
ARTICLE

Mini-batch optimization enables training of ODE
models on large-scale datasets
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Quantitative dynamic models are widely used to study cellular signal processing. A critical

step in modelling is the estimation of unknown model parameters from experimental data. As

model sizes and datasets are steadily growing, established parameter optimization approa-

ches for mechanistic models become computationally extremely challenging. Mini-batch

optimization methods, as employed in deep learning, have better scaling properties. In this

work, we adapt, apply, and benchmark mini-batch optimization for ordinary differential

equation (ODE) models, thereby establishing a direct link between dynamic modelling and

machine learning. On our main application example, a large-scale model of cancer signaling,

we benchmark mini-batch optimization against established methods, achieving better opti-

mization results and reducing computation by more than an order of magnitude. We expect

that our work will serve as a first step towards mini-batch optimization tailored to ODE

models and enable modelling of even larger and more complex systems than what is cur-

rently possible.

https://doi.org/10.1038/s41467-021-27374-6 OPEN

1 Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Computational Biology, 85764 Neuherberg, Germany.
2 Technische Universität München, Center for Mathematics, Chair of Mathematical Modeling of Biological Systems, 85748 Garching, Germany. 3 Alacris
Theranostics GmbH, 12489 Berlin, Germany. 4 Universität Bonn, Faculty of Mathematics and Natural Sciences, 53115 Bonn, Germany.
✉email: jan.hasenauer@uni-bonn.de

NATURE COMMUNICATIONS |           (2022) 13:34 | https://doi.org/10.1038/s41467-021-27374-6 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27374-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27374-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27374-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-27374-6&domain=pdf
http://orcid.org/0000-0002-7567-3985
http://orcid.org/0000-0002-7567-3985
http://orcid.org/0000-0002-7567-3985
http://orcid.org/0000-0002-7567-3985
http://orcid.org/0000-0002-7567-3985
http://orcid.org/0000-0001-7946-3232
http://orcid.org/0000-0001-7946-3232
http://orcid.org/0000-0001-7946-3232
http://orcid.org/0000-0001-7946-3232
http://orcid.org/0000-0001-7946-3232
http://orcid.org/0000-0001-9963-6057
http://orcid.org/0000-0001-9963-6057
http://orcid.org/0000-0001-9963-6057
http://orcid.org/0000-0001-9963-6057
http://orcid.org/0000-0001-9963-6057
http://orcid.org/0000-0002-4935-3312
http://orcid.org/0000-0002-4935-3312
http://orcid.org/0000-0002-4935-3312
http://orcid.org/0000-0002-4935-3312
http://orcid.org/0000-0002-4935-3312
mailto:jan.hasenauer@uni-bonn.de
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cellular signal processing controls key properties of diverse
mechanisms such as cell division1, growth2,
differentiation3, or apoptosis4. Understanding its highly

dynamic and complex nature is one of the major goals of systems
biology5. A common approach is modelling signaling pathways
using ordinary differential equations (ODEs)6–10. To account for
the complex cross-talk between different pathways, recent models
are growing increasingly large, reaching the boundaries of what is
currently computationally feasible10–14.

Most ODE models contain unknown parameters, e.g., reaction
rate constants, which model training algorithms infer from
measurement data such as immunoblotting15, proteomics12,
quantitative PCR16, or cell viability17. Larger models require more
data to ensure the reliability of parameter estimates and model
predictions18. For models of cancer signaling, public
databases19–22 can be exploited. However, data from different
perturbation experiments correspond to different initial value
problems23, which we refer to as “experimental conditions”. Each
experimental condition is a different vector of input parameters
to the ODE system, which requires independent simulation at
each iteration during model training. Hence, the computation
time scales linearly with the number of experimental conditions.
For large-scale ODE models with several hundred chemical spe-
cies and thousands of experimental conditions, this can take tens
of thousands of computing hours, even with state-of-the-art
methods, such as adjoint sensitivity analysis and hierarchical
optimization10,14.

For the training of ODE models, gradient-based approaches
such as multi-start local optimization23 or hybrid scatter search24

are the best performing methods to date23,24. In multi-start local
optimization, local optimization initializes at many random
starting points in order to globally explore the parameter space.
For small- to medium-scale models, these methods unravel the
structure of local optima and recover the same global optimum
reproducibly23,25. However, for large-scale models, where each
local optimization is computationally expensive, only a small
number of starts are feasible10,12,14. This is one of the main
reasons why satisfactory parameter optimization for large-scale
ODE models is still an open problem26, and why research on
parameter estimation is of major importance27.

In the field of deep learning, where gradient-based local opti-
mization methods are also in use28–31, model training often
involves large datasets, requiring many independent model
evaluations32,33. Mini-batch optimization addresses the issue of
an increase in computation time as the number of experimental
conditions increases34–37: at each step of parameter optimization,
a random subsample—a mini-batch—of the training data informs
the optimization process37,38. Hence, the training requires
simulation of only a fraction of the experimental conditions per
optimization step, which leads to a drastic reduction of compu-
tation time34,37, and may help to avoid convergence towards
saddle points during optimization39.

Sophisticated implementations of many mini-batch optimiza-
tion algorithms are available in state-of-the-art toolboxes for
neural nets, such as TensorFlow36. Conceptually, these frame-
works can mimic simple ODE-solver schemes, e.g., a forward
Euler integration40. However, it is well-known that ODE models
in systems biology typically exhibit stiff dynamics. This makes it
necessary to employ implicit solvers with adaptive time stepping41.
Hence, it is essential to combine advanced methods from both
fields, deep learning and ODE modelling. Furthermore, it is not
clear how hyperparameters of mini-batch optimization methods,
such as the mini-batch size, the learning rate, or the optimization
algorithm affect the optimization process for ODE models.

We implement various mini-batch optimization algorithms for
ODE models. We benchmark these algorithms on small- to

medium-scale ODE models, identify the most important hyper-
parameters for successful parameter optimization, and introduce
algorithmic improvements, which we tailor to ODE modelling.
Then, we transfer the approach to a large-scale model of cancer
signaling10, which we train on a dataset comprising 13,000
experimental conditions—an unprecedented scale for training an
ODE model. For this application example, we benchmark our
approach against state-of-the-art methods10, achieving better
optimization results while reducing the computation time by
more than an order of magnitude. To the best of our knowledge,
this is the first study integrating advanced training algorithms
from deep learning with established tools from ODE modelling.

Results
Implementation of mini-batch optimization algorithms for
ODE models. We assume the time evolution of a vector of state
variables x(t) to be given by the ODE system

_x ¼ f ðt; xðt; θ; ueÞ; θ; ueÞ; xð0Þ ¼ x0ðθ; ueÞ; ð1Þ
where θ is the unknown model parameters and ue is a vector of
known input parameters, which determine the simulated
experiment indexed by e. Hence, ue encodes an experimental
condition, i.e., a distinct initial value problem, such as a specific
biological perturbation experiment. The inference of model
parameters θ from experimental data is based on reducing a
distance measure between simulated model outputs and mea-
surements. In practice, the distance metric is often based on the
assumption that the measurement noise is normally distributed
and independent for each data point. The corresponding negative
log-likelihood function J, which serves as objective or cost func-
tion, is (up to a constant, more details in the Methods section and
in Supplementary Note 1) given by the sum of weighted least
squares:

JðθÞ ¼ 1
2
∑
M

e¼1
∑
Ne

i¼1

�ye;i � ye;iðθÞ
� �2

σ2e;i

ð2Þ

Here,M denotes the number of different experimental conditions,
Ne the number of measured data points for condition e, �ye;i are
the measured data points, ye,i are the observables from the model
simulation, and σe,i denotes the standard deviation for the data
point �ye;i. If the system has M experimental conditions, this
means that the underlying ODE model must be solvedM times to
evaluate the (full) objective function. A more detailed explanation
of this aspect is given in the Methods section, an explanation in a
more general context is given in Supplementary Note 1.

Classic (full-batch) optimization methods evaluate the full
objective function, i.e., simulate all experimental conditions, in
each iteration of parameter optimization (Fig. 1a). In contrast,
mini-batch optimization methods evaluate only the contribution
to the objective function coming from a randomly chosen subset,
a mini-batch, of experimental conditions in each step37,38. The
cycle until the whole dataset has been simulated, i.e., the
computational equivalent of one iteration in full-batch optimiza-
tion is called an epoch. Typically, each experimental condition is
simulated only once per epoch, i.e., the experimental conditions
are drawn in a random, but nonredundant fashion (Fig. 1b). In
this way, mini-batch optimization allows to perform more—but
less informed—optimization steps than classic full-batch
approaches in the same computation time.

Various algorithms exist for full-batch and mini-batch
optimization and each algorithm is influenced by different
hyperparameters and optimizer settings. For full-batch optimiza-
tion methods such as BFGS42 and interior-point algorithms43,
many hyperparameters are associated with stopping conditions
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and at least good rules-of-thumb exist for their choice. For mini-
batch optimization, there are various critical and less studied
hyperparameters, e.g., the learning rate, which controls—but is
not identical to—the size of the optimization step in parameter
space, and research on how to tune these hyperparameters is still
ongoing44. In order to apply mini-batch optimization methods to
ODE models and benchmark the influence of these hyperpara-
meters, we implemented some of the most common algorithms in
the parallelizable optimization framework parPE14: stochastic
gradient descent (SGD)38, stochastic gradient descent with
momentum31,45, RMSProp46, and Adam47 (see also Supplemen-
tary Note 2 and the Algorithms 1, 2, 3, and 4 provided therein).
This allowed a direct comparison with the implemented full-
batch optimizers when using multi-start local optimization. More
importantly, our implementation in parPE combines state-of-the-
art numerical integration methods available in the SUNDIALS
solver package48 and adjoint sensitivity analysis for scalable
gradient evaluation49, since simple schemes (such as Euler’s
method) cannot be expected to yield reliable results for this
problem class.

Mini-batch size and learning rate schedules have a strong
influence on optimizer performance. To evaluate the available
mini-batch optimization algorithms for ODE models, we con-
sidered three benchmark problems (Table 1, models were taken
from ref. 25 and adapted for the creation of synthetic data). To
facilitate the analysis of the scaling behavior with respect to the
number of experimental conditions, we generated artificial data

(Fig. 2a). Details on the three benchmark examples and on the
artificial datasets are given in the Methods section.

We used a mini-batch size of 30 experimental conditions and
50 epochs of training—corresponding to roughly 50 iterations of
a classic full-batch optimizer—which are typical hyperparameter
choices in deep learning37. We benchmarked the four imple-
mented optimization algorithms: SGD, SGD with momentum,
RMSProp, and Adam (details are given in the Methods section).
To assess the impact of the learning rate, we considered four
learning rate schedules:

● Schedule 1: High learning rate, logarithmically decreasing
● Schedule 2: Medium learning rate, logarithmically

decreasing
● Schedule 3: Low learning rate, logarithmically decreasing
● Schedule 4: Between low and medium learning rate,

constant

Details on these choices are given in the Methods section. The
well-established full-batch optimizer Ipopt43 was used as a
benchmark and was granted 50 iterations, so all tested methods
had a similar computational budget. For each model, 100
randomly chosen initial parameter vectors were created, from
which all optimizers were started. To assess the overall
performance of each optimizer setting, we sorted the starts by
their final objective function value and each of the 100 starts was
ranked across the optimizer settings. Computing the mean of the
100 rankings for each setting led to an averaged rank, which we
used as a proxy for overall optimization quality (Fig. 2a).

Fig. 1 Visualization of full-batch and mini-batch optimization. a Classic full-batch optimization methods evaluate the contribution of all data points—and
thus all experimental conditions—to the objective function in each step. The computation time scales linearly with the number of independently evaluable
experimental conditions (depicted as gray squares). b In mini-batch optimization, the independent experimental conditions are randomly divided into
disjoint subsets, the mini-batches (depicted as squares). Per the optimization step, only the contribution of the chosen mini-batch is evaluated (red
squares). Hence, possibly many optimization steps can be performed during one epoch, which is the time until the whole dataset has been evaluated.

Table 1 Overview of ODE models for benchmarking mini-batch optimization.

Model name State variables Parameters Conditions Data points (synthetic) Reference

Fujita 9 19 600 6000 81

Bachmann 25 40 1200 12,000 16

Lucarelli 33 72 1500 60,000 82
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For all algorithms except SGD, Schedule 2 was a reasonable
choice. For SGD, Schedule 1 was better and for RMSProp,
Schedules 1 and 2 performed approximately equally well.
Schedule 4 was the worst choice (Fig. 2b). A higher learning

rate in the beginning of the optimization process seemed to be
beneficial for the mini-batch optimizers to progress quickly
towards favorable regions of the parameter space (Supplementary
Figs. 1, 2, and 3). Using Schedule 2, different algorithms were able

Fig. 2 Benchmarking full-batch vs. mini-batch optimizers on small- to medium-scale models. a Overview of optimizer comparison: Benchmark models
were simulated, noisy artificial data created, 100 initial points were randomly sampled, and different local optimizers started, each start was ranked
between optimizers, and an averaged score was computed. b Comparison of performance for different local optimizers with different learning rate
schedules (lower rank implies better performance, ranks averaged over models). c Top 25 starts of the local optimizer Adam with tuning parameters taken
from the literature (standard) vs. a simplified version (balanced). d–f Boxplots of final cost function values for the best 25 starts of the investigated mini-
batch optimizers including the balanced version of Adam, denoted as Adam (b), compared against the Ipopt (full-batch optimizer), for each model. Bold
lines indicate medians, boxes extend from 25th to 75th percentiles, whiskers show the ranges of the data. g Comparison of all starts of the best two mini-
batch optimizers given the learning rate Schedule 2, for different mini-batch sizes, compared against Ipopt (ranks averaged over models).
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to compete with or even outperform the full-batch optimizer
Ipopt, but the adaptive algorithm RMSProp performed particu-
larly well. In most cases, the preferred learning rates led to step-
sizes during optimization that were comparable or slightly lower
than those which were chosen by classic (full-batch) optimization
methods (Supplementary Fig. 4).

Given these findings, we compared the optimization algorithm
Adam—which is maybe the most popular algorithm for training
deep neural nets—with two different tuning variants: the tuning
proposed in the original publication (called standard, see ref. 47)
and a simplified scheme (called balanced), which employs the
same rate for both internally used decaying averages (see Methods
for more details). The analysis of the best 25 starts for all models
with Schedule 2 showed that the balanced version outperformed
the original one for all cases on our benchmark examples (Fig. 2c
and Supplementary Figs. 1, 2, and 3). When comparing the
performance of the balanced version of Adam and RMSProp with
Schedule 2, we see that they show very similar performance for
the best 25 starts for all three tested models and outperform the
remaining algorithms (Fig. 2d–f).

We then assessed the impact of the mini-batch size on the
optimization result. Again, we used an average ranking, 100 starts,
and investigated six mini-batch sizes for each model. We restricted
our analysis to the two previously best-performing optimization
algorithms, balanced Adam and RMSProp, with Schedule 2. We
found that in general, small mini-batch sizes of about 0.1 to 1% of
the whole dataset were preferred, but the optimal size seemed to be
model-dependent (Fig. 2g and Supplementary Figs. 5, 6, and 7).
Interestingly, the mini-batch size seemed to impact both
optimization algorithms to the same degree. A more comprehen-
sive analysis of the optimization results, which does not rely on
summary statistics, is given in the Supplementary Information,
including Supplementary Figs. 1 to 7.

Combining mini-batch optimization with backtracking line-
search improves the robustness of the optimization process. A
common challenge when performing parameter estimation for
ODE models are regions in parameter space for which the
numerical integration of the ODE is difficult or even fails. This
may happen due to bad numerical conditioning of the problem or
simply divergence of the solution48. Full-batch optimizers use
line-search or trust-region approaches50, which can deal with
these non-evaluable points by adapting the step-size (Fig. 3a). We
found these problems also present in our benchmark examples
(Fig. 3b, left), leading to failure of local optimization processes as
available mini-batch optimization methods cannot handle failures
of the objective function evaluation (probably because it is not
encountered in deep learning). Hence, we implemented a so-
called rescue interceptor, which attempts to recover a local
optimization by undoing the previous step and acting like a one-
dimensional trust-region implementation (more details in the
Methods section and in Supplementary Note 3, in particular,
Algorithm 5). In some cases, these failures occurred at the initial
points of optimization. These initial failures cannot be recovered
and will lead to a failed local optimization, even when using the
rescue interceptor. In all of the remaining cases, the rescue
interceptor was able to successfully recover the respective local
optimization (Fig. 3b).

In the previous batch of tests, the best optimization
performance was achieved with the learning rate of Schedule 2,
while a higher learning rate, i.e., Schedule 1, obstructed the
optimization process (Fig. 3c). Overall, higher learning rates
tended to be beneficial and as it is a priori not clear for a given
model what a good learning rate would be, we additionally
implemented a backtracking line-search. It reevaluates the

objective function without gradient on the same mini-batch for
different step-sizes, before accepting a proposed step (Fig. 3d).
Details on the implementation can be found in the Methods
section and in Supplementary Note 3, in particular Algorithm 6.

We evaluated these two algorithmic improvements for Adam
and the learning rate Schedules 1 and 2 on the three benchmark
models (Fig. 3e and Supplementary Fig. 8). Interestingly, we
found the strongest improvement for the largest model, although
it suffered only mildly from integration failure (Fig. 3b). The line-
search substantially improved the optimization process at high
learning rates, which can be seen in a direct comparison (Fig. 3f)
and in the waterfall plot (Fig. 3g). Considering all three models,
we saw that the rescue interceptor was generally helpful, whereas
the line-search could also reduce the computational efficiency in
case a good learning rate had been chosen (Fig. 3e). This is not
surprising, as the line-search increased in a few cases the
computation time by up to 9% and some optimization runs were
stopped prematurely due to imposed wall-time limits (Supple-
mentary Fig. 9). However, these negative effects at lower learning
rates were mild when compared against the positive effects at
high learning rates and as the selection of a good learning rate is
currently a trial-and-error process, the adaptation is highly
beneficial.

Mini-batch optimization enables training of predictive models
of the drug response of cancer cell lines. Following the suc-
cessful testing and improvement, we evaluated how mini-batch
optimization performs when applied to the largest publicly
available ODE model of cancer signaling10. The model comprises
various pathways and their cross-talk and captures 1228 bio-
chemical species and 2686 reactions and was originally developed
and provided by Alacris Theranostics. The generic chemical
reaction network can be adapted to cancer cell lines and treat-
ment conditions using input parameter vectors. These vectors
encode mutation and expression status (based on genome and
transcriptome sequencing) and drug concentrations (Fig. 4a).

We extracted all available drug response data from the Cancer
Cell Line Encyclopedia19, which we could match to the model,
yielding in total 16,308 data points of viability read-outs. We split
the data 80:20 into a training set and an independent test set. The
training data is taken from 21 tissues with seven different drugs at
eight different concentrations, adding up to 13,000 of the 16,308
data points and experimental conditions (Fig. 4b). The test data
comprises the same number of drugs and concentrations and is
taken from 59 cell lines from 21 (partly different) tissues, yielding
3308 of the 16,308 data points and experimental conditions. To
the best of our knowledge, this is the first time that an ODE
model has been trained on such a large dataset derived from so
many different experimental conditions.

We performed 100 local optimizations, in which we trained the
model for 20 epochs and a mini-batch size of 100, using the
optimization algorithm Adam (balanced) with rescue interceptor
as well as line-search. As in the Adam algorithm, the step-size
during optimization scales with the square root of the problem
size, we adapted the learning rate schedule such that it yields a
step-size comparable to those for Schedule 2 on the small- to
medium-scale examples (details on these hyperparameter choices
are given in the Methods section). We considered the best 10
optimization results for the creation of an ensemble model,
similar to ref. 51. Based on this approach, we found a Pearson
correlation of 0.76 of the simulation of the trained ensemble
model with the training data (Fig. 4c). We then used our trained
model to classify treatments for specific cell lines into responding
and non-responding situations. Therefore, we considered a cell
line to be responsive to a particular treatment, if the viability of
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the corresponding cell line was reduced by more than 50%. When
computing the receiver-operating-characteristic (ROC)52 based
on the trained ensemble model, we achieved an AUC value of
0.96 (Fig. 4d). Interestingly, the AUC values when relying on
single optimization runs instead of an ensemble were lower
(between 0.91 and 0.94). After computing the ROC for all data, an
ideal classification threshold was computed and used to classify
whether a simulation is responsive. The classification accuracy
was computed from this classification. This was repeated for each
drug individually, as well as with all data (all drugs). On the
training data, the ensemble model achieved a classification
accuracy of 86% (Fig. 4e). Beyond the correlation and ROC
analysis, we also analyzed the model fits to drug response data.
The trained model was able to describe the response to different

drug treatments and also to capture the varying behavior between
the 233 cell lines correctly (Fig. 4f and Supplementary
Information).

In the next step, we validated predictions of the model on cell
lines from the independent test set, where we still found a
Pearson correlation between the data and the simulation of the
ensemble model of 0.74 (Fig. 5a). The ROC analysis for the
classification into responding and non-responding treatments on
the test set yielded an AUC value of 0.94 for the ensemble model
values between 0.90 and 0.92 for the ten best local optimizations
(Fig. 5b), while the classification accuracy was around 85%
(Fig. 5c). Importantly, the model did not only classify trivial cases
correctly but was also able to capture the variability between cell
lines and drugs (Fig. 5d).

Fig. 3 Influence of line-search methods on optimizer’s performance and reliability. a Schematic of the rescue interceptor, which tries to recover from
failed model evaluations, based on one-dimensional trust regions. b Percentage of failed local optimizations per model (with optimizer Adam) due to non-
integrability of the underlying ODE. Failure at the initial point of optimization cannot be recovered, but failure during the optimization process is prevented
when applying the rescue interceptor. c Boxplots for the best 25 starts of mini-batch optimizers Adam for learning rate Schedules 1–3 for the largest
example (Lucarelli), showing that too high learning rates obstruct the optimization process. Medians are indicated as thick lines, boxes extend from 25th to
75th percentiles, whiskers show the ranges of the data. d Line-search for mini-batch optimizers is implemented based on backtracking while keeping the
mini-batch fixed during line-search. e Comparison of performance for optimizer Adam, given different learning rates, for naive implementation, with rescue
interceptor, and rescue interceptor and line-search, denoted as LS (ranks of models averaged). f All starts of the local optimizer Adam for the largest of the
three examples (Lucarelli), naive implementation compared against rescue interceptor and line-search, employing learning rate Schedule 1. gWaterfall plot
for the largest of the three examples (Lucarelli), for naive implementation of Adam, with rescue functionality and with rescue interceptor and line-search.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-27374-6

6 NATURE COMMUNICATIONS |           (2022) 13:34 | https://doi.org/10.1038/s41467-021-27374-6 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


Mini-batch optimization renders iterative model refinement
possible for large-scale ODE models. Beyond predicting drug
response, we also validated the model on experimental data from a
recently published CRISPR screen: Behan et al. had analyzed the
change in cell viability when knocking out various genes on a large

set of cell lines53. We found 107 genes and 18 cell lines in the
knockout dataset, which were also included in our application
example and the dataset used for model training, respectively,
summing up to 1926 data points which we used for validation.
Based on the gene knockout data, we classified a gene as

Fig. 4 Description of application example, datasets, and model performance, when trained with mini-batch optimization. a Simplifying illustration of the
multi-pathway model of cancer signaling. b Left: Overview of the datasets used for training and model validation, taken from the Cancer Cell Line
Encyclopedia. Right: Comparison of model sizes and experimental conditions used for model training of recently published ODE models. c Correlation of
measured and simulated cell viability for all points of the training data, color-coding indicates density in scatter plot. d Receiver-operating characteristics for
classification into responsive and nonresponsive combinations of cell lines and treatments on training data for the best ten optimization runs (gray) and an
ensemble simulation (blue). e Area under ROC curve and classification accuracy on training data for the ten best optimization results (gray), for the
ensemble model (black), and for the ensemble model on data for each drug individually (colored). f Simulated drug response. Left: Ranking of fit quality for
cell lines by average root-mean-square error (RMSE). Right: Two out of 233 cell lines from the training data, error bars indicate the standard deviation
across an ensemble of the n= 10 best optimization runs, for a cell line which the model was able to describe well (blue, BCPAP) and a cell line, which was
less well captured by the model (orange, KU812).
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“essential” for a cell line, if the knockout led to a viability
reduction of more than 50% and compared this essentiality clas-
sification with in silico knockouts from our application example
(Fig. 5e). We computed receiver-operating characteristics for
knockout simulations based on our trained model, and on random

parameters as reference. We obtained better-than-random pre-
dictions (AUC of 0.59) from the untrained model and, as expec-
ted, better predictions for the trained model (AUC of 0.63).

Yet, the classification threshold for model simulation chosen by
the ROC analysis was surprisingly high, leading to many false-

Fig. 5 Validation of the fitted large-scale cancer model on independent test data. a Correlation of test data and model prediction. Color-coding indicates
density in a scatter plot. b ROC curves for classification of drug responses of cell lines on the test set. Classification thresholds from the training data were
used. c Area under ROC and classification accuracy on test data for the ten best optimizations (gray), the ensemble model (black), and the ensemble
model for each drug individually (colored). d Simulated drug response. Left: Ranking of fit quality for cell lines by average root-mean-square error. Right:
Two out of 59 cell lines from the test data, error bars indicate the standard deviation across an ensemble of the n= 10 best optimization runs, for a cell line
which the model was able to describe well (blue, 8505C) and a cell line, which was less well captured by the model (orange, JHH5). e ROC curves for
classification of gene essentiality. Measurement data for 18 cell lines were taken from Behan et al., 2019. In silico knockouts are shown for the untrained
model (blue), the trained model (orange), and the refined and trained model (green). f Measurement, prediction, and confusion matrix for essential genes
for the refined and trained model. Numbers indicate how often a gene was found to be essential in experimental data and in silico knockout predictions for
the 18 cell lines, sums show the number of true and false predictions over essential genes.
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positive predictions (Supplementary Fig. 10). As this indicated a
shortcoming of the model, we added further proteins, which
should contribute to the viability readout of the model (see
Methods section and Supplementary Note 4 for more details on
how the viability readout is computed): First, we included the
protein Checkpoint kinase 1, a major regulator of the cell
cycle that is encoded by the gene CHEK1, as additional pro-
proliferative readout. The gene CHEK1 was shown to be among
the most essential ones for cell viability in the validation data,
which was however not accounted for in the original model of
ref. 10. Secondly, we also included doubly phosphorylated
MAP3K1 as pro-proliferative readout, which was so far only
acting in a feedback loop with upstream proteins. This
modification allowed the model to partly circumvent the
downstream bottleneck of the MAPK-cascade, and hence made
it possible to explain the potential downstream effects of
MAP3K1. After calibrating this refined model on the previously
used drug response data, we obtained substantially improved
predictions of gene essentiality (Fig. 5e, AUC of 0.67). The
classification threshold for the model readout was strongly
reduced, leading to substantially fewer false-positive predictions
(Fig. 5f and Supplementary Fig. 11). A detailed analysis of the
remaining false predictions is given in Supplementary Note 5.

As confirmation of the refined model topology, we refitted the
original model on the drug response and gene knockout data, i.e.,
14,926 data points, simultaneously. As expected, calibrating the
model towards the knockout data led to substantially improved
classification results (AUC of 0.74, vs. 0.63 for the model trained
on drug response data only). However, also when being refitted
on the knockout data, the model was still not able to describe the
data when knocking out CHEK1, confirming the limitations of
the original viability readout (Supplementary Fig. 10). In the last
step, we refitted also the improved model on drug response and
knockout data simultaneously, which again drastically improved
the classification accuracy (AUC of 0.84, vs. 0.67 for the model
trained on drug response data only). This suggested that a more
general ODE model of cell signaling should encode at least a basic
version of the cell cycle if the model is to explain viability. To the
best of our knowledge, this is the first time that a systems-biology
modelling loop (see Supplementary Fig. 12), i.e., iterative model
refinement and recalibration, has been carried out for an ODE
model of this size.

Mini-batch optimization outperforms full-batch optimization
by more than an order of magnitude. As mechanistic modelling
of biological processes relied so far on full-batch optimization
techniques, we reevaluated our findings about hyperparameter
tuning from the smaller models on the large-scale application
example: in a first step, we compared 20 epochs of mini-batch
optimization with Adam, mini-batch size 100, and two learning
rate schedules—a “high” and a “low” learning rate—with and
without line-search, always using the rescue interceptor, which
enabled substantial improvements for this model (Supplementary
Fig. 13). In a second step, we ran additional optimizations with
mini-batch sizes 10, 100, 1000, and 13,000 (full-batch), granting
10, 20, 50, and 150 epochs of optimization time and 100, 100, 50,
and 25 local optimizations, respectively. As a benchmark, we
performed 150 iterations with Ipopt—which also employs a line-
search algorithm—and restricted to 20 local optimizations due to
the high computation time. All optimizers were initialized with
the same parameter vectors. We also took snapshots of the
optimization process with Ipopt at computation times that were
as close as possible to those used by the mini-batch optimizations.

In the learning rate study, mini-batch optimization at low
learning rates achieved slightly better results after 20 epochs than

Ipopt after 150 iterations in terms of objective function values
(Fig. 6a) and of correlation with measurement data (Fig. 6b).
Moreover, the model also generalized slightly better to cell lines
from the independent test data when trained with mini-batch
optimization (Fig. 6c), while reducing the total computation time
by a factor of 4.1 (Fig. 6d). Optimization was faster but less
successful when using the high learning rate. However, it clearly
improved when adding the line-search feature, which increased
the computation time by less than 13%. For the lower learning
rate schedule, line-search had almost no effect. We assessed the
computation time until convergence was reached for the first time
and the number of converged starts per computation time (see
Methods for details on these convergence criteria) as additional
performance measures. Now granting 100 starts to mini-batch
optimization, i.e., a computational budget similar to Ipopt, we
found that mini-batch optimization was up to 6.9-fold faster than
full-batch optimization when comparing the number of con-
verged starts per computation time. In terms of computation
time, until first convergence was achieved, mini-batch optimiza-
tion outperformed full-batch optimization by 27-fold (Supple-
mentary Fig. 14). However, the latter was achieved using the
higher learning rate, which was generally less effective. Overall,
these results confirm that the learning rate is a crucial
hyperparameter for mini-batch optimizers also when working
with ODE models and that line-search can markedly improve
results when working with high learning rates.

In the mini-batch size study, we found a strong benefit of
smaller mini-batch sizes, which improved objective function and
correlation values and clearly outperformed Ipopt (Fig. 6e, f).
This result generalized to the independent test data, where mini-
batch optimization with the smallest batch size 10 achieved better
correlation values than all previously tested optimization
approaches (Fig. 6g), possibly due the regularizing effect of small
batch sizes and hence possibly less overfitting of the training
data54. In addition to the markedly improved optimization
results, which were best visible from the waterfall plot
(Supplementary Fig. 15), the total computation time was reduced
by more than a factor of 10 when compared to Ipopt (Fig. 6h).
When comparing computation time to first convergence, mini-
batch optimization was up to 52 times faster than Ipopt. In terms
of converged starts per computation time, we found an 18-fold
improvement when using mini-batch optimization. As an
additional test, we assessed the influence of the optimization
algorithm on the optimization result (Supplementary Fig. 16).
This indicated again that the chosen algorithm was less important
than the choice of the learning rate or the mini-batch size.

Mini-batch optimization improves parameter space explora-
tion and uncertainty analysis. In a last set of tests, we further
analyzed the optimization result with the smallest batch size, i.e.,
10. For this purpose, we created a large parameter ensemble from
the optimization history based on an objective function threshold,
similar to the ideas of ref. 55 (more details on the ensemble
generation can be found in the Methods section). This ensemble
contained 8450 parameter vectors from 52 out of the 100 local
optimization runs. We also generated a second, smaller ensemble
using only the final results of the ten best optimization runs
(Fig. 7a). In addition, we investigated the coverage of the feasible
interval across the different local optimization runs for each
model parameter at three different checkpoints during optimi-
zation (Fig. 7a). Comparing these parameter interval coverages
from mini-batch optimization with those from full-batch opti-
mization revealed that mini-batch optimization substantially
increased coverage, and thus, yielded a better exploration of the
parameter space (Fig. 7b).
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To assess the uncertainty of the calibrated model parameters,
we analyzed the parametric sensitivities of the model output on
the ten best optimization results. A singular value decomposition
of this sensitivity matrix showed that 3029 directions in
parameter space were numerically nonzero, indicating that the

model could acquire information about more than 3000 degrees
of freedom. Yet, many directions in parameter space were poorly
determined (Fig. 7c). Complementary to this sensitivity analysis,
we analyzed the covariance structure of the large parameter
ensemble. A principal component analysis (PCA) revealed that

Fig. 6 Comparison of optimization results for the large-scale cancer model, for different hyperparameters. a–c Boxplots of the ten best optimization
runs out of 20, started at the same random parameters, for Ipopt (at three different stages of the optimization process to compare performance over
computation time) and for mini-batch optimization with different learning rates (LR), with rescue interceptor only (rescue) and with additional line-search
(LS). Boxes extend from 25th to 75th percentiles, whiskers show the ranges of the data, and thick lines indicate medians. a Final objective functions values.
b Correlation of model simulation with measurement data (training set). c Correlation of model simulation with measurement data (test set). d Total
computation time for all 20 optimization runs (lower panel). e–g Boxplots of the ten best optimization runs out of 20, started at the same random
parameters, for Ipopt (at four different stages of the optimization process to compare performance over computation time) and for mini-batch optimization
with mini-batch sizes (10, 100, 1000 and full-batch, i.e., 13,000). Specifications as described for subfigures a–c. e Final objective functions values. f
Correlation of model simulation with measurement data (training set). g Correlation of model simulation with measurement data (test set). h Total
computation time for all 20 optimization runs (lower panel).
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most of the total variance was spread across a low-dimensional
subspace, showing a sharp drop in the explained variance after
about 50 PCA directions, which coincides well with the number
of local optimizations present in the parameter ensemble (Fig. 7d).
This indicates that the parameter space was not yet sufficiently
explored, although mini-batch optimization allowed to afford
more local optimization runs than full-batch optimization. This
was confirmed by a UMAP embedding of the parameter
ensemble, which showed that the local optimization runs did
not converge to a common optimum, but remained separated in
parameter space (Supplementary Fig. 17). The spectrum of the
covariance matrix indicated 49 directions with high variability, a
second mode containing about 3600 directions with lower, but
clearly present variability (Fig. 7e), and the third mode of
probably non-explored directions, which had a variability below
floating point precision. The overall 3600 explored PCA
directions in this large ensemble are in line with the results from
the sensitivity analysis (roughly 3000), as the discrepancy between

the two results can be explained with additional information
being present in the larger ensemble.

Discussion
We presented a framework for using mini-batch optimization in
combination with advanced methods from dynamic modelling
for the parameter estimation of ODE models in systems biology.
We introduced algorithmic improvements (tailored to ODE
models), benchmarked different methods and their hyperpara-
meters on published models (with artificial data), and identified
the most important factors for successful optimization. Then, we
applied mini-batch optimization to a particularly large model of
cancer signaling and trained it on measured cell line drug
response data from a public database. The trained model pro-
vided accurate predictions of whether a certain treatment would
reduce cell viability by more than 50% for a chosen cell line in
more than 85% of the cases, even on cell lines, which had not
been used for model training. Furthermore, we performed in

Fig. 7 Analysis of parameter uncertainty based on an ensemble of parameter vectors from the the best mini-batch optimization, i.e., with batch size
10. a Generation of a large parameter ensemble (8,450 vectors) based on the history of multi-start local mini-batch optimization. A cutoff value was
chosen and parameter vectors added to the ensemble if the objective function value was below the cutoff (red). A smaller ensemble was created from the
ten best optimization results (yellow). At three checkpoints (blue), the coverage of parameter intervals was computed as a ratio of the interval covered by
the optimization runs over the interval between the parameter bounds. b Computation of parameter interval coverage based on multi-start local
optimization with mini-batch optimization and Ipopt (full-batch optimization). c Sensitivity analysis for model output (cell viability) w.r.t. the 4232 model
parameters. Singular values of the sensitivity matrix computed on the small parameter ensemble. d Principal component analysis of the large parameter
ensemble created from mini-batch optimization, indicating the contribution (individual and summed) of the different PCA directions to the total observed
variance in the ensemble. e Spectrum of the covariance matrix (for the 4232 model parameters) created from the large parameter ensemble from (d).
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silico gene knockouts and validated them on a large experimental
CRISPR screen from literature, which helped us to improve the
model topology and to obtain well-matching knockout predic-
tions. In the last step, we performed uncertainty analysis based on
ensemble methods and assessed the exploration of the parameter
space during optimization, where mini-batch optimization
enabled results, which had not been achievable with established
optimization methods.

A closer analysis of the in silico knockout study allowed us to
pinpoint deficiencies of the large-scale cancer signaling model,
e.g., concerning the implementation of cell cycle genes, and a
subsequent model refinement yielded substantially improved
model predictions. To the best of our knowledge, this is the first
time that a full modelling cycle, including model refinement and
retraining, has been performed for an ODE model of this size, as
the cost of model calibration renders iterative refinement usually
prohibitive for large ODE models. Yet, a set of incorrect predic-
tions remained: in particular, the essentiality of genes that encode
master kinases such as PDPK1 or phosphatases such as PPP2CA
was underestimated. At the same time, the importance of some
genes encoding proteins involved in the AKT and RAS signaling
pathways was overestimated, especially those which either inter-
act with the EGF receptor, such as SRC, VAV2, or EGFR itself, or
those which acts as transcription factors, such as CREB1, ELK1,
or STAT3. Hence, we assume that a more comprehensive model,
trained on a larger dataset, would be needed to, e.g., reliably
discover new drug targets or to reject possible drug candidates
before entering a clinical trial. Possible approaches for an also
refined proliferation model are outlined in Supplementary Note 6.
The datasets to train such a more comprehensive, whole-cell
signaling model have been made available in the last years, and
mini-batch optimization renders the calibration of such a model
computationally feasible.

In a previous study relying on full-batch optimization10, it was
observed that the error of model predictions resulted rather from
overfitting than from prediction uncertainty. It seemed that the
fewer passes through the dataset and the stochasticity introduced
by the mini-batching in combination with the large dataset have
addressed this overfitting. Ensemble modelling, for which mini-
batch optimization is particularly well-suited, improved the pre-
diction accuracy further. Overall, our implementation reduced
computation time by more than one order of magnitude while
providing better fitting results and predictions than established
methods. The improved scaling characteristics of mini-batch
optimization should render problems with even larger datasets
feasible. In addition, the ensemble analysis indicated that a better
exploration of the parameter space would be necessary to obtain
more reliable uncertainty estimates—a goal, which needs further
research on mini-batch optimization methods and which is
unlikely to be achievable with full-batch optimization methods.

We identified the choices of learning rate and mini-batch size
to be the most influential hyperparameters for optimization and
made the three following observations: Firstly, learning rates for
mini-batch optimization which yield step-sizes slightly smaller
than those used by established optimization techniques—see
Supplementary Fig. 4—are a good choice. Secondly, surprisingly
small mini-batch sizes were preferred in all of our application
examples. Thirdly, the choice of the optimization algorithms
seems to be less important, as at least Adam and RMSProp
performed equally well on all examples. Therefore, we suggest the
following approach for hyperparameter tuning when using mini-
batch optimization with ODE models:

● Optimization algorithm: Choose an “adaptive” optimiza-
tion algorithm: Beyond the here tested RMSProp and

(balanced) Adam algorithms, many more algorithms with
similar behavior exist, such as recently discussed in ref. 44.

● Learning rate: The learning rate is probably the most
problematic, because of strongly model-dependent hyper-
parameter: Many full-batch optimizers use choices such asffiffiffiffiffi
nθ

p
as initial step size, with nθ being the number of model

parameters. Our results suggest that using a learning rate,
which results in initial step sizes in the range of κ � ffiffiffiffiffi

nθ
p

,
with κ∈ [0.01, 0.1], is a reasonable first choice for mini-
batch optimization of ODE models. For particularly large
models, small values of κ were more successful. Further-
more, decreasing learning rate schemes tended to be more
helpful for optimizer convergence than constant learning
rates. However, at the moment, it seems most helpful to
test two or three different learning rate schedules.

● Mini-batch size: Start using very small mini-batch sizes
first, and then test the effect of increasing the mini-batch
sizes. From our experience, this will lead to finding an
appropriate mini-batch size faster than starting with large
mini-batch sizes.

● Number of epochs: A recent study has come to the
conclusion that the overall number of optimization steps is
roughly conserved for full-batch optimizers25: for a large
group of models, it was typically in the range of a few
hundred to at most a one or two thousand optimization
steps. Since mini-batch optimization cannot be expected to
converge in fewer steps but should do so in fewer epochs,
choose the number of epochs accordingly, e.g., in the order
of a few dozen epochs at most, depending on the number of
optimization steps per epoch.

Overall, learning rates and mini-batch sizes would be pro-
mising candidates for auto-tuning schemes. There are various
known methods for auto-tuning of step-sizes during full-batch
optimization50,56,57. Combining those with mini-batch optimi-
zation may lead to substantial improvements. We proposed and
tested the implementation of a line-search method for mini-batch
optimization, which may serve as a starting point. For the mini-
batch size, auto-tuning maybe less straightforward, but also here,
first approaches exist, which are based on assessing the variance
of the objective function gradient across a chosen mini-batch and
possibly enlarging the mini-batch size58. Other algorithmic
improvements—more specific to ODE models—would be com-
bining mini-batch optimization with hierarchical optimization for
observation-specific parameters, such as scaling factors or para-
meters for measurement noise14,59. This approach allowed sub-
stantial improvements in parameter optimization for ODE
models and it is to be expected that also mini-batch optimization
would benefit from it. A complementary approach would be to
implement variance reduction techniques60,61. Some of these
methods enjoy good theoretical properties but are demanding in
terms of memory consumption, which might make them prohi-
bitive for applications in deep learning, but possibly well-suited
for the training of ODE models. Hierarchical optimization, as
well as variance reduction, should be combined with methods for
early-stopping, to avoid overfitting and to further reduce com-
putation time62,63. Other improvements, which would not impact
the parameter estimation procedure itself, but could further
reduce computation time, might be based on GPU computing64

or direct methods for steady-state computation65.
Since mini-batch optimization is computationally more efficient

than full-batch optimization when working with large datasets, it
is also a promising approach to drastically improve the explora-
tion of parameter space. Especially when using methods such as
multi-start local or hybrid local-global optimization23,24,66, much
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more local optimizations can be performed. In our large-scale
application example, we confirmed that ensemble modelling leads
to better predictions than point estimates51,67. Furthermore, there
have been recent advances when using ensembles created from the
optimization history of an ODE model55. Mini-batch optimization
is particularly well-suited for these approaches, as it creates more
comprehensive optimization histories.

In summary, we showed that combining mini-batch optimi-
zation with advanced methods from ODE modelling can help to
overcome some major limitations in the field. We hope it will
become an actively developed and applied group of methods in
systems biology. We think and hope that our work can serve as a
foundation for other research groups to further push the
boundaries of what is computationally feasible and lead to new,
fruitful applications.

Methods
Modelling of chemical reaction networks with ordinary differential equations
(ODEs). We considered ODE models with state vector xðtÞ 2 Rnx , describing the
dynamics of the concentrations of nx 2 N biochemical species, e.g., (phospho-)
proteins or mRNA levels in a time interval t∈ [0, T]. The time evolution of x was
given by a vector field f, depending on unknown parameters θ 2 Rnθ , e.g., reaction
rate constants, and a vector of known input parameters u 2 Rnu :

d
dt

xðt; θ; uÞ ¼ f ðxðt; θ; uÞ; θ; uÞ; with xð0Þ ¼ x0ðθ; uÞ ð3Þ

In our case, input parameters were drug treatments and, for the large-scale
application example, also differences between cell lines assessed by mRNA
expression levels and genetic profiles. As the ODEs had no closed-form solutions,
we used numerical integration methods to solve/integrate Eq. (3). As ODEs in
systems biology applications must be assumed to be stiff41,68,69, we employed an
implicit multi-step backward differential formula scheme of variable order. This
allowed adaptive time stepping and automated error control, helping to ensure the
desired accuracy of the computed results41,68,69.

To match the model to the data, we used observable functions, which describe
(phospho-)protein concentrations for the small- to medium-scale models. For the
large-scale model, there is only one observable function (cell viability), described by
a combination of downstream signaling activities, which can either act pro- or anti-
proliferative10:

yðθ; uÞ ¼ hðxðt; θ; uÞ; θÞ ð4Þ

For the small- to medium-scale models, artificial data D ¼ f�ye;ige¼1;¼ ;M;i¼1;¼ ;Ne

was simulated as a time-course and Gaussian noise was added. For the large-scale
model, measurements were taken at steady-state, yielding only one data point per
experimental condition e. The steady-state was inferred by simulating the model to
time-point t= 108 (seconds). Afterwards, we verified whether the model
trajectories had reached a steady-state by assessing the L2-norm of the right-hand
side of the ODE, using the absolute tolerance of 10−16 and relative tolerance of
10−8 as convergence threshold. Distinct experimental conditions differed through
their vectors of input parameters ue, e= 1, …, M. Those input parameters captured
all the differences between the different experimental setups, i.e., drug treatments
and mRNA expression levels of the cell lines. Hence, to simulate the whole dataset
D once, M different initial value problems had to be solved.

To account for the fact that experimental data are noise-corrupted, we chose an
additive Gaussian noise model with standard deviation σe,i for experimental
condition e and measurement index i. For the large-scale application example, we
used the same σe,i all experiments, as no prior knowledge on the standard deviation
was available.

�ye;i ¼ yiðθ; ueÞ þ εe;i; with εe;i � N ð0; σ2e;iÞ ð5Þ

A more detailed explanation of ODE modelling, in general, is given in
the Supplementary Information.

Parameter optimization. This statistical observation model allowed us to compute
the likelihood of an observed value y(x(t, θ, u), θ) given a parameter vector θ,
assuming independence of the measurement noise terms23. Due to its better
numerical properties, we took its negative logarithm, which yielded:

~JðθÞ ¼ 1
2
∑
M

e¼1
∑
Ne

i¼1

ð�ye;i � yiðθ; ueÞÞ2
σ2e;i

þ log 2πσ2e;i

� � !
¼ JðθÞ þ const. ð6Þ

Assuming fixed measurement noise, the logarithmic term was just a constant offset.
By neglecting it and identifying yi(θ, ue) with ye,i(θ), we arrived at the objective or

cost function J(θ), which was given in Eq. (2).

JðθÞ ¼ 1
2
∑
M

e¼1
∑
Ne

i¼1

ð�ye;i � ye;iðθÞÞ2
σ2e;i

ð2Þ

For global optimization of θ, we restricted the feasible parameter space to a region
Ω ¼ ½10�5; 103�nθ , which was assumed to be biologically plausible. Parameters were
transformed and optimized on a logarithmic scale, i.e., in the box Ω0 ¼ ½�5; 3�nθ .
We used multi-start local optimization, i.e., we randomly sampled many parameter
vectors, from which we initialized local optimizations. This approach has repeat-
edly been shown to be among the most competitive methods23,24, if high-
performing local optimization methods with accurate gradient information of the
objective function are used. In order to compute accurate gradients, we employed
adjoint sensitivity analysis (see ref. 70 for a review on the method), which is
currently the most scalable method for gradient computation of high-dimensional
ODE systems (see refs. 49,71 for method comparisons with focuses on systems
biology and49 for the implementation that was used).

Full-batch optimization. To benchmark our local optimization methods, we used
the interior-point optimizer Ipopt43, which combines a limited-memory BFGS
scheme with a line-search approach72 and solves the linear system in the inner
problem via the solver package COINHSL73 (see the section on implementation for
the precise versions that were used). In previous studies14, such interior-point
optimizers have shown to be among the most competitive methods for local
optimization of large-scale ODE systems14,24.

More information on the formulation of the (log-)likelihood function and
global parameter optimization of ODE models in a more general context is given in
the Supplementary Information.

Mini-batch optimization algorithms. Mini-batch optimization is a particular type
of local optimization, which exploits the sum structure of the objective function38.
In our case, we could rewrite the objective function in the following form:

JðθÞ ¼ ∑
M

e¼1

1
2
∑
Ne

i¼1

�ye;i � yiðθ; ueÞ
σe;i

 !2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼ JeðθÞ

¼ ∑
M

e¼1
JeðθÞ ð7Þ

In the beginning of each epoch, the dataset was randomly shuffled and then divided
into mini-batches, which are random subsets of the same size S⊆ {1, …, ne}. Hence,
no data point was used redundantly within one epoch. In each optimization step r,
only the contribution to the gradient, sometimes also called gradient estimate37, based
on the mini-batch Sr was used. The exact way how a parameter update was executed,
i.e., how θ(r+1) was computed from θ(r) and the gradient estimate ∑e2Sr∇θJeðθðrÞÞ,
was dependent on the chosen algorithm. We investigated the following common
mini-batch optimization algorithms in our study (see Supplementary Information
for more details and37,74 for a more comprehensive summary of mini-batch opti-
mization algorithms, as well as44 for a detailed comparison in the context of Deep
Learning):

● Stochastic gradient descent (SGD)38, which is the simplest possible
algorithm, using only the negative gradient of the objective function as
an update direction (Supplementary Information, Algorithm 1).

● Stochastic gradient descent with momentum31,45, a common variant,
which uses a decaying average of negative gradients as direction instead of
the negative objective function gradient alone (Supplementary Information,
Algorithm 2).

● RMSProp46, a so-called adaptive algorithm, which rescales/preconditions
the current gradient by a decaying average over root-mean-squares of the
previous objective function gradients (Supplementary Information,
Algorithm 3).

● Adam47, another adaptive algorithm, attempts to combine the benefits of
RMSProp with the momentum approach by using two decaying averages
(Supplementary Information, Algorithm 4).

For Adam, we tested two different settings: as the two decaying averages in the
algorithm are controlled by two tuning parameters ρ1 and ρ2, we set them first—
according to the original publication—to 0.9 and 0.999, respectively, and then,
based on some non-exhaustive testing, both to 0.9. We denoted the first setting as
Adam (standard), the second as Adam (balanced).

Learning rates and optimizer step-sizes. All the considered mini-batch algo-
rithms rescale the computed parameter update with a factor called learning rate η,
which can either be fixed over the optimization process, prescheduled, or adapted
according to the optimization process. In our study, we tested—based on the
literature37,74 and our experience with local optimization—in total four learning
rate schedules, which refer to the following numerical values for the small- to
medium-scale models:

● Schedule 1: High learning rate, logarithmically decreasing from 100 to
10−3.
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● Schedule 2: Medium learning rate, logarithmically decreasing from 10−1 to
10−4.

● Schedule 3: Low learning rate, logarithmically decreasing from 10−2 to
10−5.

● Schedule 4: Constant learning rate, fixed to the value 10−3.

Assuming a given algorithm in optimization step r produced a parameter
update δr, then the next proposed parameter vector would be

θðrþ1Þ ¼ θðrÞ þ ηr � δr ; ð8Þ

with ηr being the learning rate at step r. Obviously, the learning rate influences the
step size of the optimization algorithm in parameter space. However, many of the
algorithms we investigated yielded parameter updates with ||δr|| ≠ 1, thus δr does
not only provide the direction of the parameter update but may also contribute to
the step size. For, e.g., Adam, we obtained step sizes scaling with

ffiffiffiffiffi
nθ

p
, with nθ

being the dimension of the unknown parameter vector (see Supplementary
Information for more details and the corresponding calculation). When
transferring the results of our study from the small- and medium-scale models to
the large-scale model, we tried to conserve the actual step-sizes of the optimizers
rather than the learning rates themselves, assuming the step-sizes to be the more
fundamental quantities. On the large-scale model, we used two learning rate
schedules with the following names and values:

● High learning rate, logarithmically decreasing from 10−1 to 10−4.
● Low learning rate, logarithmically decreasing from 10−2 to 10−4.

Rescue interceptor and line-search for mini-batch optimization. The rescue
interceptor was implemented to mimic the behavior of a one-dimensional trust-
region algorithm (Fig. 8). It works similar to an iterative backtracking line-search
algorithm, which also reduces the step-length of the subsequent optimization steps,
performing at most ten iterations. It is triggered if the objective function and its
gradient cannot be evaluated. In this case, it keeps the current mini-batch, but
undoes the previous parameter update, and reduces the current step length. In the
next steps, the step length is gradually increased again until it reaches its original,
unmodified value. If ten repetitions of this procedure are not sufficient to restore
the optimization process, the corresponding local optimization run is stopped.
More details on the method and its pseudo-code are given in the Supplementary
Information (Algorithm 5 for the pseudo-code).

An additional line-search was implemented according to the interpolation
method, described in Chapter 3 of ref. 50, and limited to at most three iterations. In
each optimization step, the objective function value is checked on the same mini-
batch after the parameter update. The parameter update is accepted if the objective
function decreases, otherwise, the step size is reduced and the update repeated
(Fig. 7). More details on the implementation and its pseudo-code are given in
the Supplementary Information (Algorithm 6 for the pseudo-code).

Computation of final objective function and correlation values. To ensure an
unbiased comparison of objective function values, we computed the final objective
function and correlation values after optimization for all methods (full-batch and
mini-batch) on the whole dataset. As we performed this comparison also on a set of
independent test data and since the model was using scaling parameters to match
the model output to the measurement data23, we computed those scaling para-
meters analytically14,75.

In silico gene knockouts. When working with the gene knockout data, we used all
18 cell lines, which were available in the dataset of ref. 53 and in our training data.
The model from the large-scale application contains a total of 107 implemented
genes and mutated forms of those. For an in silico knockout, we assumed the gene
expression to be zero for the knocked-out gene. Furthermore, we considered a gene
knockout to also affect all mutated variants. The change in cell viability was always
computed as fold-change with respect to the untreated cell line.

Threshold-dependent convergence criteria. To assess the quality of parameter
optimization, we investigated (beyond the final objective function and correlation
values)

1. the computation time until convergence was reached for the first time
2. the number of converged starts per computation time

Both criteria are common metrics for assessing optimization performance24.
Since the full-batch optimizer Ipopt was used as a benchmark throughout the
study, we also fixed the convergence criterion based on optimization results
from Ipopt: based on its ten best optimization results, we defined a value-to-reach
as the mean plus one standard deviation over these ten final objective function
values.

Computation of receiver-operating-characteristics and classification accu-
racy. When working with the drug response data, we used 13,000 of the 16,308
data points from 233 cell lines for model training and 3308 of the 16,308 data

points from 59 cell lines as a test set. However, only for 198 cell lines from the
training set and 49 cell lines from the test set, all treatment conditions were
available. In order to compute unbiased receiver-operating characteristics (ROCs),
we used only those cell lines, yielding 11,088 data points for the training set and
2744 data points for the test set. Experimental conditions were grouped into two
groups: Those, in which cell viability was reduced by more than 50% when com-
pared to the untreated condition, were defined as responsive, the rest as non-
responsive. We then computed classification thresholds to be those model output
values, which corresponded to the points on the ROC being tangential to an affine
function with slope 1 b¼ 45� . The inferred classification thresholds for model
simulation were then used for classification on the independent test data.

Receiver-operating characteristics for the gene knockout data were computed
analogously, by assuming a gene to be essential for a specific cell line if its knockout
led to a viability reduction of more than 50%, according to the data from ref. 53.
Hence, the ROCs allowed us to compute classification threshold analogous to the
ones obtained from drug response data. Prediction quality was assessed by the
predicted essentiality of each gene for the 18 cell lines.

Generation of the parameter ensemble from mini-batch optimization history.
The generation of the large parameter ensemble from the mini-batch optimization
run with step size 10 was done in four steps: First, a smoothed history of the objective
function value was computed, by averaging over up to one epoch (half an epoch prior
and past the current point in optimization, when possible). Second, a cutoff value was
determined, by the RMSE value of the best-found optimization result plus a tolerance
of 10%, yielding a value which was still better than the best found by full-batch
optimization. Third, all parameter vectors with smoothed objective function values
better than this threshold were added to the ensemble, yielding parameter vectors
from 52 optimization runs in total. Forth, this ensemble was thinned by a factor of 26,
i.e., allowing at most 50 parameter vectors per epoch to be included in the ensemble.
This procedure resulted in an ensemble with 8450 parameter vectors, which is about
twice as much as the number of model parameters.

Implementation of parameter estimation using the toolboxes AMICI and
parPE. Parameter estimation was performed using the parPE C++ library14, which
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Fig. 8 Comparison of standard mini-batch optimization and mini-batch
optimization with line-search. Left panel: Standard mini-batch optimization
uses a prescheduled learning rate, which determines the step size during
optimization regardless of whether an optimization step leads to an
improvement or not. Right panel: If line-search is enabled, the objective
function is reevaluated on the same mini-batch and checked for
improvement. If no improvement is achieved, the learning rate is reduced
until either improvement is achieved or until the maximum number of line-
search steps is reached.
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provides the means for parallelized objective function evaluation and optimization
of ODE models generated by the AMICI ODE-solver toolbox76. parPE is specifi-
cally designed for computing clusters, employing dynamic scheduling across
multiple compute nodes via MPI, and uses optimizers such as Ipopt43. In our
studies, we used Ipopt version 3.12.9 in combination with COINHSL73, running
with linear solver ma27 and L-BFGS approximation of the Hessian matrix and
extended parPE with the mini-batch algorithms described above.

For numerical integration of the ODEs, we used AMICI76, which provides a
high-level interface to the CVODES solver77 from the SUNDIALS package48 and
generates model-specific C++ code for model evaluation and likelihood
computation to ensure computational efficiency. In our applications, we used
AMICI default settings with adjoint sensitivity analysis, employing a backward
differential formula (BDF) scheme of variable order, with adaptive time stepping
and error tolerances of 10−8 for the relative and 10−16 for the absolute integration
error per step, allowing at most 104 integration steps.

Optimizations were run on the SuperMUC phase 2 and SuperMUC-NG
supercomputers (Leibniz Supercomputing Centre, Garching, Germany). Compute
nodes were equipped with two Haswell Xeon Processor E5-2697 v3 CPUs (28 cores
per node) and 64GB of RAM. For the large-scale model, mini-batch optimization
multi-starts comprising 100 local optimizations were run on 65 nodes (1820 cores)
with a wall-time limit of 48 h. The 20 local optimizations of Ipopt were separated
into single runs with 12 nodes (336 cores), and 35 h of wall-time were granted. For
the small to medium-scale models, each of the multi-starts comprising 100 local
optimizations was run on 1, 2, and 3 nodes for the Fujita, Bachmann, and the
Lucarelli model, respectively, always exploiting all 28 cores per node. Wall-times
were fixed to 15, 32, and 40 h, respectively. Computations for the refined model
were carried out on SuperMUC-NG (Leibniz Supercomputing Centre, Garching,
Germany). Compute nodes were equipped with Intel Skylake Xeon Platinum 8174
CPUs (48 cores per node) and 96GB of RAM.

Adaptation of benchmark models and creation of artificial data. The small- to
medium-scale examples for the benchmark study were chosen based on a collection
of benchmark models25. We chose models with different system sizes, which
allowed the generation of large artificial datasets that were sufficiently hetero-
geneous. This should ensure clear differences in objective function values and
gradients when different mini-batches were used. In order to allow the creation of
heterogeneous datasets, the SBML files and input parameters were slightly altered.
The precise model versions are made freely available in the SBML/PEtab78,79

format at Zenodo, under 10.5281/zenodo.494964180.
Artificial data was created by simulating the models with the parameter vectors

reported in ref. 25. Additive Gaussian noise was added to the model simulations,
using the noise levels that were reported in ref. 25 for each observable.

Data analysis and visualization. Plots were created with Matplotlib, version 3.3.2,
boxplots were drawn using boxplot from matplotlob.pyplot, with the following
settings: whiskers show the whole span of the data, boxes show the range from the
25th to the 75th percentile, medians are highlighted as bold lines.

Reporting Summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Source data are provided with this paper. The models and data used in (and produced
by) this study are available in the Zenodo database under accession code 4949641
(https://doi.org/10.5281/zenodo.4949641)80. This includes model implementations in
SBML format78, as well as implementations of the parameter estimation problems for all
models in PEtab format79. The SBML implementation of the large-scale model is
additionally available on GitHub (https://github.com/ICB-DCM/
CS_Signalling_ERBB_RAS_AKT). The Zenodo archive also includes artificial data that
was created and used for a benchmark study, and condensed results of the parameter
estimation in HDF5 format. The data used for model training were taken from the
Cancer Cell Line Encyclopedia (https://sites.broadinstitute.org/ccle/) and had previously
been published by Barretina et al. in 201219. The data used for in silico gene knockout
validation were taken from the DepMap database (https://score.depmap.sanger.ac.uk)
and had previously been published by Behan et al. in 201953. Source data are provided
with this paper.

Code availability
Open-source software packages were used and further developed for this study.
Parallelized parameter estimation was performed with parPE, and we implemented our
mini-batch algorithms there directly. The AMICI package was used for the simulation of
ODE systems, as well as log-likelihood and gradient computation with adjoint sensitivity
analysis. The following open-source software packages were also used: the Python
package for PEtab, the parameter estimation package pyPESTO, the scientific computing
package SciPy, and the dimension reduction package umap-learn. The optimization
package Ipopt was used with the linear solver package CoinHSL73, which is free for
academic use.
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