nature portfolio

https://doi.org/10.1038/s41592-021-01275-4

Supplementary information

Deep learning improves macromolecule
identificationin 3D cellular cryo-electron
tomograms

In the format provided by the
authors and unedited



Supplementary information

Deep learning improves macromolecule identification
in 3D cellular cryo-electron tomograms

E. Moebel, A. Martinez-Sanchez, L. Lamm, R.D. Righetto, W. Wietrzynski, S. Albert, D. Lariviére,
E. Fourmentin, S. Pfeffer, J. Ortiz, W. Baumeister, T. Peng, B.D. Engel, C. Kervrann



Membranes M1 M2 M3 M4 M5 M6 M7 M8 M9 | Global
Mono-class PSII Fy-score || 0.557 0.465 0.533 0.625 0.789 0.516 0.571 0.588 0.286 | 0.566
Precision || 0.710 0.476 0.800 0.625 0.789 0.727 0.556 0.500 0.400 | 0.643
Recall 0.458 0.455 0400 0.625 0.789 0400 0.588 0.714 0.222 | 0.505
Multi-class PSII Fy-score || 0.632 0.582 0.714 0.737 0.696 0.250 0.562 0.182 0.571 | 0.619
Precision || 0.638 0.485 0.625 0.636 0.593 0.750 0.600 0.250 0.800 | 0.601
Recall 0.625 0.727 0.833 0.875 0.842 0.150 0.529 0.143 0.444 | 0.638
Template Matching PSII | Fj-score | 0.400 0.200 0.355 0.258 0.350 0.279 0.318 0.000 0.286 | 0.313
Precision || 0.556 0.375 0.344 0.571 0333 0.261 0.259 0.000 0.400 | 0.353
Recall 0.312 0.136 0.367 0.167 0.368 0.300 0412 0.000 0471 | 0.281

Supplementary Table 2: Comparison of I’ -scores for the detection of PSIl complexes embedded within native thylakoid membranes (Dataset #4). For the
test tomogram, we ran the DeepFinder mono-class (470 particles) and multi-class (508 particles) strategies, as well as PyTOM template matching (508 particles). For
an even comparison, we thresholded the template matching hits to match the number of picks from the DeepFinder multi-class approach.The scores were measured
after masking the picks to different membranes (M1, M2...) of the test tomogram. These membranes vary in resolution and in the number of PSII complexes they host.




Tomogram

Tomogram
a b
l 7- ¥
™ LI ™ CNN
Scoremap Scoremap Scoremap Scoremap
class 1 class N class 1 e class N
i \ l Segmentation
Localization step
Find local
maxima
Apply score Apply score
threshold threshold Labelmap
Particle candidate Particle candidate ¢ -
positions positions | 'y
¢ L Clustering
_ lusterin
Sub-tomogram Sub-tomogram 3 gt : stering
extraction and extraction and P
alignment alignment .
Particle
positions X
Sub-tomogram Sub-tomogram
classification
Particle
positions y

Max pool (2x2x2)
Max pool (2x2x2)
Up-sample (2x2x2)

Up-sample (2x2x2)
é

)

1]

Extended Data Fig. 1: Two workflows for macromolecule localization in cryo-ET. a, Conventional processing pipeline based on template matching. b, DeepFinder

i

(analysis stage): a multi-class approach able to localize particles of several different macromolecular species in one pass. a, and b, highlight why DeepFinder is
more agile than Template Matching when several macromolecule classes need to be localized. ¢, CNN architecture used in DeepFinder and based on U-Net”’.
The architecture adopts the encoder-decoder paradigm, which produces an output volume with the same size as the input volume. Each green box represents a
convolutional layer. The number of filters n and the filter size s is labeled as n x (s x s x s). All convolutional layers are followed by a ReLU activation function,
except the last layer, which uses a soft-max function. The up-sampling is achieved with up-convolutions (also called “backward-convolution”). Combining feature maps
from different scales is performed by concatenation along the channel dimension. In the end, the total number of architecture parameters is approximately 903k. More
precisely, this number depends slightly on N.;, the number of classes: 902,928 + N.; x 33.
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Extended Data Fig. 2: DeepFinder graphical user interface. a, Training interface composed of a first window for parametrizing the procedure and a second
window for displaying the training metrics in real-time. b, Segmentation interface which also opens a data visualization tool. This tool allows the user to explore the
tomogram with superimposed segmentations. In addition, DeepFinder also incorporates interfaces for tomogram annotation, target generation and clustering (see the
documentation athttps://gitlab.inria.fr/serpico/deep-finder for more information).


https://gitlab.inria.fr/serpico/deep-finder
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Extended Data Fig. 3: Analysis of algorithm performance on the synthetic dataset (SHREC’20 challenge). a, Performance (F;-score) of DeepFinder, UMC
and template matching algorithms and ability of algorithms to discriminate between 12 classes/subclasses of macromolecules. The highest (best) possible value of an
Fi-score is 1.0 and the lowest (worst) possible value is 0. The scores of template matching were provided by the SHREC’20 challenge organizers (Utrecht University,
Department of Information and Computing Sciences and Department of Chemistry). b, Performance of DeepFinder implemented as a multi-class network architecture
and as an architecture made of 12 binary networks. These two architectures differ only by the number of output neurons. ¢, Influence of the training target generation
method ("shapes” versus "spheres”). In the case of "shapes”, the exact shapes of the macromolecules have been used to annotate the tomograms. In the case of
"spheres”, the shape and the orientation of macromolecules are not needed to generate the training targets. This analysis used 8 tomograms for training, 1 tomogram

for validation, and 1 tomogram for testing.
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Extended Data Fig. 4: Evolution of F-scores with respect to sizes of the training sets (number of tomograms) on the synthetic SHREC dataset (12
classes). Scores are displayed for both the SHREC 2019 a, and 2020 b, editions. This figure gives an estimation of the amount of annotated data needed to identify
macromolecules. This amount depends on the size of the target macromolecule: smaller targets require more annotations. Each tomogram contains in average 208

macromolecules per class. The macromolecules have been categorized into 4 groups (large, medium, small and tiny). This analysis used 8 tomograms for training, 1

tomogram for validation, and 1 tomogram for testing.
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Extended Data Fig. 5: Evolution of F;-score with respect to training iterations and training set size on real cryo-ET Dataset #2, Chlamydomonas reinhardtii
(3 classes). a, The loss, which quantifies the segmentation quality, is computed for the training set, as well as for the validation set. Comparing both curves allows
assessment of the generalization capabilities of DeepFinder. The curves for both sets should ideally overlap, otherwise it indicates overfitting (the network memorizes
trained samples instead of learning discriminating features). One epoch equals 100 training iterations. b, The F' -score, which quantifies the localization performance,
computed on the test set. The F-score is obtained by comparing the membrane-bound ribosomes found by DeepFinder to expert annotations. The time axis has
been obtained using a Tesla K80 GPU. The curve indicates that competitive particle picking results are obtained after 20 epochs, or 4.3 hours with the required GPU.
This analysis used 21 tomograms for training, 1 tomogram for validation, and 8 tomograms for testing.c, In a similar fashion to Fig.EI this curve provides an estimate of
the quantity of training data required to achieve a competitive result. It appears that this quantity is 1400 ribosomes (9 tomograms), which is a typical size for a cryo-ET
dataset. On first glance, this estimate seems to contradict the estimates in Fig. the numbers do not coincide (the curve labeled "Large” estimates that quantity at 208
particles). Note that SHREC'19 is a synthetic dataset, composed of 12 classes. Here, we are dealing with a real cellular dataset consisting of 3 classes (membrane,
membrane-bound ribosome and cytosolic ribosome). It appears that having a larger number of classes enables the use of smaller training sets. On the other hand,
the case of real data is more difficult, notably because of the presence of "label noise” (errors due to the annotation pipeline) and other sources of signal corruption
such as the missing wedge, the CTF and the low SNR (in part caused by increased molecular crowding inside cells). This analysis 1 tomogram for validation, and 8
tomograms for testing.
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Extended Data Fig. 6: Quantitative analysis of overlap with expert annotations on cellular cryo-ET data (Dataset #2, mb-ribos). We varied the thresholds

of template matching (a) and DeepFinder (b) to compute the Recall (ratio between the number of true positives (TP) and the number of particles in the ground

truth), Precision (ratio between the number of TP and the number of detected particles) and F;-score (2 x (Recall x Precision) / (Recall + Precision)) curves. The

threshold parameter for template matching is the constrained correlation coefficient, and for DeepFinder it is the cluster size, which corresponds to the macromolecule

volume (in voxels). We obtained a maximum F;-score of 0.86 for DeepFinder and a maximum F}-score of 0.50 for template matching (with no post-classification

step, see Extended Data Fig.). Template matching and DeepFinder both have good Recall values, but template matching has a lower Precision than DeepFinder.

This suggests that template matching can be recommended to select many candidates, but a time-consuming post-classification is required to improve Precision.

DeepFinder has much higher Precision values, which confirms the results from the synthetic dataset (SHREC’19 challenge). This analysis used 48 tomograms for

training, 1 tomogram for validation, and 8 tomograms for testing.
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Extended Data Fig. 7: DeepFinder handles ice contamination on the lamella surface. a, Tomogram slice depicting the border of a FIB-milled lamella. The lamella
contains a Chlamydomonas reinhardtii cell, with a lamella surface suffering from ice contamination. b, Tomogram slice with superimposed DeepFinder segmentation.
Most of the ice contamination artifacts have been correctly classified as "background”. Nonetheless, some missclassifications exist, as can be observed in the zoomed-
in boxes (in dashed red). In boxes 1 and 2, DeepFinder confuses some artifacts with membranes, and some features are wrongly classified as membrane-bound
ribosomes. Such missclassifications can be filtered out, either by masking the boundaries of the lamella, or by rejecting segmented objects that are too small (using
the “cluster size” attribute given by the clustering step of the DeepFinder analysis stage). This analysis used 48 tomograms for training, 1 tomogram for validation, and

8 tomograms for testing.
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Extended Data Fig. 8: The generalization potential of DeepFinder on P19 cells. DeepFinder was trained on the Chlamydomonas (algae) dataset and then applied
on a tomogram of mouse P19 cells (EMD-10439). Although the ribosome has a different structure for the two species, for a given voxel size (13.68 A) the structures
are similar enough for DeepFinder to identify and localize mb-ribo particles in a P19 cell. a, Tomographic slice with both the superimposed segmented cell membrane
(gray) and mb-ribo particles (blue). b, Average density from 300 mb-ribo particles. ¢, Histogram of mb-ribo particle distance from the nearest cell membrane. In
this histogram, the maximum mode is located at 136.8 A, which corresponds to the ribosome radius. This analysis used 48 tomograms for training, 1 tomogram for
validation, and 1 tomogram for testing.

10



Supplementary Note 1

Analysis of consensus response

In this note, we examine the complementarity between the two sets of mb-ribo macromolecules found by the experts and
DeepFinder. In the following analysis, we denote the sets obtained by experts and DeepFinder as S and Spr, respectively.
While the overlap Sg N .Spr between both sets was substantial (1,516 particles), there was also a significant number of particles
belonging to Sg \ Spr (220 particles), i.e., the particles annotated by the expert but not found by DeepFinder, and to Spr \ Sg
(356 particles), i.e., particles found by DeepFinder but missed by the expert. We can benefit from the two complementary sets
of particle positions to improve the overall validation rates. The union Sg U Spg of the two sets increases the list of potential
mb-ribo macromolecules, for which a confidence level can be assigned to each set member depending on whether it belongs to
SgNSpr, Spr \ Sg or Spr \ Sg. The particles belonging to Sk N Spp, i.e., found by both methods, are very likely to be
true positives. Meanwhile the particles belonging to Sg \ Spr and Spr \ SEg can be labeled as “suspicious” and require more
investigation. These two non-union sets are relatively small, enabling assignment of the bulk of the high-confidence particles
so the expert can focus on validating the remaining low-confidence particles. In this manner, it is possible to uncover inaccura-
cies in the expert annotations and refine the true-positive particle class, which can further improve the training performance of
DeepFinder.

|:| Spr \ Sk
|:| Se\ Spr
. SprNSe

Analysis of localization consensus between DeepFinder and experts. a, Two tomogram slice ROIs depicting Chlamydomonas reinhardtii cells. b, Membrane-

bound ribosomes mapped into the ROIs. The ribosomes found by DeepFinder but missed by the experts (Spr \ Sg) are blue. The ribosomes found by the experts
but missed by DeepFinder (Sg \ Spr) are yellow. The ribosomes found by both DeepFinder and the experts (Spr N Sg) are green. As expected, members of
Spr N Sg constitute the majority of identified ribosomes. Members of Spr \ Sk tend to be found at locations where the membrane has less contrast (b, left) or
where neighboring ribosomes are close (b, right). Members of Sg \ Spr, which were obtained with the expert pipeline (template matching and CPCA clustering),
may also be located at positions where membrane contrast is low (b, left). Nevertheless, it appears that this pipeline has a tendency of confusing membrane-bound
and cytosolic ribosomes. The proximity of ice-contamination (b, right) also seems to be a factor responsible for missclassifications. This analysis used 48 tomograms
for training, 1 tomogram for validation, and 8 tomograms for testing.
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Analysis of consensus decisions and overlap sets (Dataset #2). a, The central Venn diagram represents the overlap between the mb-ribo sets Spr (found by
DeepFinder) and Sk (annotated by expert). Thus, Sg N SpF is the subset of mb-ribo particles found by both DeepFinder and the experts, Spr \ Sg is the subset
of mb-ribos found by DeepFinder only (and missed by the experts), and Sg \ Spr is the subset of mb-ribo particles found by the experts only (and missed by
DeepFinder). The origin of red arrows pointing to the subtomogram averages Apr, Age};, Ag, A;;f indicate the particle subsets used to compute the averages.
A ribosome density is clearly visible in A p , therefore one can safely assume that the FP rate in Spr \ Sg is low. b, The subtomogram averages A%, . and A,
have been computed using subtomograms sampled from random positions. These averages serve to estimate a lower bound for the FSC curve. The correlation values
equal or below this bound are considered "noise” values, and are caused by alignment bias’. ¢, FSC curves for the above subtomogram averages. The averages
ATDeI{f and Agef have both led to a higher resolution than A p  and A g, implying that the mb-ribo particles in the set Spr \ Sk and in the set Sg \ Spr are more
heterogenous than the mb-ribo particles in the set Spr N Sg. Also, Apr and A g have led to a higher resolution than A%, - and A%, meaning that the impact of

alignment bias is not significant. This analysis used 48 tomograms for training, 1 tomogram for validation, and 8 tomograms for testing.
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