
ARTICLE

Integration of single-cell transcriptomes and
chromatin landscapes reveals regulatory programs
driving pharyngeal organ development
Margaret E. Magaletta1,2,6, Macrina Lobo1,2,6, Eric M. Kernfeld 1,2,6, Hananeh Aliee3, Jack D. Huey1,2,

Teagan J. Parsons1,2, Fabian J. Theis 3,4,5 & René Maehr 1,2✉

Maldevelopment of the pharyngeal endoderm, an embryonic tissue critical for patterning of

the pharyngeal region and ensuing organogenesis, ultimately contributes to several classes of

human developmental syndromes and disorders. Such syndromes are characterized by a

spectrum of phenotypes that currently cannot be fully explained by known mutations or

genetic variants due to gaps in characterization of critical drivers of normal and dysfunctional

development. Despite the disease-relevance of pharyngeal endoderm, we still lack a com-

prehensive and integrative view of the molecular basis and gene regulatory networks driving

pharyngeal endoderm development. To close this gap, we apply transcriptomic and chro-

matin accessibility single-cell sequencing technologies to generate a multi-omic develop-

mental resource spanning pharyngeal endoderm patterning to the emergence of organ-

specific epithelia in the developing mouse embryo. We identify cell-type specific gene reg-

ulation, distill GRN models that define developing organ domains, and characterize the role of

an immunodeficiency-associated forkhead box transcription factor.
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Development of the pharyngeal endoderm, which produces
specialized epithelia of various organs including the thy-
mus, parathyroid, thyroid, ultimobranchial body, the

middle ear, and palatine tonsils1–3, is characterized by dramatic
changes in morphology and cell state across embryonic days (E)
9.5 to 12.5 of mouse gestation. At E9.5, pharyngeal endoderm
comprises four bilateral out-pockets organized from anterior to
posterior, termed pharyngeal pouches I–IV. Each pouch forms
the epithelial structure of a unique organ that separates from the
pharynx by E12.5. Importantly, disorders associated with defects
in pharyngeal endoderm development are characterized by a
spectrum of phenotypes ranging from craniofacial dysmorphia,
heart deformities, and cognitive deficiencies to severe immune
disorders and disrupted endocrine processes. Such symptoms
arise in part due to dysfunctions of the pharyngeal endoderm in
organization of the pharyngeal region, and cell autonomous
regulation of patterning and organogenesis4–9. Certain mutations
or single-nucleotide polymorphisms (SNPs) in transcription fac-
tors (TFs) or cis-regulatory elements (CREs)10–13 are known to
cause pharyngeal endoderm-associated syndromes, but do not
fully account for all incidences of such syndromes. Moreover,
large variations in phenotypic penetrance suggest contribution of
unknown genetic modifiers to observed phenotypes14,15. Given
the developmental origin of these syndromes, a comprehensive
understanding of pharyngeal endoderm development could lead
to specific hypotheses about molecular mechanisms driving
syndrome emergence and phenotypic penetrance variation;
however, a detailed integrative molecular characterization of
pharyngeal endoderm development does not yet exist.

Single-cell genomics technologies provide means to dissect the
molecular basis and gene regulatory networks (GRNs) driving cell
development and heterogeneity, and thus could provide a com-
prehensive approach to reveal potential coding and non-coding
factors that could impact syndromes and phenotype penetrance.
While others have reported single-cell transcriptomic profiles
covering early endoderm development or whole embryo
development16,17, these studies fall short of capturing the time
period of pharyngeal endoderm patterning and subsequent organ
formation or lack sufficient cell numbers. Moreover, most of the
aforementioned studies focus exclusively on transcriptomic ana-
lyses, neglecting chromatin aspects of this developmental time
period, and only recent reports have begun to capture single-cell
chromatin accessibility maps on whole mouse embryos including
endodermal cells18, albeit not including pharyngeal endoderm
development and pharyngeal organogenesis.

To address the knowledge gap, we present a comprehensive
single-cell transcriptomic and chromatin accessibility resource on
mammalian pharyngeal endoderm development spanning the
time period of pharyngeal patterning to the emergence of organ-
specific epithelia. This resource provides a description of tissue-
specific coding and non-coding elements, some of which we
characterize spatially. We reveal GRNs that distinguish develop-
ing organ domains and predict the effects of perturbations on
pharyngeal endoderm development. Finally, we substantiate GRN
model predictions by characterizing molecular and cellular
impact of a perturbation targeting Foxn1, which encodes a
forkhead box DNA binding TF, resulting in developmental
defects that underly primary immunodeficiency.

Results
Single-cell RNA-seq reveals cellular heterogeneity and tran-
scriptomic dynamics of pharyngeal endoderm development. To
investigate the molecular processes underlying development of
pharyngeal endoderm, we generated a single-cell transcriptomic
catalog of mouse pharyngeal endoderm between embryonic days

(E)9.5 and E12.5 which covers the transition from pharyngeal
endoderm to pharyngeal organ primordia2 (Fig. 1a). To specifi-
cally isolate pharyngeal endoderm, we sorted Epcam/Pax9VE-
NUS cells as previously described by us19. After initial data
processing and quality control of the single-cell RNA (scRNA)
profiles (see “Methods”; Supplementary Figs. 1 and 2), the
resulting dataset yielded 54,044 single-cell transcriptomes (13,345
from E9.5, 13,120 from E10.5, 16,493 from E11.5, 11,086 from
E12.5), with a median of 3072 unique genes detected per cell.

Dimensional reduction and unsupervised clustering identified 28
distinct clusters, with cells of earlier timepoints, hence less mature
pharyngeal endoderm, grouped in the center of the UMAP
embedding and cells of later timepoints extending to the periphery,
representing organ specification and maturation events (Fig. 1b,
Supplementary Fig. 3, Supplementary Table 1). Differential gene
expression analysis revealed signatures of various organ domains in
the peripheral clusters, including the eustachian tube, thyroid,
thymus (cortex and medulla), parathyroid, ultimobranchial body
(UBB), oropharynx, and esophagus (Fig. 1c–e, Supplementary Fig. 3,
Supplementary Dataset 1).

Cluster-specific molecular signatures related to the thyroid
(Nkx2.1, Hhex, Pax820), early respiratory lineages (Nkx2.121, Irx1/
222), and first pouch derivative Eustachian tube (Fgf8 & Edn123,
Eya124) is detected as early as E9.5 (Supplementary Fig. 3). UBB
cells become distinct at E10.5 (Nkx2.1, Hhex, Calca25), supporting
the pharyngeal endoderm origin of UBB26 (Supplementary Fig. 3).
Interestingly, the expression pattern of Ripply3, a known marker
of the fourth pouch27, points to a UBB progenitor-containing
cluster at E9.5.

The second pouch cluster comprising mainly E10.5 and E11.5
cells expresses genes associated with salivary glandular epithelium
(Irf628, Trp63, Sox9, Vim29). Within the same cluster, E12.5 cells
express certain markers of myoepithelial cells (Acta2, Tagln29,
Myl930), which are documented in various epithelial glands31.
This cluster also expresses pharyngeal pouch markers Pax1 and
Fgf832,33, but lacks expression of Hoxa3, a known marker of the
caudal third and fourth pouches34, suggesting an anterior
position (Supplementary Fig. 3). Notably, morphological simila-
rities between the salivary gland and palatine tonsils35, the known
derivative of the second pharyngeal pouch in most mammals,
support the hypothesis about an evolutionary relationship
between the two tissues36.

In agreement with previous reports37,38, parathyroid (Gcm2)
and thymus (Foxn1) appear by E10.5 and E11.5, respectively
(Supplementary Fig. 3). At E12.5, thymic epithelial cells (TECs)
could be further separated into two clusters, with cluster 25
expressing Cldn3 and Cldn4, markers associated with the
emergence of specialized medullary (m)TECs39, and cluster 4
enriched in expression of Psmb11, a transcript associated with
cortical (c)TECs and progenitor TECs40 (Fig. 1e, Supplementary
Fig. 3). Also at E12.5, we observe clusters that likely correspond to
oropharynx and esophageal epithelium (Sox2, Trp63, Krt1541).

In addition, unbiased transcriptomic profiling exposed cell-
type-specific gene expression patterns (Fig. 1e, Supplementary
Fig. 3, and Supplementary Dataset 1). To verify these findings, we
implemented RNAscope at E12.5. Using Foxn1, Gcm2, and Calca
probes to demarcate the thymus, parathyroid, and UBB,
respectively, we co-stained with predicted transcripts enriched
in the thymus (Gas6, Grhl3), parathyroid (Sparcl1, Ibsp, Flrt2),
and UBB (Meox1) (Fig. 1f–h, Supplementary Fig. 3). While Gas6
expression overlaps with Foxn1 throughout the thymus organ
domain, we find that Grhl3 expression is largely restricted to the
thymic medulla, which together with the single-cell transcrip-
tomic analysis suggests mTEC specificity (Fig. 1f). In the
parathyroid, we observe high expression levels of Sparcl1 (Fig. 1g),
a gene frequently downregulated in epithelial cancers, including

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-28067-4

2 NATURE COMMUNICATIONS |          (2022) 13:457 | https://doi.org/10.1038/s41467-022-28067-4 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


parathyroid cancer, leading to increased proliferation and cell
cycle progression42; therefore, our results indicate this gene could
be performing an anti-growth or anti-proliferative function
during early parathyroid development.

Single-cell chromatin accessibility profiling uncovers chroma-
tin dynamics accompanying transcriptomic changes during
pharyngeal organ specification. Since single-cell transcriptomic
analyses highlighted organ domain-specific expression signatures
at E11.5 and E12.5, we aimed to further elucidate the regulatory
landscape of pharyngeal endoderm development during this time
period by measuring single-cell chromatin accessibility (Fig. 2a).

After data preprocessing and cleaning (see “Methods”, Supple-
mentary Fig. 4, Supplementary Fig. 5), we retained 10,890 cells
(4323 from E11.5 and 6567 from E12.5) with 48.9% of reads in
peaks (median) and 20.9% in promoters (median). These data
were re-processed by dimensional reduction and unsupervised
clustering by chromatin accessibility profiles, yielding 22 clusters
over two developmental timepoints as visualized on the two-
dimensional UMAP embedding (Fig. 2b, c).

To assign cellular identities, we integrated predicted gene
expression scores, which were calculated based on gene body
(upto 5 kb upstream of the transcription start site (TSS)) and
putative distal regulatory element (100 kb on either side of the
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Fig. 1 Single-cell transcriptomic map of developing mouse pharyngeal endoderm from pouch formation to early organogenesis. a Experimental
workflow schematic. Pax9VENUS embryos were harvested at E9.5 (n= 2), E10.5 (n= 3), E11.5 (n= 3), and E12.5 (n= 2), and the pharyngeal region was
dissected. Tissue samples were dissociated into a single-cell solution and then pharyngeal endoderm cells were FACS purified based on co-expression of
VENUS and Epcam. Single-cell transcriptomes were captured and barcoded using Chromium Single-cell 3′ Reagents. b, c UMAP visualization of pharyngeal
endoderm transcriptomic time-course dataset (n= 54,044 cells) colored by embryonic day (b) and terminal Louvain clusters corresponding to anatomical
structures (c). Each dot represents a single-cell in the global transcriptomic space. mTEC medullary thymic epithelial cells, cTEC cortical thymic epithelial
cells, UBB ultimobranchial body. d Diagram of pharyngeal endoderm with pharyngeal pouches I–IV indicated. Organ colors correspond to cluster colors in
(c). e Heatmap displaying differentially expressed marker genes by terminal clusters. Row-standardized heatmap of data-driven terminal cluster marker
genes. Genes displayed represent a log2-fold-change cutoff of >1.5 and a p-value of <0.01. f–h UMAP visualization of expression of select tissue-specific
marker genes with corresponding RNAscope data. Cells are binned by UMAP coordinate with size proportional to the number of cells and color signifying
average log2-normalized expression. Data-driven and known transcripts of the thymus (data-driven: Grhl3, Gas6; known: Foxn1; n= 3) (f), parathyroid
(data-driven: Ibsp, Sparcl1; known: Gcm2; n= 3) (g), and ultimobranchial body (data-driven: Ascl1, Meox1; known: Calca; n= 2) (h) lineages were visualized
using RNAscope in situ hybridization. Scale bars represent 20 µm.
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gene body, while excluding promoter regions) accessibilities, with
the scRNA gene expression data. This identified pharyngeal
derivatives including the thyroid, TECs, parathyroid, UBB,
oropharynx, and esophagus (Fig. 2d). Cluster-based pseudobulk
ATAC-seq signal reveals locus-specific chromatin accessibility at

gene bodies linked to function and organogenesis of different
pharyngeal endoderm derivatives (Fig. 2e). Importantly, putative
cell-type-specific regulatory elements were captured as exempli-
fied in the distal regions of Il7, Hhex, and Mafb genes, each of
which performs critical functions in development and function of
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Fig. 2 Single-cell chromatin map of developing mouse pharyngeal endoderm during early organogenesis. a Experimental workflow schematic. Single
cells were prepared as described in Fig. 1a from E11.5 (n= 2) and E12.5 (n= 2) Pax9VENUS embryos. Single-cell chromatin landscapes were captured and
barcoded using Chromium Single-cell ATAC Reagents. b–d UMAP visualization of pharyngeal endoderm early organogenesis chromatin accessibility
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the thymus, thyroid, and parathyroid, respectively43–45 (Fig. 2e,
shaded regions). In concordance, unbiased assessment of the
differential gene scores (FDR ≤ 0.1, log2-fold change ≥ 0.5) by
cluster revealed many known tissue-specific genes (Fig. 2f,
Supplementary Dataset 2).

Last, we detected enrichment of known transcription factor
(TF) binding motifs in chromatin accessibility peaks and
compared UMAP visualizations of predicted gene expression
scores with corresponding motif enrichment at the single-cell
level, and matched scRNA gene expression based on the
integration (Fig. 2g–i), revealing strong overlap between each of
these data features in a cell-type-specific manner.

To uncover putative regulatory elements in the non-coding
genome of each cell type, we annotated 270,210 peaks as
promoter (2000 bp upstream to 100 bp downstream of a TSS,
9.3% of all peaks) or distal elements (peaks outside the gene body
that are not promoters, 38.6% of all peaks). Parsing 64,518
differentially accessible peaks across clusters (FDR ≤ 0.01, log2-
fold change ≥ 0.5) by promoter (3.8%) and distal (42.3%)
highlighted greater diversity in distal peaks (Fig. 3a, Supplemen-
tary Dataset 3). Further, we determined peak specificity using the
tissue specificity index46, with smaller values indicating higher
average peak signal and larger values indicating lower average
peak signal across the clusters. We observed a higher cluster
specificity of distal peaks, suggesting that cell identity in terms of
the chromatin accessibility landscape is best ascribed to non-
coding distal elements of the genome (Fig. 3b).

Within the differentially accessible set of distal peaks (FDR
≤ 0.1, log2-fold change ≥ 0.5), we identified cluster-specific
enriched motifs and paired each with a candidate regulatory TF
of the same family based on correlation between motif
enrichment and scRNA expression (Fig. 3c). This approach
identified several putative TF regulators of the pharyngeal
endoderm. For example, Trp63 was enriched across many
clusters, which is notable given its function in differentiation
and/or proliferation of various epithelial stem cells47,48. TF motifs
enriched in specific clusters include Pax8 and Nkx2.1 in the
thyroid or Isl1 in the thymus and UBB. This approach also
suggests Grhl3, a putative mTEC TF (Fig. 1), could be a regulator
in both mTECs and the esophagus domain based on a high
correlation with the Grhl1 motif.

Considering the relevance of the pharyngeal endoderm with
respect to human developmental syndromes, we sought to further
examine the distal peaks for evidence of conserved genetic
programs between mouse and human that could contribute to
unique cell identity across both species. To this end, we identified
distal peaks conserved within the Euarchontoglires clade and
differentially accessible by cluster (FDR ≤ 0.01, log2-fold change
≥ 0.5) (Fig. 3d). We then conducted GREAT analysis on each set
of conserved cluster-specific distal peaks to uncover the biological
pathways and phenotypes (Fig. 3e), and curated enriched terms to
assess differential presence of ontologies. Interestingly, ontologies
with key words such as pharyngeal pouch and pharyngeal/
brachial abnormalities grouped together in the putative caudal
pouch-containing clusters (clusters 21 and 22). This analysis also
highlighted many terms related to development, function, and
disorders of specific pharyngeal endoderm tissues. For example,
the thymus cluster contains peaks near genes linked to immune
system terms and Wnt signaling, which had previously been
linked to thymus development49, and the thyroid cluster contains
peaks near genes linked to thyroid agenesis.

Gene regulatory network inference highlights organ domain-
specific regulatory nodes and edges. To infer GRNs that could
coordinate cell-type differentiation, we chose two approaches

(Fig. 4a). First, to uncover global patterns of regulation across the
cell types in the developing pharyngeal endoderm we grouped
cells with similar transcriptomic profiles into metacells and used
these to build a GRN with GENIE350, which uses tree-based
importance measures to infer causal TF-target networks. Unsu-
pervised clustering on the network containing the top 200 reg-
ulators yielded 12 subnetworks (Fig. 4b, Supplementary Fig. 6,
Supplementary Dataset 4), and we identified key TF-encoding
genes of these modules including Pax8 (Thyroid), Foxn1, Pax1,
and Six1 (Thymus), and Gcm2, Gata3, and Maf (Parathyroid) by
ranking regulators according to their ability to explain coordi-
nated variation within the pharyngeal endoderm data (Fig. 4c).
Some of these subnetworks are highly cell-type specific, suggest-
ing a capture of unique drivers of pharyngeal endoderm differ-
entiation, while other subnetworks capture programs active
across multiple cell types (Fig. 4d, e, Supplementary Fig. 6).

While the GENIE3 network successfully identified ubiquitous
programs and certain cell-type-specific programs, the results
could be difficult to interpret when one TF-encoding gene
performs multiple roles in different cell types. For instance,
Nkx2.1 regulates both UBB and thyroid development, and thus
will have connections relevant to each cell type that could be
indistinguishable. Therefore, to explicitly study cell-type-specific
gene regulatory programs, the second approach we implemented
was CellOracle51, a network inference tool that capitalizes on
both scRNA expression data and peak co-accessibility from
single-cell ATAC-seq data to build cluster-specific GRNs and
simulate network perturbations such as TF knockouts. A bivariate
plot of betweenness centrality, a measure of gene importance
within a network, and expression specificity yields genes known
to regulate development of the thymus (Foxn1, Pax1), parathyr-
oid (Gcm2, Mafb), UBB (Nkx2.1), and thyroid (Nkx2.1, Pax8,
Foxe1), suggesting that regulators are best ranked by both
specificity and regulatory influence (Fig. 4f, Supplementary
Dataset 5). As expected, Nkx2.1 appears as a top regulator in
both the UBB and thyroid CellOracle networks. Finally, this
approach reveals several TF-encoding genes without previously
described roles in each respective tissue: Nfia (thymus), Scx
(parathyroid), Prdm1 (UBB), and Mecom (thyroid). Given that a
recent publication demonstrates that Mecom gene products
interact with Pax8 to drive gene expression programs regulating
cell adhesion and extracellular matrix formation52, our results
could suggest a comparable interaction between Mecom and Pax8
to coordinate similar gene expression programs in the developing
thyroid. Betweenness centrality of certain top regulators across all
clusters revealed a distinctly cell-type-specific pattern, demon-
strating the reliability of the CellOracle networks (Fig. 4g).

Foxn1 deficiency causes thymus-specific transcriptional chan-
ges similar to a developmental delay. To predict the importance
of several organ-specific nodes from our GRNs in silico, we
simulated genetic knockouts with the CellOracle GRN (Supple-
mentary Fig. 7). One of the critical nodes identified in both the
GENIE3 and CellOracle GRNs for TECs was Foxn1, a TF linked to
thymus development and immunodeficiency53. Foxn1 knockout
(KO) mice fail to develop a functional thymus54, and studies
suggest that the epithelial cells within the thymic rudiment arrest
in a bipotent progenitor state55. Indeed, upon simulating a Foxn1
KO perturbation by propagating the downstream effect on the
predicted direct and indirect targets using the inferred CellOracle
GRN, the simulation proposed a developmental block of TEC
differentiation (Fig. 5a). While evidence suggests that Foxn1 con-
trols thymus differentiation rather than lineage commitment56,
questions remain about the molecular state of TECs in the Foxn1
KO. Earlier morphological characterizations of the Foxn1 KO
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thymus (a.k.a. nude thymus) revealed a cystic, alymphoid
rudiment57 with features similar to respiratory epithelium58, while
more recent work characterizing the nude thymus implicates
Foxn1 as an inhibitor of branching morphogenesis59. Nevertheless,
the causative genetic defects supervening Foxn1 deficiency are not
yet fully understood, so we sought to characterize Foxn1 KO
during early organogenesis using our reference data as a
framework.

To test the predictions of the Foxn1 KO simulation created
with CellOracle and thoroughly assess Foxn1 deficiency in the
early thymic epithelium, we implemented single-cell RNA-seq to
characterize Foxn1 KO and Foxn1 heterozygous pharyngeal
endoderm (Pax9VENUS/Epcam positive) at E12.5. Notably,
comparison of thymus resident CD4 and CD8 T cell populations

from wild-type, Pax9VENUS/wt and Pax9VENUS/wtFoxn1nu/wt mice
indicated that double heterozygous thymi retain normal function
(Supplementary Fig. 8). After depletion of contaminating cells
and empty droplets (Supplementary Fig. 9), 21,904 cells (9063
cells from Foxn1 het and 12,841 cells from Foxn1 KO) remained,
with a median of 3969.5 unique genes detected per cell. Next, we
projected the Foxn1 KO and control cells onto the transcriptomic
atlas and assessed cellular distribution (Supplementary Fig. 10).
Foxn1 KO cellular heterogeneity largely mirrored the E12.5 atlas
samples regardless of genotype, except the Foxn1 KO samples
lack the most mature TECs (Fig. 5b, c). Notably, while the Foxn1
heterozygous control sample appeared more mature than the
Foxn1 KO, the control included less mature TECs as compared to
the atlas, a result that agrees with previous descriptions of
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ordered by unsupervised hierarchical clustering on the distal peaks and row z-scored. TEP, thymic epithelial progenitor. b Boxplot showing cluster
specificity of differentially accessible distal (n= 27,295) and promoter proximal (n= 2436) peaks measured by cluster-specificity index on scaled, log2-
transformed cluster averaged peak accessibility. Center line denotes the median; box limits denote upper and lower quartiles; top and bottom whiskers
denote regions upto 1.5 times the inter-quartile range above the upper and below the lower quartiles, respectively; tailing points denote outliers. P-value is
from a two-sided Wilcoxon test with continuity correction and without adjustment. c Heatmap of top 10% of distal regulators per cluster determined by a
motif score (average ChromVar motif z-score per cluster –minimum cluster average motif z-score) on a set of 55,840 differentially accessible distal peaks
(FDR ≤ 0.1, log2-fold change ≥ 0.5) with color bar displaying correlation of the ChromVar motif z-scores with the integrated gene expression (correlation
cutoff > 0.35). d Percent of distal differentially accessible peaks between clusters (FDR ≤ 0.01, log2-fold change ≥ 0.5) having an average phastCon
conservation score within the Euarchontoglires clade= 0.00, >0.00 and ≤0.50, and >0.50 split by cluster. Cluster 20 has no peaks meeting the differential
accessibility cutoff. e Heatmap of row normalized −log10 corrected p-values (Benjamini–Hochberg) from the binomial test on a curated list of GREAT
terms enriched in distal, differentially accessible peaks (FDR ≤ 0.01, log2-fold change ≥ 0.5) with an average phastCon conservation score within the
Euarchontoglires clade of >0.50.
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reduced cellularity in the Foxn1 heterozygous thymus60. Closer
evaluation of the cell-type abundance by cluster showed that the
Foxn1 KO is specifically depleted for clusters 4 and 25, which
comprise the thymus lineage (Fig. 5d). Differential gene
expression analysis between the Foxn1 KO and control confirms
all 5 differentially expressed transcripts previously identified by
microarray profiling of E12.5 nude thymus: Pdlim1, Mfsd12,
Mreg, Fam57a, and Ppp1r16b61 (Supplementary Dataset 6).

By directly comparing the estimated transcriptomic state of the
in silico Foxn1 KO within the thymic clusters with our Foxn1 KO
experiment, we obtained a Spearman correlation of 0.32 (p-value
< 2.2e−16) (Fig. 5e). Specific genes predicted in our network to be
affected by a Foxn1 KO and confirmed in our Foxn1 KO
experiment include those previously identified by Bleul et al.
(Ppp1r16b, Pdlim1, Mfsd12, green labels)61, additional genes
implicated in thymus development, maturation, and function
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(Psmb11, Prss16, Cxcl12, Ccl25, etc., pink labels)62–65 as well as
thymus markers from the TEC progenitors and cTEC clusters (9
and 4, respectively) in our transcriptomic atlas (Rspo3, Gas6, blue
and orange labels; Fig. 5e, Supplementary Datasets 1 and 6).

To further assess the thymic-specific effects of Foxn1 KO, we
projected the Foxn1 KO and control thymic cells onto a subset of
the pharynx atlas only including third pouch progenitors and
derivatives (Fig. 6a). The Foxn1 experiment cells classified as
E11.5 while the control cells classified as E12.5 (Fig. 6a,
Supplementary Fig. 11). For a more refined measurement of
these similarities, we determined the correlation between the
Foxn1 KO and third pouch TECs organized across pseudotime
(Fig. 6b, Supplementary Fig. 11). This further demonstrated a

higher correlation between the Foxn1 KO and E11.5 cells,
whereas the control cells correlated more highly with E12.5 cells.

To determine the molecular signature of the observed
developmental delay, we compared the gene expression differ-
ences between the Foxn1 KO and control to the gene expression
changes between E11.5 and E12.5 thymic cells (Fig. 6c,
Supplementary Dataset 7). Overall, we detect 1218 differentially
expressed genes between the Foxn1 KO and control (q-value
< 0.05) which have a 30% overlap with 47% of differentially
expressed genes (absolute log2-fold change > 0.5, q-value < 0.05)
between E11.5 and E12.5 (Supplementary Datasets 6 and 7).
Many genes downregulated in the Foxn1 KO that normally
increase from E11.5 to E12.5 perform known roles in thymus
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biology: Dll4, Il7, Ccl25, Cxcl12, and Kitl promote T cell
proliferation and/or development64,66,67, Prss16 and Ctsl promote
positive selection of CD4 single-positive T cells65,68, and Psmb11
promotes positive selection of CD8 single-positive T cells63. No
significant effect on Il7 was observed, consistent with existing
models where Il7 onset occurs independently of Foxn137.

To determine additional genetic programs that deviate from
normal development in the Foxn1 KO thymus, we analyzed
differentially expressed genes (q-value < 0.01, log2-fold change
> 0.5) for enriched gene ontologies. Genes with higher expression in
the control thymic cells yielded terms related to various signaling
pathways, including Wnt, BMP, and Notch, which have known roles
in thymus development49,69–72, as well as Hippo which has not yet
been studied during early thymus development (Fig. 6d, Supple-
mentary Dataset 8). We also find terms related to vascularization, a
process known to be dependent on Foxn173 (Fig. 6d). Conversely,
genes enriched in the Foxn1 KO cells yielded terms including
epithelial-to-mesenchymal transition (EMT), branching morpho-
genesis, and TGF-b signaling (Fig. 6e, Supplementary Dataset 8).
Interestingly, Foxn1 performs various roles in keratinocyte differ-
entiation and wound healing via EMT74, and a few EMT regulators
are affected by the KO. Snai2, which turns on a keratinocyte re-
epithelialization necessary for wound healing75, increases from E11.5
to E12.5 and is downregulated in the Foxn1 KO. Conversely, Zeb2, a

driver of EMT76, is increased in the KO. Vimentin, a classic EMT
marker76, shows an increase in the knockout and is also
downregulated from E11.5 to E12.5 (Supplementary Dataset 7).
Several other genes normally upregulated during keratinocyte
wound healing (Tgfb2, Egfr, Pdgfc, Igfbp3, and Mapk11) are also
upregulated in the Foxn1 KO77. These results support the hypothesis
that Foxn1 drives a re-epithelialization process in the thymus
rudiment between E11.5 and E12.5, leading to increased Snai2 and
decreased Zeb2 and vimentin expression.

Branching morphogenesis of an epithelial tube, a term
enriched in the KO, stands out due to a recent study
characterizing the morphological features of the nude thymus
anlage59. Excitingly, our data provide possible genetic links
between the loss of Foxn1 and the branching morphogenesis
phenotype reported by Muñoz et al. We detect increased
expression of Bmp2, Fgf10, Epha2, Sfrp2, and Slit2 among other
branching morphogenesis-related genes, in the Foxn1 KO
(Supplementary Dataset 6). These genes normally function to
promote branching morphogenesis in other epithelial organs
including the mammary gland, kidney, and lungs78–80. While
Foxn1 deficiency during development leads to multifaceted and
interrelated defects culminating in complete thymus dysfunction,
our results begin to elucidate mechanisms behind morphogenic
defects observed in the Foxn1 KO thymus.
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By examining the consequences of the Foxn1 KO in the context of
our transcriptomic time-course dataset, we further characterized the
presumed developmental delay of the thymic primordium. In
addition to confirming the downregulation of various genes related
to thymus maturation in the Foxn1 KO, we also described a potential
EMT event occurring in the developing thymus, drawing similarities
between the role of Foxn1 in wound healing and thymus
development, and providing putative effector genes associated with
a branching morphogenesis phenotype.

Discussion
Several human syndromes and disorders result from mal-
development of the pharyngeal endoderm, which performs func-
tions important for patterning and organization of the pharyngeal
apparatus, and differentiation of organ-specific epithelial cells.
Despite these important functions, the field lacks a comprehensive
understanding of the molecular mechanisms underlying phar-
yngeal endoderm development and, by extension, the causes of
pharyngeal endoderm-associated syndromes and disorders. Here,
we produced comprehensive single-cell datasets on the global
transcriptomic and chromatin landscapes of developing phar-
yngeal endoderm. We assessed heterogeneity both in terms of
transcriptomic and chromatin accessibility signatures, thereby
uncovering tissue-specific marker genes and putative CREs. For
instance, we identified a putative early mTEC marker, Grhl3.
While the field has relied on markers such as Cldn3 and Cldn4 to
detect the earliest emergence of the mTEC lineage39, our results
demonstrate that such genes have far less specificity than Grhl3.
Furthermore, we identified sets of cell-type-specific putative CREs,
many of which are conserved across the Euarchontoglires clade of
mammals. These results could identify non-coding elements
contributing to the spectrum of human syndromes rooted in
pharyngeal endoderm maldevelopment.

Using two complementary GRN approaches, we distill infor-
mation on both global and cell-type-specific programs, leveraging
both transcriptomic and chromatin accessibility information.
These GRN results confirmed the central roles of various TFs
known to regulate pharyngeal endoderm development and organ
formation, and additionally identified other TFs with unknown
roles in organ development. In the future, these GRNs can be
refined with additional data types, such as ChIPseq to validate
predicted TF targets. The GRNs defined here will also benefit
from improved models for distinguishing between binding motifs
within the same family, identifying de novo motifs, and studying
combinatorial binding effects.

Based on a few predicted GRNs nodes, we simulated knockouts
predicted to affect organ domains. We demonstrate the applica-
tion of this resource for simulating and testing the consequences
of loss of a key TF, Foxn1, during early thymus development. We
inferred genes potentially responsible for a recently documented
branching morphogenesis phenotype in the Foxn1 KO thymus59,
which provides context on the molecular defects of a known
primary immunodeficiency. Interestingly, Hippo signaling was
active in the developing thymus and lacking in the Foxn1 KO
thymus, indicating that this pathway could be functioning
downstream of Foxn1 to regulate thymic proliferation and organ
growth. This approach can now be extended to explore specific
hypotheses about genes involved in development of the phar-
yngeal endoderm, and consequently genes that could be con-
tributing to the severe phenotypes of syndromes associated with
defects in pharyngeal endoderm-derived organs. Although reg-
ulatory redundancy or compensatory mechanisms could buffer
penetrance of a factor knockout on GRN function and cellular
state, such factors could be performing an important modifier
function that would be apparent in the context of other genetic

defects. This is especially relevant given that many syndromes
associated with defects in pharyngeal endoderm development
cannot fully be explained by known mutations and have variation
in phenotypic penetrance.

Currently, the GRN models can only model defects in phar-
yngeal endoderm development and, integration with datasets
including additional pharyngeal cells could reveal how defects in
one cell type can propagate in the surrounding tissue. Finally,
given the importance of pharyngeal endoderm epithelia in
pharyngeal organ function, this resource can inform and
benchmark directed differentiation of pluripotent stem cells to
pharyngeal endoderm derivatives for the purposes of disease
modeling and cell replacement therapies81. Overall, this resource
has diverse applications across several fields and provides a
greater understanding of the molecular processes underlying
pharyngeal endoderm development between pouch formation
and early organogenesis.

Methods
Mouse husbandry and embryo collection. All mouse experiments were per-
formed in accordance with the regulatory standards defined by the National
Institutes of Health and the University of Massachusetts Chan Medical School
Institutional Animal Care and Use Committee (IACUC), protocol #2384. C57BL/6J
mice (000664), Foxn1nu (B6.Cg-Foxn1nu/J; 000819) were obtained from The
Jackson Laboratory. C57BL/6J females between 6 and 8 weeks of age were crossed
with Pax9VENUS genetically targeted reporter mice19. Heterozygous Pax9VENUS

embryos (identified by visual inspection for expression VENUS protein) were
dissected at timepoints embryonic day (E)9.5, E10.5, E11.5, and E12.5, where the
morning of plug detection was considered E0.5. Dissections were performed in cold
RF10-H medium (RPMI 1640 (Gibco; 22400089) supplemented with 2 mM
L-glutamine (Gibco; 25030081), 100 IU/mL penicillin and streptomycin (Corning;
352063), and 10% v/v Gibco fetal bovine serum (Gibco; 10437028)). For single-cell
RNA-seq and single-cell ATAC-seq assays, pharyngeal endoderm was isolated
from heterozygous Pax9VENUS embryos as described below. To isolate Foxn1nu/nu

pharyngeal endoderm, Foxn1nu/wtPax9VENUS/wt mice were crossed with Foxn1nu/wt

female mice between 6 and 8 weeks of age. All embryos resulting from crosses with
Foxn1nu/wt mice were genotyped as described below prior to cell isolation
and FACS.

Thymocyte isolation and flow cytometry. Thymocytes from 5-week-old litter-
mates (wild type, Foxn1nu/wt, and Foxn1nu/wtPax9VENUS/wt) were obtained by
mechanical agitation of the thymus. Cells were incubated with anti-mouse CD16/
32 (Biolegend; 101302) for 10 min prior to staining with APC anti-mouse CD4 (BD
Pharmingen; 553051) and PE anti-mouse CD8a (BD Pharmingen; 553033). Dead
cells were excluded with 7-AAD (BD Biosciences; 51-68981E). Data were acquired
using a BD Accuri C6 and processed using FlowJo [v10.8.0].

Embryo genotyping for the presence of Foxn1nu allele. DNA was extracted from
embryo limbs using the EZ Fast Tissue/Tail PCR Genotyping Kit (EZ Bio Research;
G1001-300). DNA was extracted in 50 µL of DNA extraction solution and diluted
1:10 prior to downstream genotyping. Presence of the Foxn1nu allele was assayed
via restriction digest as specified in The Jackson Laboratory Foxn1nu protocol
(000819). Briefly, genomic DNA was amplified using oIMR1292 (5′ GGC CCA
GCA GGC AGC CCA AG) and oIMR1293 (5′ AGG GAT CTC CTC AAA GGC
TTC) primers. Following PCR purification using the MinElute PCR Purification
Kit (Qiagen; 28004), PCR products were digested with FastDigest BseDI (Thermo
Scientific; FD1084) at 37 °C for 10 min. Restriction digest products were resolved
on a 5% agarose gel.

Cell isolation and FACS. The pharynx region was mechanically dissected from
heterozygous Pax9VENUS embryos through removal of the head and lower torso
from above the heart. Tissue was washed in cold 1X PBS, then dissociated in 0.05%
trypsin-EDTA (GIBCO; 25300-120) and DNase (Sigma; DN25-1g) at 37 °C for
15–20min with P1000 pipette trituration every 5 min. Trypsin was deactivated with
RF10-H medium. Single-cell suspensions were filtered through 40 µm cell strainers
(Fisher Scientific; 22363547) and centrifuged at 4 °C, 300 × g for 5 min. Cells were
treated with 1X RBC lysis buffer (eBioscience; 00-4333-57) at 4 °C for 3 min, then
washed with FACS buffer (1X PBX+ 2% v/v FBS). Cells were stained with a PE/Cy7
anti-mouse CD326 EpCAM antibody (Biolegend; 118216; 1:1000) in FACS buffer at
4 °C for 20min. Dead cells were excluded with 7-AAD (BD Biosciences; 51-
68981E). Cell sorting was performed byf the University of Massachusetts Chan
Medical School Flow Cytometry Core using a BD FACS S-Aria IIu Cell Sorter 5B
2V 2R or a BD FACS 2-Aria IIu Cell Sorter 2B 6V 3R 5YG, and approximately
20,000 Pax9VENUS and PE/Cy7 double-positive cells were collected per replicate.
Cells were sorted into 1.5mL Eppendorf tubes pre-coated with FACS buffer.
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Single-cell RNA-seq library preparation. Following FACS, all ~20,000 cells were
pelleted at 300 × g for 5 min and resuspended in 33.8 µL or 46.6 µL of FACS buffer
according to the Chromium Single Cell 3′ v2 and v3 chemistry kits, respectively
(10X Genomics; CG00052 Rev D; CG000183 Rev A). Total cell suspensions were
combined with Master Mix (10X Genomics; 120237; 1000092) and loaded on a
Chromium Controller. Libraries were generated using Chromium Single Cells 3′
Reagent Kits according to manufacturer’s instructions (10X Genomics; 120237;
1000092).

Nuclei isolation for single-cell ATAC-seq and library preparation. Between
30,000 and 40,000 cells were sorted, then centrifuged at 4 °C, 300 × g for 5 min. To
isolate nuclei, 100 µL of chilled lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 3 mM
MgCl2, 0.1% v/v Nonidet P40) was added to the cell pellet, which was then
transferred to a 0.2 mL PCR tube. Nuclei were centrifuged at 4 °C, 850 rcf for 5 min,
then washed once in 1X PBS with 0.04% BSA. Based on the FACS cell count, nuclei
were resuspended in an appropriate volume of Diluted Nuclei Buffer (10X
Genomics; CG000168 Rev B, 2000153) to achieve a targeted nuclei recovery of
~6000. Libraries were generated according to manufacturer’s instructions (10X
Genomics Chromium Single Cell ATAC Reagents Kits; 1000111, 10000086,
1000084).

Next-generation sequencing. The average base-pair size for each library was
determined using an Agilent High Sensitivity DNA Bioanalyzer or an Advanced
Analytical Fragment Analyzer, and final library concentration was determined
using a Qubit High Sensitivity DNA assay kit (Invitrogen; Q32854). All libraries
were sequenced on a NextSeq 500. Pharynx atlas single-cell RNA-seq libraries were
sequenced using a 75 cycle NextSeq 500/550 High Output Kit v2 (Illumina; FC-
404-2005) at 26(Read 1)/50(Read 2). All single-cell RNA-seq libraries pertaining to
the Foxn1nu mice were sequenced using a 75 cycle NextSeq 500/550 High Output
Kit v2.5 (Illumina; 20024906) at 26(Read 1)/50(Read 2). Single-cell ATAC-seq
libraries were sequenced using a 150 cycle NextSeq 500/550 High Output Kit v2.5
(Illumina; 20024907) at 65(Read 1)/65(Read 2). In addition, libraries were indexed
for multiplexed sequencing.

Embryo fixation, sectioning, and RNA in situ hybridizations and immuno-
fluorescence. Embryos were fixed in 10% Neutral Buffered Formalin (Sigma-
Aldrich; HT5012) for 16 h/overnight. Embryos were ethanol dehydrated and
paraffin-embedded, then sectioned at the University of Massachusetts Chan
Medical School DERC Morphology Core. All paraffin blocks were cut at 5 µm
per section. Fluorescence in situ hybridization was performed using the RNAscope
Multiplex Fluorescent Reagent Kit v2 Assay according to manufacturer’s instruc-
tions (ACD Bio; 323100). The following RNAscope probes were used (all pur-
chased from ACD Bio): Foxn1 (482021), Gas6 (450941), Grhl3 (540461), Gcm2
(530481), Sparcl1 (424641), Ibsp (415501), Ngfr (494261), Flrt2 (490291), Calca
(417961), Ascl1 (313291), Meox1 (530641). Probes were fluorescently tagged using
Opal dyes (Perkin Elmer; FP1488001KT, FP1497001KT). Sections were mounted
with Prolong Gold Antifade Mountant (Thermo Fisher Scientific; P36930).

For immunofluorescence stains, paraffin-embedded tissue was deparaffinized
and rehydrated, then subjected to antigen retrieval in Sodium citrate buffer (10 mM
Sodium citrate, 0.05% Tween 20, pH 6.0) for 30 min at 95 Celsius. Tissue was
blocked with 0.5% Donkey Serum in PBS-T (1X PBS with 0.2% Tween 20), then
incubated overnight at 4 Celsius with primary antibodies anti-Epcam (Biolegend;
118202; 1:1000) and anti-Pax9 (Santa Cruz Biotechnology; sc-7746; 1:100) diluted
in blocking buffer. After 3 washes for 5 min in PBS-T, sections were incubated with
secondary antibodies Alexa Fluor 594 donkey anti-rat (Invitrogen; A21209; 1:300)
and Alexa Fluor 488 donkey anti-goat (Invitrogen; A11055; 1:300) for 1 h at room
temperature. After 3 washes for 5 min in PBS-T, sections were incubated with
Hoechst 33342 (Invitrogen; H3570) for 15 min at room temperature. Slides were
washed 3 times for 5 min with PBS, then mounted using Fluoromount-G mounting
medium (Thermo Fisher Scientific; 00-4958-02). All in situ and
immunofluorescence samples were imaged on a Zeiss LSM 900+Airyscan
Microscope using Zeiss ZEN [v3.1 (blue edition)].

Alignment, quantification, and statistical analysis of single-cell RNA data.
FASTQ creation, alignment, and quantification were performed using 10X Cell-
ranger (version 2.1.0) with an mm10-based default reference (version 1.2.0).
Downstream work predominantly used the R package Seurat82 (version 2.3.3), with
additional utilities from the R package thymusatlastools2 (https://github.com/
maehrlab/thymusatlastools2).

Single-cell RNA atlas quality control and filtering. Two samples at E10.5 were
excluded due to low depth, leaving the atlas with a total of 57850 cells and ten
samples (E9.5: 2; E10.5: 3; E11.5: 3; E12.5: 2). Predicted doublets were then marked
(but not removed) using the simulation-based method doubletFinder83. Numbers
of expected doublets were calculated by linearly interpolating 10X’s published table
of doublet percentages versus final cell count. In total, 2789 predicted doublets were
marked.

Counts were rescaled to 10,000 per cell and log2-transformed with a pseudo-
count of 1. A typical Seurat workflow was followed, using gene selection (with

FindVariableGenes), scaling (with ScaleData), and principal components analysis
(PCA84 with RunPCA), graph-based clustering with the Louvain algorithm85 with
FindClusters, and UMAP visualization86 with RunUMAP. For this initial analysis,
967 genes were selected (expression cutoff: 0.1; dispersion cutoff: 0.8). 100 principal
components (PCs) were retained for downstream steps, and the Louvain graph
clustering (via FindClusters) used a resolution of 2. Out of the resulting 42 clusters,
we removed:

– Cluster 33 (459 cells) due to high Neurod1 and low Pax9 (associated with
neuronal signature87)

– Cluster 41 (79 cells) due to high Pax3, and low Pax9 and Epcam (associated
with neural crest signature88)

– Cluster 36 (381 cells) due to high Esam and Pdgfra, moderate Dlx5, and low
Pax9 and Epcam (associated with endothelial signature89)

– Cluster 38 (247 cells) due to high Pax3 and low Pax9 and Epcam (associated
with neural crest signature88)

– Cluster 39 (231 cells) due to high Rxrg, Dlx5, and Sox10, and low Pax9
(associated with otic vesicle signature90–92)

– Any cell with over 7% mitochondrial UMIs (2122 cells)
– Any cell with under 1% mitochondrial UMIs (270 cells)
– Any cell with log normalized Hbb-bt expression over 1 (17 cells) (associated

with red blood cell signature)
This brought the total cell count down to 54,044 (5734 and 7611 cells from E9.5

replicate 1 and 2, respectively; 4743, 4129, and 4248 cells from E10.5 replicate 1, 2,
and 3, respectively; 5385, 3141, and 7967 cells from E11.5 replicate 1, 2, and 3,
respectively; 4885 and 6201 cells from E12.5 replicate 1 and 2, respectively).

Single-cell RNA atlas overview analysis. The 54,044 cells passing quality control
were analyzed using Seurat to produce overview figures, 1119 genes were selected
(expression cutoff= 0.1; dispersion cutoff= 0.8). Following the tactic of Farrell
et al.93, 64 PCs were retained based on the Marchenko-Pastur upper bound94 for
UMAP and clustering. The Louvain graph clustering used a resolution
parameter of 1.

The gene selection and centering/scaling were both modified to incorporate a
regression-based batch correction procedure to suppress variation due to sequencing
depth, cell cycle, and batch effects. This begins with a matrix of size n by d, where n is
the number of cells and d= 10 is the number of variables involved in the batch
correction. The variables are UMI counts (1 column), cell cycle phase indicators (3
columns), and contrasts between replicates within each timepoint (6 columns; for
example, a vector containing 1 for cells from E12.5 rep1, −1 for E12.5 rep2, and 0 for
the rest, with certain redundant columns omitted because they lie in the linear space
spanned by the included columns). This was implemented using the function
get_batch from thymusatlastools2, a R package of utility functions whose latest release
accompanies this project. For the gene selection, Seurat typically uses normalized
counts (but without pseudocounts or log transformation) to calculate mean and
variance, and it selects genes with variance higher than expected given the mean.
Instead of the variance of the normalized counts, the variance of their residuals after a
least-squares multiple regression on the aforementioned factors. This was implemented
using the function GetDispersionCalculator from thymusatlastools2. Uncorrected
normalized counts are passed on to the next step, centering and scaling. For this step,
the Seurat workflow typically starts with log2-transformed normalized counts, from
each gene subtracting the mean and dividing by the standard deviation. Instead of
subtracting the mean, we subtracted the fitted values from least-squares regression. The
resulting values are used in PCA. This was implemented via Seurat’s ScaleData
function via the argument vars.to.regress.

The top differentially expressed genes for Supplementary Fig. 3 (top 10) and
Supplementary Dataset 1 (top 100) were obtained using the Seurat function
FindMarkers (test.use= ‘mast’) for each cluster over a background comprising the
remaining cells in the dataset. FDR corrected p-values were obtained using the R
function p.adjust. The resulting genes were ranked by the ratio of the percentage of
cells in which the gene was detected in that cluster to the detection percentage in all
other cells. The top differentially expressed genes for each cluster in Fig. 1e were
obtained using Seurat’s FindAllMarkers (test.use= “bimod”) with a p-value cutoff
of 0.01 and log2-fold-change cutoff of 1.5.

Single-cell ATAC atlas data processing and quality control. De-multiplexing of
scATAC data was performed with Cellranger-ATAC version 1.0.0 (atlas E12.5
rep1,2 and E11.5 rep1) and 1.1.0 (atlas E11.5 rep2) with an mm10-based default
reference (refdata-cellranger-atac-mm10-1.0.0 from 10x Genomics). Downstream
work predominantly used the ArchR package95 (ArchR_1.0.1 in R 3.6.3 (2020-02-
29)) with additional utilities as described.

To remove cells with low sequencing depth and low signal-to-noise ratio, cells
with <3000 unique fragments or TSS enrichment ratio <4 were filtered out leaving
4320, 1273, 3576, and 4784 cells from E11.5_rep1, E11.5_rep2, E12.5_rep1, and
E12.5 rep2 respectively. Gene expression scores were computed using ArchR
default method (“Model 42”) which uses accessibility in 500 base-pair windows
within the gene body (upto 5 kb upstream of the TSS) and the weighted
accessibility in distal regions (100 kb on either side of the gene body, excluding the
gene body region) not overlapping other gene regions to infer gene expression. Per
sample doublet enrichment was computed on the remaining 13,953 cells using
ArchR addDoubletScores with default parameters. ArchR filterDoublets was run
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per sample to remove the number of cells2

10000 cells with the highest doublet enrichment
removing 186, 16, 127, and 228 cells from E11.5_rep1, E11.5_rep2, E12.5_rep1, and
E12.5 rep2, respectively, leaving 13,396 cells. Initial unsupervised analysis included
computing fragments counts in 500-base-pair non-overlapping tiles, feature
selection and iterative LSI (2 iterations, no downsampling, 12 clusters for
pseudobulk identification of 25,000 variable features, dimensions= 35), UMAP
embedding (30 nearest neighbors, minDist= 0.2) and Louvain clustering
(resolution= 4, via the interface to Seurat) to identify 42 clusters (Supplementary
Fig. 4). Cells from the pre-cleaned scRNA atlas (Supplementary Fig. 1) were
assigned cluster labels 0 to 27 based on their cluster in the scRNA atlas
(Supplementary Fig. 3) and the label “removed” if they were identified as a
contaminant population. In order to identify non-endodermal scATAC
populations, this scRNA dataset was integrated with the scATAC data using
ArchR’s addGeneIntegrationMatrix (no downsampling, 30 LSI dimensions, top
2000 variable genes) which performs canonical correlation analysis using Seurat to
learn a joint embedding on the imputed scATAC gene scores and scRNA gene
expression and assigns an scRNA cluster label and normalized gene expression
signature to each scATAC cell based on the nearest scRNA cell in the integrated
space. scATAC clusters C40, C42, C1, C37, C41, C28, and C36 were thus identified
as non-endodermal. scATAC clusters C30, C11, C31, C29, and C27 contained cells
mapping to multiple scRNA clusters and were identified as putative doublets. The
median doublet enrichment of these clusters was >1 standard deviation away from
the average of the median doublet enrichment across all the scATAC clusters
confirming their doublet status. In total, 12 clusters (7 non-endodermal, 5 doublet)
were removed leaving 10,890 scATAC cells across 4 samples as follows: E11.5
replicate 1= 3248, E11.5 replicate 2= 1075, E12.5 replicate 1= 2813, and E12.5
replicate 2= 3754.

Single-cell ATAC atlas analysis. Feature selection and dimensionality reduction
using iterative LSI (2 iterations, no downsampling, 12 clusters for pseudobulk
identification of 30,000 variable features, dimensions= 30) were performed on the
scRNA atlas cells. Two dimensions correlated (correlation > 0.4) with the
sequencing depth were removed from all downstream analysis except for inte-
gration with the scRNA data. The UMAP embedding (30 nearest neighbors,
minDist= 0.5), Louvain clustering (resolution= 1.4) and integration with the
scRNA atlas cells from day E11.5 and E12.5 (same parameters as before) was
performed to generate the overview figures.

Pseudobulk coverage was generated from the 22 clusters using ArchR
addGroupCoverages (minimum cells in a replicate= 40, maximum cells in a
replicate= 500, minimum replicates per cluster= 2, sampling ratio= 0.8,
kmerLength for Tn5 bias correction= 6). Clusters C1–9, C11-13, C15, C19-22 gave
2 replicates each and the remaining cluster gave 3 replicates. 501-base-pair fixed
width peaks (250 bp on either side of the summit) were called separately on each
pseudobulk replicate using the ArchR interface to MACS2 (maximum peaks per
pseudobulk replicate= 500 times the number of cells or 150,000, whichever is
smaller, excluding chromosomes M and Y, MACS2 significance q-value
cutoff= 0.1) and merged using ArchR iterative overlap method. In brief,
overlapping peaks from different pseudobulk replicate in the same cluster were
merged by retaining the peak with the highest normalized significance score and
peaks occurring in at least 2 pseudobulk replicates were retained. Finally,
overlapping peaks were merged across clusters yielding 270,210 peaks. Peaks were
annotated as promoter (any overlap with regions upto 2000 bp upstream and
100 bp downstream of a TSS) exonic (any overlap with exonic genic region),
intronic (any overlap with genic regions that are not exonic), and distal (all
remaining peaks). A “number of cells by number of peaks” PeakMatrix was
generated by counting the number of insertions per peak per cell upto a maximum
of 4 (counts > 4 are set to 4) to prevent bias. Differentially accessible cluster-specific
peaks were found by a Wilcoxon test against a background set (using
TSSEnrichment and log10-nFrags as bias variables, k= 100 neighboring cells,
minimum fraction of cells in background set= 0.8) using ArchR
getMarkerFeatures (maxCells per cluster= 500) on the PeakMatrix (scaled to
10,000). Differentially accessible peaks (FDR ≤ 0.01, log2-fold change ≥ 0.5) which
were annotated as distal or promoter, respectively.

Browser tracks were generated using ArchR plotBrowserTrack with bulk ATAC
signal per cluster (insertions summed in bins of 250 base pairs, normalized by reads
in the TSS), peak regions and line diagrams of genic regions (blue indicating genes
on the minus strand and red indicating the plus strand) centered at the TSS of the
respective genes and extending 50 kb up and downstream.

The UMAP embeddings in Fig. 2 were generated by imputing the respective
signal using the ArchR interface to MAGIC96 (with scaling of the Iterative LSI
dimensions excluding 2 dimensions correlated at >0.4 with sequencing depth,
diffusion time parameter td= 3, k-nearest neighbors for smoothing= 5,
sampleCells= 5000, kNN autotune parameter ka= 4, number of imputation
replicates= 2, standard deviation for kernel= 1).

ArchR’s getMarkerFeatures with the Wilcoxon test corrected for
TSSEnrichment and log10(nFrags) was used to identify differential (FDR ≤ 0.1,
log2-fold change ≥ 0.5) GeneScores per cluster over the remaining cells for
Supplementary Dataset 2 and the top 50 were visualized in Fig. 2f using ArchR’s
plotMarkerHeatmap function. The top 2 genes per cluster plus an additional
curated set of markers were labeled on this heatmap. The differentially accessible

peaks were obtained in a similar manner for Fig. 3 (mean signal per cluster, log2-
transformed, scaled to 10,000, row z-scored, upper limit= 2, lower limit=−2,
binary clustering on peaks, columns grouped by dendrogram). Promoter and distal
differential peaks with FDR ≤ 0.1, log2-fold change ≥ 0.5 were presented in the
Supplementary Dataset 3. The peaks with FDR ≤ 0.01, log2-fold change ≥ 0.5 were
visualized in the heatmap with a customized version of plotMarkerHeatmap for
differentially accessible promoter peaks to enable explicit ordering of the clusters.

Cell-type specificity for the 27,295 distal and 2436 promoter peaks was
computed using the scaled log2-transformed heatmap matrices (without z-scoring
and with no upper or lower limits). For each peak, the cluster specificity index

τ= ∑N
i¼1ð1�xiÞ
N�1 was determined as described in Yanai et al.97, where N is the number

of clusters (N= 22) and xi is the scaled log2-transformed mean signal for a given
peak in cluster i. The cluster-specificity index distribution from promoter and distal
peaks was visualized using ggplot and a two-sided Wilcoxon test was performed
using the R function wilcox.test.

Cis-BP version 2.0098 database for Mus musculus was downloaded from http://
cisbp.ccbr.utoronto.ca/bulk.php. All motifs were loaded into R using the
universalmotif (https://bioconductor.org/packages/release/bioc/html/
universalmotif.html) and TFBSTools99. The resulting motif PWMList was added to
the ArchR project using addMotifAnnotations (cutoff= 5e−05, width= 7,
version= 2) to obtain a binary peak-motif matrix. For each peak, a background set
of 50 peaks controlled for accessibility and GC-content was computed using
addbgdPeaks (w= 0.1, binSize= 50). Bias-corrected deviation scores (z-scores of
deviation across all cells) in single-cell motif accessibility from the expected
accessibility across cells were computed with ArchR addDeviationsMatrix which
uses a scalable implementation of ChromVar100 and visualized on UMAP
embeddings in Fig. 2.

An ArchR project with the set of 55,840 differentially accessible distal peaks
(FDR ≤ 0.1, log2-fold change ≥ 0.5) was created and peaks and motifs were added
to it in the same manner as before. Correlation between the gene integration and
motif deviation score matrix was computed for every motif-gene pair in the same
family using corbetw2mat from the lineup package101. The per cluster motif score
for a motif was defined as difference between the average motif deviation score of
that cluster and the minimum average deviation score across all clusters. Genes-
motif pairs were obtained by selecting the top motif score per gene and the top
correlated gene per motif. Finally, pairs that had correlation >0.35 and motif scores
in the top-10 percentile for that cluster were retained and plotted using scanpy’s
matrixplot function for the motif score and seaborn’s heatmap function for the
correlation color bar in Fig. 3c. Motif logos were visualized by converting the
PWMatrix to probabilities with TFBSTools99 and using a modified version of the
seqLogo function from https://bioconductor.org/packages/release/bioc/html/
seqLogo.html to add sequence logos102.

Co-accessibility between peaks upto 250 kb apart was obtained using ArchR’s
addCoAccessibility on the 28 scaled iterative LSI dimensions (2 dimensions were
excluded due to >0.4 correlation with sequencing depth). Briefly, 491 low-
overlapping aggregates of cells (k= 100, knnIteration= 500, overlapCutoff= 0.8)
were obtained using an optimized version of the Cicero approach for sampling and
aggregation of cells103 and the correlation between their log2-normalized
accessibility was computed. Correlated peak pairs were removed if they had high
FDR (≥10−10), if either of the peaks had low variability (≤0.35) across the dataset
or if the correlation was low (<0.5) leaving 164,417 peak pairs which were used in
the gene regulatory network.

Identification of conservation scores. PhastCon scores104 for the Euarch-
ontoglires clade were downloaded from http://hgdownload.cse.ucsc.edu/goldenpath/
mm10/phastCons60way/mm10.60way.phastCons60wayEuarchontoGlire.bw. Distal
peaks from Fig. 3a were filtered into those with an average phastCon score of >0.5.
Differentially accessible and conserved peaks for each cluster were submitted to
GREAT105 using the rGREAT R package (http://bioconductor.org/packages/devel/
bioc/html/rGREAT.html). For each curated term, the binomial FDR value was
selected. Heatmaps were generated using scanpy106.

Gene regulatory network inference. Prior to GRN inference, the 54,044 cells were
aggregated into 555 metacells via the metacell R package107. Gene selection via
mcell_gset_filter_varmean and mcell_gset_filter_cov used parameters T_vm=
0.08, T_tot= 100, and T_top3= 2. For KNN construction, mcell_add_cgraph_-
from_mat_bknn used K= 100. For the resampling step, mcell_coclust_from_-
graph_resamp used parameters min_mc_size= 20, p_resamp= 0.75, and
n_resamp= 500, and for the final step, mcell_mc_from_coclust_balanced used
parameters mc_id = “test_mc”, K= 30, min_mc_size= 30, and alpha= 2.

Metacells were then passed to SCENIC108. Genes were filtered, requiring a
minimum total count of 10, a minimum of 2 metacells in which each gene is
detected, and requiring presence in the RcisTarget gene databases mm10__refseq-
r80__500 bp_up_and_100 bp_down_tss.mc9nr (mm10, 500 bp upstream of TSS,
and 100 bp downstream) and mm10__refseq-r80__10 kb_up_and_down_tss.mc9nr
(mm10,10kb up and down of TSS) leaving 15,329 genes. GENIE3 from the SCENIC
package was run and edges with weight ≥0.01 were retained. To identify key
regulators, we began with a set of 1240 genes whose variance was best explained by
the pharynx scRNA atlas principal components. For each regulator predicted by
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GENIE3, targets were intersected with this list, and regulators were ranked by the
size of the intersection. The subgraph containing the top 200 regulators converted to
an adjacency matrix, clustered using the leiden algorithm (resolution= 2) and
displayed in 2D using the igraph R package109; functions make_undirected_graph,
as_adjacency_matrix, layout_with_fr) and the leiden package110 (https://
github.com/TomKellyGenetics/leiden; function leiden). For each cluster, all
regulators were averaged and shown on featureplots using save_feature_plots
(mode= overlplot_adjust) from thymusatlastools2.

Network inference with CellOracle. GRN inference and Foxn1 KO simulation
was carried out using a combination of motif analysis in open chromatin and
correlative analysis of scRNA data. Atlas scRNA and scATAC datasets were used;
no Foxn1 KO data was used.

Base GRN construction. Peaks and peak-to-peak co-accessibility were obtained in
ArchR. A peak was associated with a target gene if it overlapped with the TSS (TSS
peak, co-accessibility= 1) or if it had a co-accessibility ≥0.5 with a TSS peak. Peaks
were scanned for motifs using CellOracle’s scan function which uses the
gimmemotifs111 motif scanner (background_length= 200, fpr= 0.02, default motif
database= gimme.vertebrate.v5.0 using binding and inferred motifs and cumula-
tive binding score cutoff= 10) to generate an annotated peak-motif binary matrix
which is the base GRN in CellOracle.

Cell-type-specific GRN refinement and simulation. Using CellOracle, the base GRN
was refined using the atlas scRNA data to form cell-type-specific GRN’s and
simulate the Foxn1 KO. 10,000 genes were selected by requiring at least 3 counts
and by using scanpy’s preprocessing utility ‘sc.pp.filter_genes_dispersion’ with
‘flavor= ‘cell_ranger’’ and ‘n_top_genes= 10,000’. The selected genes included all
1119 variable genes used in the atlas scRNA analysis. Normalized (using
sc.pp.normalize_per_cell) count data was imputed in a 50 principal components
subspace using CellOracle’s balancedKNN implementation (k= 54 nearest
neighbors, b_sight= 54*8, b_maxl= 54*4). Cell-type-specific GRN’s were trained
using CellOracle’s default procedure: for each target gene and each cell type,
bagging ridge regression was run (bagging_number= 20, alpha= 10) using con-
nections determined by the base GRN. Edges were preserved with edge p-value
≤ 0.001 where the source node was in the top differentially expressed genes of that
cluster as determined by Seurat’s FindAllMarkers (log2-fold change threshold=
0.25, return.thresh= 0.01) on the scRNA atlas and the edge weight was >0.005
leaving us with a trained GRN. Network statistics including betweenness centrality
were computed for each GRN using CellOracle’s getscore function. GRNs were re-
trained on the preserved edges using the same parameters as before. For the
knockout simulation, for each network containing Foxn1, the Foxn1 expression
was set to 0 and propagated through the network upto a depth of 5.

Analysis of the simulated Foxn1 knockout. To investigate the shift in gene
expression in the presence of the Foxn1 knockout simulation, we visualized the
direction and magnitude of the simulated knockout using stream plots in scVelo112

(scvelo 0.2.2.dev51+ ga7de78a (python 3.6.10)) since transition probabilities could
not be computed in CellOracle on the atlas scRNA data (54,044 cells) due to high
memory requirements. The k-nearest-neighbor graph was obtained on the scRNA
atlas principal component space using scvelo’s neighbors (n_neighbors= 30,
metric= ‘euclidean’) function. The difference of simulated knockout and imputed
counts (delta_X in CellOracle) was defined as velocity and the imputed counts
from CellOracle were defined as the spliced moment Ms in scvelo. Transition
probabilities were computed using scvelo’s velocity_graph function with defaut
parameters. Finally, the velocities are projected onto the scRNA atlas UMAP
embedding using scvelo’s velocity_embedding_stream function with lower velo-
cities filtered out (min_mass= 3).

Foxn1 knockout single-cell RNA data processing and quality control. From the
four libraries in the Foxn1 experiment, 29,276 cells were present in the filtered
output from Cellranger. Preliminary clustering and visualization were done using a
typical Seurat workflow similar to the scRNA atlas: cells were scaled to a total count
of 10,000; then cells were natural log-transformed with a pseudo-count of one; 613
genes were selected (expression cutoff= 0.1; dispersion cutoff= 0.8); selected genes
were used for scaled PCA; and 30 PC’s were passed to UMAP and Louvain clus-
tering (resolution= 1). Foxn1 was excluded from the selected genes. Prior to gene
scaling, the total UMI count for each cell was regressed out.

Clusters were examined for the presence of low-quality cells and contaminants
using a nearest-neighbor classifier trained on the unfiltered pharynx scRNA atlas,
with binary training labels indicating which cells were retained. Six clusters (5206
cells) were removed due to low depth or presence of contaminants as follows:
Cluster 0 (3362 cells), Cluster 10 (1150 cells), and Cluster 24 (318 cells) due to low
depth; Cluster 27 (207 cells), Cluster 28 (132 cells), and Cluster 30 (37 cells) due to
contamination (Supplementary Fig. 9).

In addition, any remaining cell with under 2000 UMIs was removed
(2121 cells), and any remaining cell classified as a contaminant was removed (45
cells). This left 21,904 cells across 4 samples (E12.5het_replicate1= 6805,

E12.5het_replicate2= 2258, E12.5homo_replicate1= 8070 and
E12.5homo_replicate2= 4771).

Foxn1 knockout single-cell RNA data analysis. The 21,904 filtered cells were
classified according to pharynx atlas cluster labels and positioned on the pharynx
atlas UMAP embedding. To do this, a 30-dimensional principal subspace was
constructed by applying unscaled PCA to the variable genes already selected for the
pharynx atlas. Foxn1 experiment cells were centered using the mean expression
from the pharynx atlas, and they were projected into the pharynx atlas principal
subspace using the projection matrix from the existing PCA. With both datasets
represented with the same 30 latent components, 50 nearest neighbors in the atlas
were calculated for each cell in the Foxn1 experiment. UMAP positions were
computed by averaging across neighbors and labels were assigned by a plurality
vote. Asymptotic 95% confidence intervals for cluster abundances were computed
from a quasi-Poisson generalized linear model using sequencing date and pertur-
bation as covariates. Total cell count by replicate was used as an offset. To pro-
pagate uncertainty in cluster assignments, total counts were based on probabilistic
assignments, which were multiplied by the number of neighbors to yield whole
numbers suitable for a Poisson response.

Foxn1 knockout single-cell RNA differential expression testing. For each cell,
the “thymus probability score” (i.e., probability of being thymus) was computed as
the sum of the probabilities for clusters 4, 25, and 9. 1173 cells were retained for
differential expression analysis when two requirements were satisfied: thymus
probability score at least 80% and detection of Il7 (> 0 counts) (Supplementary
Fig. 9). To account for the substantial batch-level variation in the Foxn1 experi-
ment, raw counts were summed within each sample, and differential expression
between KO and Het was tested using edgeR113 with sequencing date and genotype
as covariates. Differentially expressed transcripts between Het and KO (log2-fold
change > 0.5, FDR < 0.01) and between KO and Het (log2-fold change > 0.5,
FDR < 0.01) were fed into Enrichr114,115 via the enrichR R package (https://
github.com/wjawaid/enrichR). Curated lists of the top 20 terms were visualized
using custom dotplots.

To compare the Foxn1 in silico with the experimental KO on the atlas scRNA
variable genes in Fig. 5e, 991 genes were identified that were present in the atlas
variable set as well as in the gene regulatory network and the differential test of the
Foxn1 KO single-cell data above.

The per gene simulated in silico perturbed expression values were averaged
across all cells in thymic clusters 4, 9, and 25 and plotted on the X-axis while the
corresponding fold-change value from the differential testing on the Foxn1 KO
single-cell data above were plotted on the Y axis. The Spearman rank correlation
test was performed using the R function cor.test.

Subset analysis of third pouches. From the atlas overview, clusters 2, 4, 9, 25, and
26 were isolated, having in total 9256 cells. Scaled expression values from the
overview were re-used (see the section “Atlas overview analysis”).

Cell-by-gene count matrices of all samples were then concatenated to a single
matrix. To account for differences in sequencing depth, UMI counts of each cell
were normalized by total counts of that cell and values were log2-transformed.
Highly variable genes (n= 2139) were selected using the same regression-based
strategy as the atlas overview.

All further analyses were run with python3 using the scanpy package106 (v1.4.6,
https://github.com/theislab/scanpy) except stated otherwise. A single-cell
neighborhood graph (kNN-graph) was computed on the 50 first principal
components using 30 neighbors. For clustering, Louvain-based clustering85, was
used as implemented in louvain-igraph (v0.6.1 https://github.com/vtraag/louvain-
igraph) and adopted by scanpy (tl.louvain). The resolution parameter was set to 1.
For visualization, UMAP was run using the kNN-graph on the first 50 principal
components. After Louvain clustering, predicted heterotypic doublets from
doubletFinder (see the section “Single-cell RNA atlas quality control and filtering”)
and a small cluster enriched for them were removed leaving 8717 cells.

Differential expression testing to describe populations in third pouches.
Differential expression testing between Louvain-based populations was performed
on normalized and log2-transformed data using t-test with overestimated variance
implemented in the tl.rank_genes_groups function of scanpy. P-values were cor-
rected to control the false discovery rate using Benjamini–Hochberg method. The
top 50 ranked genes per cluster are presented in Supplementary Dataset 9. To
describe the progression from immature to mature cells and the associated gene
expression changes, the trajectories were inferred using diffusion map from scanpy
(tl.diffmap). We identified two trajectories in which cells transitioned from
immature cells to thymus (T1) and parathyroid (T2). Cells were ordered based on a
cell-to-cell distance metric using the concept of diffusion pseudotime (tl.dpt). We
selected the cell with the highest Diffusion Component 2 (DC2) value (on y axis)
within the starting population to act as root for the diffusion pseudotime.

Integration of third pouches and Foxn1-deficiency experiment. We integrated
the third pouches (reference data) with the Foxn1 KO/Het data using Ingest from
scanpy (tl.ingest) which allowed us to compute a UMAP embedding that included
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both datasets. Ingest first projects Foxn1 KO/Het dataset on a PCA that has been
fitted on the reference data using the highly variable genes of the reference data
(n= 2139). It then uses a kNN classifier for mapping labels and the UMAP
package for mapping the embeddings. The kNN classifier was computed on the
first 50 principal components using 10 neighbors.

Foxn1 knockout single-cell RNA staging relative to atlas. For each genotype in
the Foxn1 experiment, thymic cells were paired with equivalents in the atlas.
Beginning with the pseudotime analysis of the third pouch (8717 cells), clusters 8,
9, and 2 of parathyroid and UBB-progenitor cells were removed. Remaining 7169
cells were grouped into 20 bins with an equal number of cells in each bin. Bulk
profiles were computed by summing raw counts for each pseudotime bin and for
each genotype in the Foxn1 experiment. A list of dynamic genes was selected and
rank-transformed for each bulk profile, and Pearson correlations were computed
between each genotype and each pseudotime bin. For each genotype, the two
pseudotime bins with the largest correlations were selected as the atlas equivalent.
Dynamic genes were identified using the thymusatlastools2 function GetDyna-
micGenes, with num_periods_initial_screen= 20. Genes were retained if max_-
fold_change > 0.75 and q-value < 0.01.

Statistics and reproducibility. No statistical methods were used to predetermine
sample size. From each litter, we pooled the maximum number of embryos of the
desired genotype (Pax9VENUS/wt or Pax9VENUS/wtFoxn1nu/(nu or wt)). All samples
consisted of pooled dissected pharyngeal endoderm tissue from multiple embryos,
except for scRNA Foxn1 KO replicate 1, which was produced from a single
embryo. Approximately 20,000 Pax9VENUS and Epcam-PE/Cy7 double-positive
cells were collected per replicate, and all cells were used as input for 10X.

All attempts at replication were successful. Correlation across replicates of the
same embryonic timepoint demonstrates reproducible data (Supplementary Fig. 1),
and visualization of individual replicates by dataset shows strong overlap within
timepoints/genotypes (Supplementary Figs. 2, 5, 10). All samples were collected on
separate days, except for scRNA E10.5 replicates 1 and 2 and scATAC E12.5
replicates 1 and 2, which consisted of separate litters isolated on the same day,
respectively. Samples of Foxn1 KO and heterozygous tissue were collected the same
day, but replicates were performed on separate days. The single-cell RNA-seq
pharyngeal endoderm dataset comprises two replicates at E9.5, two replicates at
E10.5, three replicates at E11.5, and two replicates at E12.5. The single-cell ATAC-
seq pharyngeal endoderm dataset comprises two replicates at E11.5 and two
replicates at E12.5. The Foxn1 experiment single-cell RNA-seq dataset comprises
two replicates of Foxn1 KO embryos and two replicates of Foxn1 heterozygous
embryos, both at E12.5. For RNAscope experiments, two or more biological
samples were stained.

The experiments were not randomized. All single-cell analyses were performed
in a randomized manner for each of the three datasets, meaning cells from all
samples were combined, analyzed, and allocated into clusters at a resolution which
captured different cell types based on differentially expressed (or accessible in case
of scATAC-seq) markers. Experimental group and sample information were
controlled to overcome batch effects for the analysis of the scRNA datasets. No
such batch correction was performed on the scATAC-seq dataset. For the Foxn1
knockout experiment, heterozygous littermates were used as controls.

For the scRNA and scATAC atlas datasets, blinding was not necessary as only
one timepoint was collected on a given day. Since embryos of the same genotype
were pooled in the Foxn1 scRNA experiments, genotyping was performed prior to
tissue processing and thus the experiment could not be performed in a blinded
manner. All embryos were processed by a single researcher. All scRNA and
scATAC sequencing libraries were prepared and sequenced by a single researcher
without blinding. Cell identity, embryonic day, and genotype were blinded during
the scRNA and scATAC-seq analysis. For the scRNA-seq datasets, investigators
were not blinded to experimental groups after processing as this would preclude
grouping of replicates for analysis. For the scATAC-seq dataset, investigators were
blinded to experimental groups even during the analysis as there was no need to
correct for batch effects. Blinding was not required for the in situ hybridization
experiments given that all stains were performed on wild-type samples. Blinding
was not possible for the FACS and flow cytometry experiments because the
genotype of each animal was determined prior to tissue processing. Genotyping
and tissue processing were performed by a single researcher.

For data exclusions, please see the following sections: “Single-cell RNA atlas
quality control and filtering”, “Single-cell ATAC atlas data processing and quality
control”, “Foxn1 knockout single-cell RNA data processing and quality control”,
and “Subset analysis of third pouches”.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The scRNA-seq and scATAC-seq short reads and count matrices data generated in this
study have been deposited in the Gene Expression Omnibus (GEO) database under
accession codes “GSE182135” (scRNA atlas), “GSE182136” (scRNA knockout experiment),
and “GSE182134” (scATAC atlas). The motif data used in the scATAC analysis is available

in the Cis-BP version 2.00 database for “Mus musculus [http://cisbp.ccbr.utoronto.ca/
bulk.php]”. The conservation scores used in the scATAC analysis are available in the
PhastCon score database for the “Euarchontoglires clade [http://hgdownload.cse.ucsc.edu/
goldenpath/mm10/phastCons60way/mm10.60way.phastCons60wayEuarchontoGlire.bw]”.
All other relevant data supporting the key findings of this study are available within the
article and its Supplementary Information files or from the corresponding author upon
reasonable request.

Code availability
The code (custom scripts and packages) and documentation are available at the GitHub116,117

repositories [https://github.com/maehrlab/pharyngeal_endoderm_development] and [https://
github.com/maehrlab/thymusatlastools2].
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