activ-
ity space lacked biological variation in cell identities compared to 
the same data on peaks or windows. This is also reflected in the 
poorer bio-conservation scores when comparing unintegrated 
data between feature spaces. Although features overlap between 

gene activities and scRNA-seq data, of the methods that performed 
well on RNA data only scANVI, scVI and scGen consistently 
performed well on this feature space (Fig. 4b). Indeed, the mean 
bio-conservation score for integration outputs on gene activity 
space is substantially lower than on peaks and windows (genes 0.39; 
peaks 0.61; windows 0.59); although removal of biological variance 
leads to stronger batch removal (mean batch removal score on genes 
0.66; peaks 0.50; windows 0.47).

Focusing on peaks and windows, which represent more infor-
mative feature spaces for scATAC-seq data, LIGER performed con-
sistently well (Fig. 4b and Supplementary Figs. 19–22). Although 
ComBat was ranked among the top methods overall (Fig. 4b), the 
method underperformed in the small ATAC tasks (Supplementary 
Figs. 19 and 21) and partially failed to resolve nested batch effects in 
the large integration task (Supplementary Figs. 26 and 28). Several 
other methods, such as Seurat v3 RPCA and BBKNN (Fig. 4b), also 
performed well (and scored better on bio-conservation), especially 
in the small ATAC tasks (Supplementary Figs. 19 and 21). Yet, 
these often left batch structure within cell-type clusters and thus 
failed to fully integrate batches (Supplementary Figs. 25–28 and 
Supplementary Note 3). In contrast, LIGER and Harmony, which 
focus on batch removal over bio-conservation (Fig. 4c), fully merged 
batches within cell-type clusters. This trend could also be seen on 
the large ATAC peak and window tasks, which proved prohibitively 
large for most methods due to poor scaling with the number of fea-
tures (Extended Data Fig. 8).

While LIGER and Harmony’s focus on batch removal indicates 
that scATAC-seq data integration requires a stronger focus on the 
removal of batch effects, these two methods balance batch effect 
removal and bio-conservation differently. LIGER performs stronger 
batch removal than Harmony, although it leaves some batch struc-
ture within cerebellar granule cells on large ATAC tasks. In con-
trast, Harmony comparatively focuses more on the conservation 
of biological variation, but still partially overlaps smaller neuronal 
subtype clusters (Fig. 4c). LIGER, however, also created an artificial 
biological substructure in the integrated data from a single batch 
when this was not apparent in unintegrated batches (small peak and 
window tasks, Supplementary Figs. 25 and 27).

Scalability and usability. Monitoring the CPU time and peak 
memory use reported by our Snakemake pipeline (Extended Data 
Fig. 7 and Methods), we found that ComBat, BBKNN and SAUCIE 
performed best in terms of runtime and scVI, scANVI and BBKNN 
are the most memory efficient. The runtime of scVI and scANVI 
did not increase with the dataset size due to a heuristic that was 
suggested to scale training epochs with the number of data points. 
Given runtime and memory limitations imposed in our benchmark, 
trVAE could not integrate datasets with >34,000 cells, while Seurat 
v3, MNN and scGen failed to integrate datasets with >100,000 cells 
(Supplementary Data 3). As trVAE and scGEN are optimized for 
GPU infrastructure, their computational burden could be allevi-
ated by using a different computational setup. Furthermore, MNN 
scaled least favorably in CPU time, while scGEN and trVAE used 
most CPU time on the tasks we tested.

As expected, using more features led to both longer runtimes and 
higher memory usage. In contrast, data scaling had little influence 
on CPU time, but reduced data sparsity when scaling did increase 
peak memory use.

Poor method scalability particularly affected scATAC-seq inte-
gration, which typically has a larger feature space. In particular, 
MNN scales poorly to larger feature spaces both in CPU time and 
memory usage, while Conos is the least affected (Extended Data 
Fig. 8). Overall, only seven out of 16 methods could be run on the 
large ATAC integration tasks for peaks and windows (with >94,000 
features). This poor scalability directly hampers the usability of 
integration methods for this modality.
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We assessed the usability of methods building on criteria previ-
ously applied to evaluate trajectory inference methods31 (Methods 
and Extended Data Fig. 9). Most of the methods are easy to use 

given the availability of tutorials, function documentation and 
open source code. However, the activity of the GitHub repository  
and published evidence on the robustness of the method and its 
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accuracy on real and simulated data are distinguishing factors. 
Overall, Harmony, Seurat v3 and BBKNN have the best usability 
for new users. In contrast, DESC, scANVI and trVAE are lacking in 
usability at the time of writing as they lack function documentation 
or high-quality tutorials.

Discussion
We benchmarked 16 integration methods with four preprocessing 
combinations on 13 integration tasks via 14 metrics that measure 
tradeoffs between batch integration and conservation of biological 
variance. Overall, we observed that method performance is depen-
dent on the complexity of the integration task for RNA and simula-
tion scenarios. For example, the use of Harmony is appropriate for 
simple integration tasks with distinct batch and biological structure; 
however, this method typically ranks outside the top three when 
used for complex real data scenarios, which is in agreement with 

recent benchmarks on simpler batch structures9,28. In contrast, on 
more complex integration tasks, Scanorama (embeddings) and 
scVI worked well. Methods that used cell annotations to integrate 
batches (scGen and scANVI) performed well across tasks.

Our overall rankings were based on metrics measuring differ-
ent aspects of integration success (for an overview, see the web-
site and Supplementary Figs. 31–39). For example, while certain 
bio-conservation metrics prioritized clearly separated cell clusters, 
others measured continuous cellular variation such as trajectories 
and the cell-cycle, or evaluated gene-level output. This diversity 
of metrics further ensured that, even for integrated graph out-
puts, it was possible to measure three batch removal and three 
bio-conservation metrics (Supplementary Table 2). Thus, no indi-
vidual method ranked highly only by optimizing a single metric, for 
example, BBKNN, for which the underlying optimization function is 
similar to the graph iLISI metric. Our metric aggregation approach 
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follows best practices for robust ranking in machine learning tasks32 
and indeed produced consistent overall rankings when compared 
to alternatives31 (overall rank correlation, Spearman’s R > 0.96 for  
all tasks).

As expected, we observed a consistent tradeoff between 
bio-conservation and batch effect removal. While BBKNN and 
Seurat v3 tended to remove batch variation, scANVI and scGen 
prioritized bio-conservation. Learning a more regularized implicit 
latent space of each batch mediated stronger batch removal while 
also removing biological variation. For example, Seurat v3 CCA 
removed variation within cells from a single batch that other-
wise showed substructure in unintegrated data (lung task in 
Supplementary Note 3).

Scaling the input data typically shifted results toward better 
batch removal but worse bio-conservation, while HVG selection 
improved overall performance. Notably, only metrics that measured 
particular functions or pathways (for example, cell cycle) performed 
better with full gene sets. This suggests that biological functions 
are better captured in integrated data if the relevant gene sets are 
included in the integration.

scATAC-seq batch effects were only consistently overcome by 
LIGER and Harmony, which prioritize batch removal over conser-
vation of biological variation. Notably, these methods performed 
particularly well on the peak and window feature space, which 
conserves cell-type structure better than gene activity features. In 
general, the choice of feature space strongly determines the trad-
eoff between batch removal and bio-conservation on scATAC-seq 
data: peak and window feature spaces conserve biological variation, 
while gene activity reduces variation between cells but also between 
batches. Thus, scANVI, which strongly focuses on bio-conservation, 
is the top-performing method on gene activities. While alternative 
choices of gene activity scoring may improve this feature space33,34, 
our results indicate that peaks or windows are better suited to inte-
grate and analyze scATAC-seq data. In general, methods that per-
form well on RNA tasks tend to perform poorly on scATAC-seq 
data as these often focus on bio-conservation. This is particularly 
noticeable for the methods that use PCA or singular value decom-
position dimensionality reduction (FastMNN, Scanorama, Conos 
and SAUCIE), indicating that covariance may not sufficiently cap-
ture the nonlinear variation in this data modality. Instead, dimen-
sionality reduction approaches designed for scATAC-seq data35 in 
combination with an MNN approach as implemented in FastMNN 
or Scanorama may represent a promising avenue for future integra-
tion approaches for this modality.

In general, deep learning methods showed variable performance: 
while scANVI, scGen and scVI were top performers, trVAE, DESC 
and SAUCIE performed poorly. Notably, while scGen and scANVI 
benefited from cell identity labels to perform well across tasks, scVI 
and trVAE performed better with increasing cell numbers and batch 
complexity. scVI performed particularly well when the task con-
tained complex batch effects (for example, microwell-seq, single-cell 
and single nuclei, or scATAC-seq data) and sufficient numbers of 
cells were present to fit these effects. With more tunable parameters, 
deep learning methods are more complex than other benchmarked 
methods and are more likely to require larger input data and sepa-
rate hyperparameter optimization for optimal performance; how-
ever, this also gives them the flexibility to fit complex batch effects. 
For scVI, scANVI and scGen, a parameter set optimized for general 
data integration was used (extracted from the respective tutorials). 
In contrast, SAUCIE and DESC were optimized for simpler tasks 
such as clustering, and trVAE was optimized for the more general 
and difficult task of perturbation modeling. Thus, it is unsurpris-
ing that DESC only performed well in the simulated tasks (and the 
small ATAC gene task) with a clear, simple cluster structure. These 
parameterization choices also affect method scalability: while 
SAUCIE and DESC were quick to run, trVAE could not be run on 

the larger, complex tasks without GPU hardware. Parameter optimi-
zation, while out of scope here, is likely to improve the performance 
of any integration method (for example, see DESC parameter opti-
mization in Supplementary Fig. 40). scVI and scANVI also per-
formed well integrating data from full-length protocols as well as 
with binary scATAC-seq data, although these data violate the noise 
model assumption of the method. As the availability of data and 
accessibility of GPU hardware increases, we expect the performance 
of neural network methods to overtake that of their counterparts, as 
has occurred in the field of imaging36,37.

As a general conclusion, we would advise to choose an integra-
tion method according to three criteria: usability, scalability and 
expected performance (Fig. 5a). While all methods were found 
usable, their output type can limit the potential downstream applica-
tions of integrated data. For example, integrated graphs provide nei-
ther relative distances between cells nor corrected gene-expression 
values that may be required for scoring functional gene programs or 
performing trajectory inference.

Considering scalability, one might want to rapidly test how inte-
gration affects a dataset and thus opt for BBKNN. In contrast, larger 
datasets may require methods to scale well with the number of cells 
or features (particularly for scATAC-seq tasks), and availability of 
GPU infrastructure may direct method choice toward deep learn-
ing approaches.

The expected performance of an integration method can derive 
from the overall results of this study, and from details of the task for 
which the integration is needed. If cell identity labels are known, 
it is always beneficial to integrate scRNA-seq batches via scANVI 
or scGen (for example, as in the recent heart cell atlas38). In the 
absence of labels, given no further information on the integra-
tion task, we recommend the top-performing integration methods 
Scanorama and scVI, especially for sufficiently large datasets. For 
(smaller) tasks with distinct biological signal, Harmony may be use-
ful. Accounting for task details, the remaining considerations can 
be divided into five criteria: (1) the strength of the expected batch 
effect, (2) the need to discern nuanced cell states or recover gene 
modules, (3) the degree of confounding between batch and bio-
logical signals, (4) the existence of continuous cellular phenotypes 
(trajectories) and (5) compositional shifts in the data (Fig. 5a). We 
can qualitatively evaluate the strength of various batch effect con-
tributors by the challenge that our diverse set of integration tasks 
presented to the benchmarked methods (Fig. 5b). Methods that can 
remove strong batch effects also tend to remove nuanced biological 
signals or require cell identity labels obtained via per-batch data 
processing. Thus, if the aim is to find rare cell types and nuanced 
biological variation, we recommend Scanorama. However, if a 
broad overview of the data in the presence of strong batch effects is 
required, we recommend BBKNN or Seurat v3 for smaller datasets. 
Given sufficient numbers of cells, scVI has shown that it is able 
to remove strong batch effects while only sacrificing minimal bio-
logical variation. Alternatively, scANVI and scGen succeed in inte-
grating across strong batch effects while retaining most nuanced 
biological variation if this is encoded into the cell identity labels 
these methods use.

In the presence of particularly strong batch effects, it is worth 
considering whether removing such an effect is desirable. In the 
present study, we have defined what we consider batch effect and 
biological variation per task, yet the distinction between the two is 
not always straightforward. Effects such as spatial location, species 
or tissue can be regarded as batch or biology. Moreover, retaining 
batch effects in a dataset to preserve all nuanced biological variation 
may be preferable. Here, statistical models can be used to directly 
analyze raw data relying on harmonized cell annotations while 
also accounting for batch effects. This type of modeling may also 
be appropriate across large, aggregated datasets39, for which suffi-
ciently powerful data integration methods do not yet exist.
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Our benchmarking study will help analysts to navigate the 
space of available integration methods, and guide developers 
toward building more efficient methods. Based on the trends we 
have reported, users can select suitable preprocessing and integra-
tion methods for exploratory, integrated data analysis. To enable 
in-depth characterization of method performance on specific tasks, 
we have provided the reproducible scIB-pipeline Snakemake pipe-
line and the scIB python module for users to easily benchmark their 
particular integration scenario. In addition, we expect that this work 
will become a reference for method developers, who can build on 
the presented scenarios and metrics to assess the performance of 
their newly developed methods on atlas-level data integration tasks.
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Methods
Datasets and preprocessing. We benchmarked data integration methods on 13 
integration tasks: 11 real data tasks and two simulation tasks. For the real data 
tasks, we downloaded 23 published datasets (see Supplementary Data 2 for a 
per-batch overview of datasets). All scRNA-seq datasets were quality controlled 
and normalized in the same way according to published best practices7. Specifically, 
we used scran pooling normalization40 (v.1.10.2 unless otherwise specified) and 
log+1 transformation on count data. For data solely available in transcripts per 
million or reads per kilobase of transcript, per million mapped reads units, we 
performed log+1 transformation without any further normalization. As the datasets 
typically contained different cell identity annotations we mapped these annotations 
by matching annotation names, overlaps of data-driven marker gene sets and 
manual clustering and annotation of cell identities per batch.

For the simulation tasks, data were simulated using the Splatter package41 to 
evaluate data integration methods in a controlled setting. All of our data processing 
scripts are publicly available as Jupyter notebooks and R scripts at github.com/
theislab/scib-reproducibility. For further details on datasets, please see the 
Supplementary Information.

Integration methods. We ran the 16 selected data integration methods according 
to default parameterizations obtained from available tutorials, paper methods or by 
directly contacting method authors. For further details on how each method was 
run, please see the Supplementary Information.

Metrics. We grouped the metrics into two broad categories: (1) removal of batch 
effects and (2) conservation of biological variance. The latter category is further 
divided into conservation of variance from cell identity labels, and conservation of 
variance beyond cell identity labels. Scores from the first category include principal 
component regression (batch), ASW (batch), graph connectivity, graph iLISI and 
kBET. In the second category, label conservation metrics include NMI, ARI, ASW 
(cell-type), graph cLISI, isolated label F1 and isolated label silhouette; label-free 
conservation metrics include cell-cycle (CC) conservation, HVG conservation and 
trajectory conservation.

The metrics were run on different output types (Supplementary Table 2). For 
example, metrics that run on kNN graphs can be run on all output types after 
preprocessing. Similarly, metrics that run on joint embeddings can also be run on 
corrected feature outputs. Preprocessing was performed in Scanpy (v.1.4.5 commit 
d69832a). kNN graphs were computed using the neighbors function where k = 15 
unless otherwise specified. Where a joint embedding was available, this graph was 
computed using Euclidean distances on this embedding, whereas distances were 
computed on the top 50 principal components where a corrected feature matrix 
was output.

NMI. NMI compares the overlap of two clusterings. We used NMI to compare 
the cell-type labels with Louvain clusters computed on the integrated dataset. The 
overlap was scaled using the mean of the entropy terms for cell-type and cluster 
labels. Thus, NMI scores of 0 or 1 correspond to uncorrelated clustering or a 
perfect match, respectively. We performed optimized Louvain clustering for this 
metric to obtain the best match between clusters and labels. Louvain clustering 
was performed at a resolution range of 0.1 to 2 in steps of 0.1, and the clustering 
output with the highest NMI with the label set was used. We used the scikit-learn27 
(v.0.22.1) implementation of NMI.

ARI. The Rand index compares the overlap of two clusterings; it considers both 
correct clustering overlaps while also counting correct disagreements between 
two clusterings42. Similar to NMI, we compared the cell-type labels with the 
NMI-optimized Louvain clustering computed on the integrated dataset. The 
adjustment of the Rand index corrects for randomly correct labels. An ARI of 0 or 
1 corresponds to random labeling or a perfect match, respectively. We also used the 
scikit-learn27 (v.0.22.1) implementation of the ARI.

ASW. The silhouette width measures the relationship between the within-cluster 
distances of a cell and the between-cluster distances of that cell to the closest 
cluster43. Averaging over all silhouette widths of a set of cells yields the ASW, which 
ranges between −1 and 1. The ASW is commonly used to determine the separation 
of clusters where 1 represents dense and well-separated clusters, while 0 or −1 
corresponds to overlapping clusters (caused by equal between- and within-cluster 
variability) or strong misclassification (caused by stronger within-cluster than 
between-cluster variability), respectively.

To evaluate data integration outputs, we used (1) the classical definition of 
ASW to determine the silhouette of the cell labels (cell-type ASW) and (2) a 
modified approach to measure batch mixing. Both metrics were computed on the 
embeddings provided by integration methods or the PCA of expression matrices in 
case of feature output. For the bio-conservation score (1), the ASW was computed 
on cell identity labels and scaled to a value between 0 and 1 using the equation:

cell type ASW = (ASWC + 1)/2,

where C denotes the set of all cell identity labels.

For the batch mixing score (2), we consider the absolute silhouette width, s(i), 
on batch labels per cell i. Here, 0 indicates that batches are well mixed, and any 
deviation from 0 indicates a batch effect:

sbatch(i) = |s(i)|.

To ensure higher scores indicate better batch mixing, these scores are scaled 
by subtracting them from 1. As we expect batches to integrate within cell identity 
clusters, we compute the batchASWj (ref. 11) score for each cell label j separately, 
using the equation:

batch ASWj =
1

|Cj|

∑
i∈Cj

1 − sbatch(i),

where Cj is the set of cells with the cell label j and |Cj| denotes the number of cells 
in that set.

To obtain the final batchASW score, the label-specific batchASWj scores are 
averaged:

batch ASW =

1
|M|

∑
j∈M

batch ASWj .

Here, M is the set of unique cell labels.
Overall, a batchASW of 1 represents ideal batch mixing and a value of 

0 indicates strongly separated batches. We used the scikit-learn27 (v.0.22.1) 
implementation to compute these scores.

Principal component regression. Principal component regression, derived from 
PCA, has previously been used to quantify batch removal11. Briefly, the R2 was 
calculated from a linear regression of the covariate of interest (for example, the 
batch variable B) onto each principal component. The variance contribution of 
the batch effect per principal component was then calculated as the product of the 
variance explained by the ith principal component (PC) and the corresponding 
R2(PCi|B). The sum across all variance contributions by the batch effects in all 
principal components gives the total variance explained by the batch variable as 
follows:

Var (C|B) =

G∑

i=1
Var (C|PCi) × R2

(PCi|B) ,

where Var(C|PCi) is the variance of the data matrix C explained by the ith principal 
component.

Graph connectivity. The graph connectivity metric assesses whether the kNN graph 
representation, G, of the integrated data directly connects all cells with the same 
cell identity label. For each cell identity label c, we created the subset kNN graph 
G(Nc;Ec) to contain only cells from a given label. Using these subset kNN graphs, 
we computed the graph connectivity (GC) score using the equation:

GC =

1
|C|

∑
c∈C

|LCC (G (Nc;Ec))|
|Nc|

.

Here, C represents the set of cell identity labels, |LCC()| is the number of nodes 
in the largest connected component of the graph and |Nc| is the number of nodes 
with cell identity c. The resultant score has a range of (0;1], where 1 indicates that 
all cells with the same cell identity are connected in the integrated kNN graph and 
the lowest possible score indicates a graph where no cell is connected. As this score 
is computed on the kNN graph, it can be used to evaluate all integration outputs.

kBET. The kBET algorithm (v.0.99.6, release 4c9dafa) determines whether the 
label composition of a k nearest neighborhood of a cell is similar to the expected 
(global) label composition11. The test is repeated for a random subset of cells, and 
the results are summarized as a rejection rate over all tested neighborhoods. Thus, 
kBET works on a kNN graph.

We computed kNN graphs where k = 50 for joint embeddings and corrected 
feature outputs via the Scanpy preprocessing steps (previously described). To test 
for technical effects and to account for cell-type frequency shifts across datasets, 
we applied kBET separately on the batch variable for each cell identity label. Using 
the kBET defaults, a k equal to the median of the number of cells per batch within 
each label was used for this computation. Additionally, we set the minimum and 
maximum thresholds of k to 10 and 100, respectively. As kNN graphs that have 
been subset by cell identity labels may no longer be connected, we computed 
kBET per connected component. If >25% of cells were assigned to connected 
components too small for kBET computation (smaller than k × 3), we assigned a 
kBET score of 1 to denote poor batch removal. Subsequently, kBET scores for each 
label were averaged and subtracted from 1 to give a final kBET score.

We noted that k-nearest-neighborhood sizes can differ between graph-based 
integration methods (for example, Conos and BBKNN) and methods in which the 
kNN graph is computed on an integrated embedding. This difference can affect 
the test outcome because of differences in statistical power across neighborhoods. 
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Thus, we implemented a diffusion-based correction to obtain the same number 
of nearest neighbors for each cell irrespective of integration output type 
(Supplementary Note 1). This extension of kBET allowed us to compare integration 
results on kNN graphs irrespective of integration output format.

Graph LISI. The LISI, a diversity score, was proposed to assess both batch 
mixing (iLISI) and cell-type separation (cLISI)21. LISI scores are computed from 
neighborhood lists per node from integrated kNN graphs. Specifically, the inverse 
Simpson’s index is used to determine the number of cells that can be drawn from a 
neighbor list before one batch is observed twice. Thus, LISI scores range from 1 to 
N, where N is the total number of batches in the dataset.

Typically, neighborhood lists to compute LISI scores are extracted from 
weighted kNN graphs with k = 90 nearest neighbors at a fixed perplexity of 
p =

1
3 k. These nearest neighbor graphs are constructed using Euclidean distances 

on PCA or other embeddings. In contrast, integrated graphs that are output 
by methods such as Conos or BBKNN typically contain far fewer than k = 90 
neighbors. Running LISI metrics with differing numbers of nearest neighbors 
per node results in differing sensitivities per neighborhood and thus skews any 
comparison with graph-based integration outputs. Thus, the original LISI score is 
not applicable to graph-based outputs.

To extend LISI graph-based integration outputs, we developed graph LISI, 
which uses the integrated graph structure as an embedded space for distance 
calculation. The calculated graph distances are then used to determine a 
consistent number of nearest neighbors per node. We used the shortest path 
lengths computed via a custom scalable reimplementation of Dijkstra’s algorithm44 
as a graph-based distance metric (see Supplementary Note 2 for details). Our 
graph LISI extension produces consistent metric values with the standard LISI 
implementation for non-graph-based integration outputs (Supplementary Fig. 41). 
Additionally, we sped up graph LISI scoring via a fast, parallel C++ implementation 
that scales to millions of cells.

As LISI scores range from 1 to B (where B denotes the number of 
batches), indicating perfect separation and perfect mixing, respectively, we 
rescaled them to the range 0 to 1. For iLISI and cLISI this involved a two-step 
process. First, we computed the median across neighborhoods per method: 
cLISI = median f(x), x ∈ X ; iLISI = median g(x), x ∈ X . Second, we rescaled 
the LISI scores as follows: cLISI : f(x) =

B−x
B−1, where a 0 value corresponds to low 

cell-type separation and iLISI : g(x) =
x−1
B−1, where a 0 value corresponds to low 

batch integration.

Isolated label scores. We developed two isolated label scores to evaluate how well 
the data integration methods dealt with cell identity labels shared by few batches. 
Specifically, we identified isolated cell labels as the labels present in the least 
number of batches in the integration task. The score evaluates how well these 
isolated labels separate from other cell identities.

We implemented the isolated label metric in two versions: (1) the best 
clustering of the isolated label (F1 score) and (2) the global ASW of the isolated 
label. For the cluster-based score, we first optimize the cluster assignment of the 
isolated label using the F1 score across louvain clustering resolutions ranging from 
0.1 to 2 in resolution steps of 0.1. The optimal F1 score for the isolated label is then 
used as the metric score. The F1 score is a weighted mean of precision and recall 
given by the equation:

F1 = 2 ×
precision × recall
precision + recall .

It returns a value between 0 and 1, where 1 shows that all of the isolated label 
cells and no others are captured in the cluster. For the isolated label ASW score, 
we compute the ASW of isolated versus nonisolated labels on the PCA embedding 
(ASW metric above) and scale this score to be between 0 and 1. The final score for 
each metric version consists of the mean isolated score of all isolated labels.

HVG conservation. The HVG conservation score is a proxy for the preservation 
of the biological signal. If the data integration method returned a corrected data 
matrix, we computed the number of HVGs before and after correction for each 
batch via Scanpy’s highly_variable_genes function (using the ‘cell ranger’ flavor). If 
available, we computed 500 HVGs per batch. If fewer than 500 genes were present 
in the integrated object for a batch, the number of HVGs was set to half the total 
genes in that batch. The overlap coefficient is as follows:

overlap (X, Y) =

|X ∩ Y|
min (|X| , |Y|)

,

where X and Y denote the fraction of preserved informative genes. The overall 
HVG score is the mean of the per-batch HVG overlap coefficients.

Cell-cycle conservation. The cell-cycle conservation score evaluates how well 
the cell-cycle effect can be captured before and after integration. We computed 
cell-cycle scores using Scanpy’s score_cell_cycle function with a reference gene 
set from Tirosh et al.45 for the respective cell-cycle phases. We used the same set 
of cell-cycle genes for mouse and human data (using capitalization to convert 

between the gene symbols). We then computed the variance contribution of 
the resulting S and G2/M phase scores using principal component regression 
(Principal component regression), which was performed for each batch separately. 
The differences in variance before, Varbefore, and after, Varafter, integration were 
aggregated into a final score between 0 and 1, using the equation:

CC conservation = 1 −
|Varafter − Varbefore|

Varbefore
.

In this equation, values close to 0 indicate lower conservation and 1 indicates 
complete conservation of the variance explained by cell cycle. In other words, the 
variance remains unchanged within each batch for complete conservation, while 
any deviation from the preintegration variance contribution reduces the score.

Trajectory conservation. The trajectory conservation score is a proxy for the 
conservation of the biological signal. We compared trajectories computed after 
integration for certain clusters that had been manually selected during the data 
preprocessing step. Trajectories were computed using diffusion pseudotime 
implemented in Scanpy (sc.tl.dpt). We assumed that trajectories found in the 
unintegrated data for each batch gave the most accurate biological signal. 
Therefore, the starting cell of the trajectory, after integration, was defined by 
selecting the most extremal cell from the cell-type cluster that contained the 
starting cells of the pre-integration diffusion pseudotime, which was based on the 
first three diffusion components (see the immune cell task description for more 
details). Only cells from the largest connected component of the neighborhood 
graph were considered.

We computed Spearman’s rank correlation coefficient, s, between the 
pseudotime values before and after integration (using the function pd.series.corr() 
in the Pandas46 package; v.1.1.1). The final score was scaled to a value between 0 
and 1 using the equation 

trajectory conservation = (s + 1)/2.

Values of 1 or 0 correspond to the same order of cells on the trajectory before 
and after integration or the reverse order, respectively. In cases where the trajectory 
could not be computed, which occurs when kNN graphs of the integrated data 
contain many connected components, we set the value of the metric to 0.

Ranking and metric aggregation. Metrics were run on the integrated and 
unintegrated AnnData47 objects. We selected the metrics for evaluating 
performance based on the type of output data (Supplementary Table 2). For 
example, metrics based on corrected embeddings (Silhouette scores, principal 
component regression and cell-cycle conservation) were not run where only a 
corrected graph was output.

The overall score, Soverall,i, for each integration run i was calculated by taking the 
weighted mean of the batch removal score, Sbatch,i, and the bio-conservation score, 
Sbatch,i, following the equation:

Soverall,i = 0.6 × Sbio,i + 0.4 × Sbatch,i .

In turn, these partial scores were computed by averaging all metrics that 
contribute to each score via:

Sbio,i = 1
|Mbio|

∑
mj∈Mbio

f
(
mj (Xi)

)
, and

Sbatch,i = 1
|Mbatch|

∑
mj∈Mbatch

f
(
mj (Xi)

)
.

Here, Xi denotes the integration output for run i and Mbio and Mbatch denote the 
set of metrics that contribute to the bio-conservation and batch removal scores, 
respectively. Specifically, Mbio contains the NMI cluster/label, ARI cluster/label, 
cell-type ASW, isolated label F1 and silhouette, graph cLISI, cell-cycle conservation, 
HVG conservation and trajectory conservation metrics, while Mbatch contains 
the PCR batch, batchASW, graph iLISI, graph connectivity and kBet metrics. To 
ensure that each metric is equally weighted within a partial score and has the same 
discriminative power, we min–max scaled the output of every metric within a task 
using the function f(), which is given by:

f (Y) =

Y − min(Y)
max(Y) − min(Y) .

Notably, using z scores (previously used for trajectory benchmarking31) instead 
of min–max scaling gives similar overall rankings (Spearman’s R > 0.96 for all tasks; 
using scipy.stats.spearmanr from Scipy48 v.1.4.1). Our metric aggregation scheme 
follows best practices for ranking methods in machine learning benchmarks by 
taking the mean of raw metric scores before ranking32. Using this approach, we 
were able to compute comparable overall performance scores even when different 
numbers of metrics were computed per run.

Overall method rankings across tasks (for example, Fig. 3b) were generated 
from the overall scores for each method in each task (without considering 
simulation tasks). We ranked the methods in each task and computed an average 
rank across tasks. Methods that could not be run for a particular task were 
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assigned the same rank as unintegrated data on this task. For scRNA-seq tasks, 
we chose the best performing combination of features (HVG or full features) and 
scaling flavors for each integration method, and then ranked these from best- to 
worst-performing to give a final ranking per task. By taking the mean of these 
per-task rankings we ordered the methods by overall performance across tasks.

Benchmarking setup. All integration runs were performed using our Snakemake 
pipeline. Methods were tested with scaled and unscaled data as input, using the 
full feature (gene/open chromatin window or peak) set or only HVGs. Where 
HVGs were used, the top 2,000 were selected using a custom method, which 
selected HVGs in a manner unaffected by batch variance. Specifically, we initially 
built the hvg_batch function on top of the highly_variable_genes function from 
Scanpy. Using the standard function from Scanpy, we obtained the top 2000 
HVGs per batch with the cell_ranger flavor. The list of HVGs was ranked first by 
the number of batches in which the genes were highly variable and second by the 
mean dispersion parameter across batches; the top 2,000 were then selected. This 
hvg_batch function is freely available as part of the scIB module. Scaled data have 
zero mean and unit variance per gene; this was performed by calculating z scores 
of the expression data using Scanpy’s sc.pp.scale function applied separately to each 
batch (scale_batch function in scIB). HVG selection and scaling were not applied 
in the ATAC tasks, as these are not typical steps in an ATAC workflow.

Data integration runs were performed with 24 cores and 48 threads available 
to each method (although methods were required to detect available cores without 
being passed this information); 16 GB of memory per core and 131 GB of shared 
swap memory were available. Thus, up to 323 GB of memory was available for 
each run. The runtime limit was set to 4 d (96 h) for RNA runs and 2 d (48 h) for 
ATAC runs. Some methods ran out of time or memory and were assigned NA 
values for the respective integration task. The integration methods were run in 
separate conda environments for R and Python methods to ensure no clashes in 
dependencies. Details on how to set up these environments can be found on the 
scIB GitHub repository (www.github.com/theislab/scib). We converted between R 
and Python data formats using anndata2ri (www.github.com/theislab/anndata2ri) 
and conversion functions in LIGER and Seurat.

Usability assessment. We assessed the usability of integration methods, via an 
adapted objective scoring system. A set of ten categories were defined (adapted 
from Saelens et al.31) to comprehensively evaluate the user-friendliness of each 
method (Extended Data Fig. 9 and Supplementary Data 6). The first six categories, 
grouped under a Package score (open source, version control, unit testing, GitHub 
repository, tutorial and function documentation), assess the quality of the code, its 
availability, the presence of a tutorial to guide users through one or more examples, 
GitHub issue activity and responsiveness and (ideally) usage in a nonnative 
language (that is, from Python to R or vice versa). The other four categories, 
belonging to a Paper score (peer review, evaluation of accuracy, evaluation of 
robustness and benchmarking), assess whether the method was published in a 
peer-reviewed journal, how the paper evaluated the accuracy and robustness of the 
method, and the inclusion of a comparison with other published algorithms in the 
paper. Each category evaluated one or multiple related aspects. The mean scores 
for each category were averaged (mean) to compute two partial scores (Package 
and Paper), which were summed up to one final usability score. Supplementary 
Data 6 reports scores and references collected, to the best of our knowledge, for 
each usability term considered. In particular, we sought information from multiple 
sources, such as GitHub repositories, Bioconductor vignettes, Readthedocs 
documentation, original manuscripts and supplementary materials (last updated 
on 17 December 2020). When multiple package versions were available, we 
considered only the documentation corresponding to the package version used 
in this benchmarking. For two integration methods, ComBat and MNN, we 
computed two separate Package scores corresponding to their original R packages 
and to the Python implementations that were used in this benchmark.

The GitHub scores were calculated using information downloaded from the 
GitHub API using the gh R package (last updated on 16 October 2020). This 
included basic information about the repository itself as well as details about 
posted issues and comments. From this information we calculated two scores that 
measure issue activity and issue responsiveness. The activity score was calculated 
as:

activity = log10
(number of closed issues

repository age in years + 1
)

To get the response score we first calculated a first response time for each issue. 
We defined the response time as the time until either there was a comment from 
someone other than the issue author or the issue was closed. If the issue was still 
open it was ignored. For each repository we then calculated the median time until 
first response (in days) and the response score was calculated as:

response = 30 − (median response time)

Subtracting from 30 means faster responses get higher scores and makes  
sure that any repository with a median response faster than a month gets a  
positive score.

Both scores were rescaled between zero and one to get the final values.

Scalability assessment. The scalability of all data integration tools was assessed 
according to CPU time and peak memory use. For each run of the Snakemake 
pipeline, we used the Snakemake benchmarking function to measure time and 
peak memory use (max PSS). To score time and memory usage, we used a linear 
regression model to fit time and memory versus the number of cells on a log-scale 
separately for each method and each preprocessing combination (completed with 
curve_fit from scipy.optimize, scipy v.1.3.0). The fit results are shown in Extended 
Data Fig. 7. Each fit had a slope and an intercept calculated as follows:

f(x) = a × log(x) + b + ε.

These values were used to compute each area under the curve (AUC) where 
A = 104 and B = 106, which corresponded to the approximate range of data task 
sizes in our study. To derive a scalability score from these areas, we scaled all AUCs 
by the area of the rectangle that covered all curves. Specifically, we chose the width 
as the difference of the log-scaled bounds and the height C as 108 s (≅3 years or 
≅24 days on 48 cores) and 107 MB (≅10 TB), respectively:

AUCscaled =

0.5 × (log(B) − log(A)) × (f(B) + f(A))
(log(B) − log(A)) × log(C) =

1
2 ×

f(B) + f(A)
log(C) .

Methods that scale well have a low AUC and, consequently, a low scaled AUC. 
To obtain a consistent scoring scheme, we inverted the scaled AUCs:

s = 1 − AUCscaled.

Finally, we reported the scalability scores for CPU time and peak memory use 
per method and preprocessing combination.

To evaluate how integration methods scale with increasing numbers of features, 
we fitted further linear regression models with CPU time and memory respectively 
as the dependent variable and both the number of cells and the number of features 
on a log-scale as the independent variables, as follows:

f(x) = β0 + β1 × log(N) + β2 × log(F) + ε,

where f(x) denotes the log-scaled CPU time or memory consumption, N denotes 
the number of cells in the task and F denotes the number of features. This model 
was fit separately for each method using the ordinary least squares fit function ‘ols’ 
from the statsmodels.formula.api module (statsmodels v.0.11.1) on unscaled data 
(using both full feature and HVG preprocessed data, as well as all ATAC results). 
We reported the regression coefficients for both number of cells, β1, and number of 
features, β2, to compare scalability between methods (Extended Data Fig. 8).

Visualization. Inspired by the code of Saelens et al.31, we implemented two plotting 
functions in R. The first visualization displays each integration task separately 
and shows the complete list of tested integration runs ranked by the overall 
performance score. Individual and aggregated scores are represented by circles and 
bars, respectively. The color scheme indicates the overall ranking of each method.

The second visualization provides an overall view of the best performing 
flavors of each integration method. The overall performance scores for the optimal 
preprocessing combination for each method for all tasks is shown as a horizontal 
bar chart. Methods were ranked as detailed in the Ranking and metric aggregation 
section above and bars were shaded by rank. Moreover, we displayed two partial 
usability scores related to package and paper, two scalability scores related to time 
and memory consumption, and the overall scores obtained in the two simulation 
tasks (although these scores were not used for the ranking). Again, bar lengths 
represented scores and the color scheme indicated the ranking.

Results website. Additional results and supplementary figures are available in an 
interactive format at https://theislab.github.io/scib-reproducibility/. This website 
was produced using the rmarkdown package (v.2.3)49 in R (v.4.0.0). Visualizations 
were created with ggplot2 (v.3.3.2)50 and interactive tables with the reactable 
package (v.0.2.2). The drake workflow manager (v.7.12.5)51 was used to build the 
website and the environment was managed using renv (v.0.11.0). Source code for 
the website is available at https://github.com/theislab/scib-reproducibility/tree/
main/website.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
We reprocessed the following public datasets for our integration tasks: pancreas 
GSE81076, GSE85241, GSE86469, GSE84133, GSE81608 (Gene Expression 
Omnibus (GEO)) and E-MTAB-5061 (ArrayExpress); immune cell bone marrow 
GSE120221 and GSE107727 (GEO); immune cell peripheral blood 10X data from 
https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/
pbmc_10k_v3, GSE115189, GSE128066 and GSE94820 (GEO); in addition to the 
Mouse Cell Atlas datasets of bone marrow and peripheral blood downloaded from 
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https://figshare.com/articles/MCA_DGE_Data/5435866. For the lung integration 
task, the Drop-seq data were available from GEO (GSE130148), while the 10X data 
were obtained directly from the authors. For mouse brain (RNA), we obtained the 
raw count matrix for the scRNA-seq dataset from GEO (GSE110823), the annotated 
count matrix (10X Genomics protocol) from Zeisel et al. (http://mousebrain.
org; file name L5_all.loom) and the count matrices per cell type (Drop-seq 
protocol) from Saunders et al. (http://dropviz.org/; DGE by Region section). 
Fluorescence-activated cell-sorted mouse brain tissue data (Smart-seq2 protocol, 
myeloid and nonmyeloid cells, including the annotation file ‘annotations_FACS.
csv’) from Tabula Muris were obtained from figshare (https://figshare.com/projects/
Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_
Mus_musculus_at_single_cell_resolution/27733). For the mouse brain (ATAC) 
integration, we used FASTQ files from Fang et al. (six samples, single-nucleus 
ATAC-seq protocol; retrieved from http://data.nemoarchive.org/biccn/grant/
cemba/ecker/chromatin/scell/raw/) and Cusanovich et al. (four samples, 
combinatorial indexing scATAC-seq protocol; GEO accession number GSE111586) 
and we retrieved fragment and index files from a 10X Genomics dataset for fresh 
adult mouse brain cortex (sample retrieved from https://support.10xgenomics.com/
single-cell-atac/datasets/1.2.0/atac_v1_adult_brain_fresh_5k). Our reprocessed 
versions of these datasets are publicly available as preprocessed Anndata objects on 
Figshare (https://doi.org/10.6084/m9.figshare.12420968 52). The output data from 
all metric runs are available in Supplementary Data 1.

Code availability
Notebooks and R scripts used for data preprocessing, visualization and the code 
for the website is available at https://github.com/theislab/scib-reproducibility. 
The preprocessing, integration and evaluation metric functions with relevant 
parameterizations have been made available is our scIB Python package at 
https://github.com/theislab/scib. Our benchmarking workflow is provided as a 
reproducible Snakemake pipeline at https://github.com/theislab/scib-pipeline. All 
integration and evaluation metric outputs can be viewed on our scIB website at 
https://theislab.github.io/scib-reproducibility/.
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Extended Data Fig. 1 | Trajectories of the best and worst performers on the immune cell human integration task ordered by overall score on the set  
of cells belonging to the erythrocyte lineage. UMaP plots for the unintegrated data (left), the top 4 performers (upper rows a, b and c), and the worst 4 
performers (lower rows a and b). Plots are colored by (a) diffusion pseudotime, (b) batch labels, and (c) cell identity annotations.
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Extended Data Fig. 2 | Diffusion maps of diffusion pseudotime (dpt) trajectories on integrated immune cell human data of the best and worst 
performers ordered by overall score. Diffusion maps of erythrocyte lineage cells of the 4 best (upper rows a, b and c) and 4 worst (lower rows a, b and c) 
integration methods, ordered by the overall score. Plots are colored by (a) diffusion pseudotime, (b) batch labels, and (c) cell identity annotations. In cases 
where it wasn’t possible to compute a trajectory due to disconnected clusters, all cells are colored yellow in (a).
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Extended Data Fig. 3 | Diffusion maps of diffusion pseudotime (dpt) trajectories on integrated immune cell human data of the best and worst 
performers ordered by trajectory score. Diffusion maps of erythrocyte lineage cells of the 4 best (upper row a, b and c) and 4 worst (lower row a, b and c) 
integration methods, ordered by the overall score. Plots are colored by (a) diffusion pseudotime, (b) batch labels, and (c) cell identity annotations. In cases 
where it wasn’t possible to compute a trajectory due to disconnected clusters, all cells are colored yellow in (a).
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Extended Data Fig. 4 | Scatter plots summarizing integration performance on all tasks. Overall batch correction score (x-axis) versus overall 
bio-conservation score (y-axis). Each point is an individual integration run. Point color indicates method, size the overall score and shape the output type 
(embedding, features, graph). Filled points use the full feature set while unfilled points use selected highly variable genes. Points marked with a cross use 
scaled features. Horizontal and vertical lines indicate reference points. Red dashed lines show performance calculated on the unintegrated dataset and 
solid blue lines the median performance across methods for each dataset.
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Extended Data Fig. 5 | Benchmarking results for all small mouse brain tasks for all feature spaces based on scATAC-seq. Metrics are divided into batch 
correction (blue, purple) and bio conservation (pink) categories (see Methods for further visualization details). Overall scores are computed by a 40:60 
weighted mean of these category scores. Methods that failed to run are omitted.
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Extended Data Fig. 6 | Benchmarking results for all large mouse brain tasks for all feature spaces based on scATAC-seq. Metrics are divided into batch 
correction (blue, purple) and bio conservation (pink) categories (see Methods for further visualization details). Overall scores are computed by a 40:60 
weighted mean of these category scores. Methods that failed to run are omitted.
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Extended Data Fig. 7 | Scalability of each data integration method, separated by preprocessing procedure. (a) CPU time for each method (colored dots) 
and data integration task. (b) Maximum memory usage for each method and scenario. Colored lines denote linear fit of log-scaled time or memory vs 
log-scaled dataset size for each data integration method and pre-processing combination. aTaC task results were included as unscaled full feature runs, 
and integration runs on peaks and windows feature spaces were excluded.
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Extended Data Fig. 8 | Scalability of each data integration method in terms of number of cells and features. (a) Regression coefficients for number 
of cells and features on CPU time for each method. (b) Regression coefficients for number of cells and features on maximum memory usage for each 
method. Each dot denotes the regression coefficient of the linear fit of log-scaled time or memory vs log-scaled number of cells + log-scaled number of 
features for each data integration method. all unscaled RNa and aTaC data were modeled to determine the coefficients.
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Extended Data Fig. 9 | usability assessment of data integration methods. The usability of each data integration method was assessed via ten categories 
(labels on the left, see Methods) that consider criteria related to the implementation of the methods (package; dark blue) and information included in 
the original publications (paper; red). Each score is plotted as a heatmap, and methods are ordered by overall usability score. This score is computed as 
the sum of the partial average package and paper usability scores, and plotted on top in a barplot. On the right-hand side, criteria with poor scores across 
methods are highlighted for each category. For the Package scores of ComBat and MNN, we separately considered the original R implementation and the 
Python implementation that was used in this benchmark. Usability was assessed on December 17th, 2020.
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(version 1.1.1), scipy (version 1.3.0, 1.4.1), statsmodels (version 0.11.1), rmarkdown (version 2.3), ggplot2 (version 3.3.2), reactable (version 
0.2.2), drake workflow manager (version 7.12.5), renv (version 0.11.0). Custom code is available in the github repos: www.github.com/
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We re-processed the following public datasets for our integration tasks: pancreas - GSE81076, GSE85241, GSE86469, GSE84133, GSE81608 (GEO), and E-
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MTAB-5061 (ArrayExpress); immune cell bone marrow - GSE120221, GSE107727 (GEO); immune cell peripheral blood – 10X data from https://
support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/pbmc_10k_v3, GSE115189, GSE128066, GSE94820 (GEO); in addition to the Mouse Cell Atlas 
datasets of bone marrow and peripheral blood downloaded from https://figshare.com/articles/MCA_DGE_Data/5435866. For the lung integration task, the Drop-
seq data was available from GEO (GSE130148), while the 10X data was obtained directly from the authors. For mouse brain (RNA), we obtained the raw count 
matrix for the snRNA-seq dataset from GEO (GSE110823), the annotated count matrix (10X Genomics protocol) from Zeisel et al. (http://mousebrain.org; file name 
L5_all.loom), and the count matrices per cell type (Drop-seq protocol) from Saunders et al. (http://dropviz.org/; DGE by Region section). FACS-sorted mouse brain 
tissue data (Smart-seq2 protocol, myeloid and non-myeloid cells, including the annotation file "annotations_FACS.csv") from Tabula Muris were obtained from 
figshare (https://figshare.com/projects/
Tabula_Muris_Transcriptomic_characterization_of_20_organs_and_tissues_from_Mus_musculus_at_single_cell_resolution/27733). For the mouse brain (ATAC) 
integration, we used FASTQ files from Fang et al. (six samples, single nucleus ATAC-seq protocol; retrieved from http://data.nemoarchive.org/biccn/grant/cemba/
ecker/chromatin/scell/raw/) and Cusanovich et al. (four samples, combinatorial indexing scATAC-seq protocol; GEO accession number GSE111586) and we retrieved 
fragment and index files from a 10X Genomics dataset for fresh adult mouse brain cortex (sample retrieved from https://support.10xgenomics.com/single-cell-atac/
datasets/1.2.0/atac_v1_adult_brain_fresh_5k). Our re-processed versions of these datasets are publicly available as pre-processed Anndata objects on Figshare 
(doi: 10.6084/m9.figshare.1242096885). The output data from all metric runs are available in Supplementary Data file D1.
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Blinding There was no group allocation the investigators could be blinded to.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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