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labeled experimental data
Jiao Li,1,2 Cong Wang,1 Tingting Chen,1 Tong Lu,1 Shuai Li,1 Biao Sun,3,4,8 Feng Gao,1,2,9

AND Vasilis Ntziachristos5,6,7,10

1School of Precision Instruments andOptoelectronics Engineering, Tianjin University, No. 92,Weijin Road, Nankai District, Tianjin 300072, China
2Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, No. 92,Weijin Road, Nankai District, Tianjin 300072,
China
3School of Electrical and Information Engineering, Tianjin University, No. 92,Weijin Road, Nankai District, Tianjin 300072, China
4Tianjin Key Laboratory of ProcessMeasurement andControl, Tianjin University, No. 92,Weijin Road, Nankai District, Tianjin 300072, China
5Institute of Biological andMedical Imaging, HelmholtzMunich, Ingolstädter Landstr. 1, D-85764Neuherberg, Germany
6Chair of Biological Imaging at the Central Institute for Translational Cancer Research, (TranslaTUM), School ofMedicine, Technical University of
Munich, Ismaningerstr. 22, D-81675Munich, Germany
7Munich Institute of Robotics andMachine Intelligence (MIRMI), Technical University ofMunich, Georg-Brauchle-Ring 60, 80992Munich, Germany
8e-mail: sunbiao@tju.edu.cn
9e-mail: gaofeng@tju.edu.cn
10e-mail: bioimaging.translatum@tum.de

Received 10 August 2021; revised 22 November 2021; accepted 22 November 2021; published 6 January 2022

Deep learning (DL) shows promise for quantitating anatomical features and functional parameters of tissues in quan-
titative optoacoustic tomography (QOAT), but its application to deep tissue is hindered by a lack of ground truth
data. We propose DL-based “QOAT-Net,” which functions without labeled experimental data: a dual-path convo-
lutional network estimates absorption coefficients after training with data-label pairs generated via unsupervised
“simulation-to-experiment” data translation. In simulations, phantoms, and ex vivo and in vivo tissues, QOAT-Net
affords quantitative absorption images with high spatial resolution. This approach makes DL-based QOAT and other
imaging applications feasible in the absence of ground truth data. © 2022 Optical Society of America under the terms of the

OSAOpen Access Publishing Agreement

https://doi.org/10.1364/OPTICA.438502

1. INTRODUCTION

Optoacoustic tomography (OAT), also called photoacoustic
tomography, combines high optical absorption contrast with
spatial-resolution imaging deep in tissue [1]. OAT has shown
clinical potential in small-animal studies and human trials focusing
on the brain, arm, breast cancer, vascular and joint diseases [2–12].
It can generate high-resolution images of tissue function because it
can track endogenous molecules such as hemoglobin, melanin, and
lipids, as well as exogenous probes such as fluorescent agents and
nanoparticles. The accurate evaluation of chromophore concentra-
tions obtained by such imaging requires accurate estimation of the
absorption coefficient µa of target tissues [13–19], which is chal-
lenging because it depends on photon fluence8 that attenuates as
the light propagates deeper into the tissue.

Quantitative optoacoustic tomography (QOAT) aims to
improve the reconstruction accuracy of µa by starting from con-
ventional images of the distribution of initial pressure and treating
the pressure as the product of µa and 8 [20,21]. This requires
solving the non-linear, ill-posed optical inverse problem, which

imposes major challenges [22]. In one QOAT approach,8 is esti-
mated by assuming homogeneous or empirical optical properties,
but this assumption may not be accurate, leading to substantial
reconstruction errors [23,24]. A second multimodal approach
combines OAT with other imaging modes such as diffuse optical
tomography or acoustic-optic tomography in order to calculate the
fluence distribution, but this requires more elaborate systems and
computational resources [25–27].

A third approach is iterative reconstruction to minimize error,
in which an appropriate optimization strategy is chosen with the
established forward model of photon transport [28–37]. This
approach depends on accurate calibration between the acoustic
reconstruction and optical model, which can be challenging. In
previous work, we introduced a reference phantom with known
optical properties into the calibration process [38], but this
increases computational complexity and may be difficult to imple-
ment for biological tissues with irregular boundaries. In addition,
most optimization algorithms require prior empirical information
in order to define the initialization and regularization parameters,
and they involve computationally expensive iterative calculations.
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A promising alternative to all these approaches may be deep
learning (DL). Deep neural networks (DNNs), such as convolu-
tional neural networks (CNNs), have demonstrated great potential
to remove artifacts from initial pressure P0 images caused by
limited-view setups [39–44] or sparse detection [45–47]. They
can also reconstruct artifact-free P0 images from raw optoacous-
tic signals [39,48,49], and they can estimate optical absorption
coefficients [50,51], chromophore concentrations, and oxygen
saturation from multispectral P0 images [52].

DNNs are typically trained in a supervised manner, which
in QOAT requires data-label pairs, i.e., P0 images and their cor-
responding optical absorption coefficient images. However,
obtaining such experimental data with ground truth images of
deep tissues is challenging. Even when labeled experimental data
exist, they are usually impractical, costly, and prohibitively time
consuming. Using DNNs trained on data from simulations of pho-
ton and ultrasound propagation is inapplicable to tissue imaging,
due to substantial system noise, scaling errors, and other types of
mismatch between experiment and model [38,53]. Although our
previous work with phantoms confirmed the feasibility of applying
DNNs to QOAT [54], the lack of adequate data-label pairs for
tissue imaging remains a severe limitation.

In this work, we break through this limitation by translating
labeled simulation data into the experimental domain to gener-
ate data-label pairs. Inspired by unsupervised image translation
methods such as CycleGAN [55], we propose a simulation-to-
experiment end-to-end data translation network (SEED-Net),
which provides experimental datasets with ground truth images
through unsupervised data translation from abundant simulation
datasets of modeled tissues, such as the digital mouse, the digital
brain [56], and other tissues [57,58]. Then, a QOAT-Net is pre-
sented to reconstruct high-resolution images ofµa for deep tissues
in which a novel dual-path network is trained using abundant
data-label pairs generated by SEED-Net. The specially designed
dual-path network is based on the relationships among P0, µa ,
and8, whose characteristics are used to optimize the network. To
the best of our knowledge, this is the first time that DL has been
used to reconstruct the distribution of absorption coefficients for
deep tissues, yieldingµa images of absolute quantification without
sacrificing spatial resolution.

2. METHODS

A. Concept and Structure of QOAT-Net

The SEED-Net [Fig. 1(a)] aims to translate images from the
simulation domain into the experiment domain without human
labeling (unsupervised learning), thus establishing an intercon-
nection between a large amount of standardized simulation data
and experimental data for the system under study. The architecture
consists of two generative adversarial networks (GANs): GS→E

and GE→S, each of which is trained to translate an image from the
simulation domain into the experiment domain and vice versa.
Each GAN consists of a generator network and a discriminator
network. The generator network is given an input image and
produces an output image using CNN architecture with resid-
ual blocks [Fig. S1(a) in Supplement 1]. The discriminator is a
classifier that receives an image and predicts whether it is genuine
or created by a generator [Fig. S1(b) in Supplement 1]. In the
SEED-Net, each generator takes images from its respective domain
(simulation or experiment) and creates images in the opposite
domain (experiment or simulation). While each discriminator is

trained to distinguish generated images from real ones, the gen-
erators in turn are trained to fool the discriminators. To ensure
true data translation, a cyclic constraint is imposed in which the
generated images by GS→E or GE→S are put into the generators
of the corresponding domain (GE→S or GS→E) and the output
must be identical to the original image used to create the generated
one. The trained generator (GS→E) can then generate abundant
experimental datasets, which are translated from rich digital images
and now contain known optical parameters as ground truth. These
generated datasets with the known ground truth can be used as
data-label pairs for training the second sub-network.

To quantify µa , the QOAT-Net [Fig. 1(b)] solves the QOAT
inverse problem, in which P0 depends not only on µa but also
on 8. A novel dual-path network based on U-Net is constructed
(Fig. 2), where the top path focuses on the generation of8, while
the bottom path recovers µa in the tissues. Images of µa are
obtained from rich models of digital biological tissues [56–60]
and serve as the ground truth for training the QOAT-Net as well as
for simulating initial pressures PS

0 using the Monte Carlo method
[61,62]. PS

0 is translated to generated experiment PG
0 via the estab-

lished data translation network (GS→E), and generated PG
0 is input

into the QOAT-Net. Dividing generated PG
0 by µa yields calcu-

lated 8. In this way, the loss function comprises µa , P0, and 8,
which is more compatible with the mathematical model of QOAT
than the single U-Net architecture [54].

B. SEED-Net Architecture

Our network architecture consisted of two GANs [63], one of
which was trained to transfer an image from simulation domain to
experiment domain (GS→E), while the other was trained to transfer
an image in the opposite direction (GE→S) [Fig. 1(a)]. Each GAN
consisted of a generator network and a discriminator network.
The generator network produced an output image from an input
image, while the discriminator (DS or DE) classified images as
genuine or created by the generator. To ensure realistic data trans-
lation, the following cyclic constraint was imposed: generators of
the corresponding domain (GE→S or GS→E) were fed generated
images from GS→E or GE→S and had to generate images identical
to the original one. The key advantage of this approach is that it
does not require samples of the same tissues in both the simulation
and experiment domains. As a result, one can train the network
using unlabeled experiment data from an arbitrary OAT system as
well as simulation data or publicly available labeled data similar to
real experimental data expected for the situation under study.

The generators were formulated into an encoder–decoder
framework with residual blocks [Fig. S1(a) in Supplement 1]. The
encoder downsampled high-dimensional data into embedded
representations, whereas the decoder upsampled high-dimensional
input. We used stride convolution for downsampling instead
of a pooling layer, and we used deconvolution for upsampling.
Each convolutional and deconvolutional layer was followed by
batch normalization [64] and a leaky rectified linear unit (LReLU)
activation function [65], defined as

LReLU=

{
x x > 0
0.1x x ≤ 0.

(1)

Other than the first and last layers, which used 7× 7 kernels
with stride 1× 1, all convolutional and deconvolutional layers
used 3× 3 kernels with sliding stride 2× 2. We constructed the
bottleneck of the generators by concatenating nine convolution

https://doi.org/10.6084/m9.figshare.17064329
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Fig. 1. Principle of absorption coefficient reconstruction based on deep learning. (a) Procedure of the SEED-Net. Cycle consistency denotes the cycle
consistency loss in this network. GS→E generates experimental data from simulation, while GE→S does the opposite. Discriminators DS and DE are trained
to differentiate original and generated images. (b) Process of the QOAT-Net. Monte Carlo (MC) simulation calculates simulation initial pressures PS

0 from
synthesizedµa . Generated experiment pressures PG

0 are produced from the PS
0 via the data translation network (GS→E) and input into the dual-path network

to obtain reconstructed images of photon fluence8 andµa , whose product is reconstructed P0. PG
0 is divided byµa to calculate8. The Grüneisen param-

eter0 is considered to be spatially constant and equal to 1 in the present study.

Fig. 2. Dual-path network architecture features two parallel mapping architectures based on U-Net. The top path generates photon fluence8, while the
bottom path reconstructs absorption coefficientµa . LReLU, leaky rectified linear unit.
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residual blocks, with each block containing two 3× 3 convolu-
tional layers and a residual connection [66]. Based on the notation
k ×m × n to denote k channels of feature maps in a spatial size of
m × n, the size of input images was 1× 256× 256. Feature map
size changed from one convolution layer to the next as follows: 1×
256× 256→ 32× 256× 256 → 64 × 128 × 128→ 128×
64× 64 → 256 × 32 × 32 (residual blocks) → 128 × 64×
64→ 64× 128× 128→ 32× 256× 256 → 1 × 256× 256.
Thus, the output of the generator was a domain-translated image
of 1× 256× 256.

The discriminators had a CNN architecture comprising four
down blocks, each of which contained a convolutional layer with
sliding stride 2× 2, a batch normalization layer, and an LReLU
activation function [Fig. S1(b) in Supplement 1]. The down
block was followed by a convolutional layer with stride 1× 1.
Convolution kernels throughout the discriminators were set to
4× 4. Such a patch-level discriminator design has fewer param-
eters than a full-image discriminator and can work on images of
arbitrary size in a fully convolutional fashion [67].

C. Dual-Path Network Architecture

The QOAT-Net had a novel dual-path architecture based on
the widely used U-Net [68] to quantify µa from initial pressure
(Fig. 2). Two U-Nets were organized in parallel. The top path
generated 8, while the bottom path estimated µa . Both paths
contained a contraction stream to downsample the input image
size and a symmetric expansive stream to restore the original image
size. A skip connection was employed to pass information between
layers of the corresponding level. The contraction stream consisted
of four downsampling blocks, each of which was composed of a
max pooling layer and two convolutional layers. The max pooling
layer contained a 2× 2 kernel with sliding stride of 2× 2. The
convolutional layer contained a 3× 3 kernel with sliding stride
1× 1 and was followed by an LReLU activation function. The kth
downsampling block, which mapped feature map xk onto feature
map xk+1, was given by

xk+1=MP {LReLU {CONV [LReLU {CONV [xk]}]}} , (2)

where CONV[·] is a convolution operator that includes bias
terms, and MP{·} denotes the max pooling layer. The expansive
stream consisted of four symmetrical upsampling blocks, each
of which included an upsampling layer and two convolutional
layers with an LReLU activation function. Skip connections were
established between layers of equal resolution in the downsampling
and upsampling layers in order to compensate for the loss in spatial
resolution resulting from the multiple downsampling operations.
The kth upsampling block, which mapped a feature map yk into
feature map yk+1, was given by

yk+1 = LReLU
{
CONV

[
LReLU

× {CONV[MERGE(xk+1,U P S(yk))]}
]}
, (3)

where UPS(·) is the upsampling operator, MERGE(·) denotes a
skip connection that merges the number of channels, and xk+1 is
the output of the downsampling convolutional layer symmetric
to the current upsampling layer. Feature map size changed through
the downsampling blocks and upsampling blocks as follows:
1× 256× 256 (input)→ 16× 128× 128→ 32× 64× 64→
64× 32× 32→ 128× 16× 16→ 64× 32× 32→ 32× 64×
64→ 16× 128× 128→ 1× 256× 256 (output).

D. Training

Calculations were carried out in a Python 3.7.1 environment on
an Intel 3.50-GHz Core i7 PC with 32 GB of RAM and an Nvidia
Titan Xp GPU. PyTorch 1.6.0 was used for designing and testing
the SEED-Net and the QOAT-Net.

The total loss function of the SEED-Net consisted of the adver-
sarial loss and the cycle consistency loss [55], defined as

LCG = LGAN (GS→E,DE)+ LGAN (GE→S,DS)

+ λL cyc (GS→E,GE→S), (4)

where LGAN(·, ·) denotes the adversarial loss of a generator and its
discriminator, L cyc(·, ·) denotes the cycle consistency loss of two
generators, andλ controls the relative importance of the two losses.

The loss function of the QOAT-Net was defined as

L = αMSE
(
8output, 8ground−truth

)
+ βMSE

(
µoutput

a , µground−truth
a

)
+MSE

(
Poutput

0 , Pground−truth
0

)
+ γ ‖8output

‖F + δTV
(
µoutput

a

)
,

(5)

where 8ground−truth denotes the ground truth 8; 8output denotes

the output of the top path; µground−truth
a denotes the ground truth

µa ; µoutput
a denotes the output of the bottom path; Pground−truth

0
denotes the ground truth initial pressure P0; and Poutput

0 denotes
the output of dual-path network, which is the multiplication of
8output and µoutput

a . MSE(·, ·) denotes pixel-wise mean squared
error between two images. Considering the gradual behavior of8,
we added the Frobenius norm of8output as a regularization term to
the loss function

‖8output
‖F =

√∑
p

∑
q

∣∣8output
p,q

∣∣2, (6)

where p and q are pixel indices. The TV operator of µa was
defined as

TV(µoutput
a )=

∑
p

∑
q√(

µ
output
a p+1,q −µ

output
a p,q

)2
+
(
µ

output
a p,q+1 −µ

output
a p,q

)2
.
(7)

Regularization parameters α(100), β(200), γ (10−5), and
δ(10−4)were applied to the loss function L to enable the appropri-
ate balance among the five components: the MSEs of the output8;
outputµa and output P0 with respect to their ground truth values;
the Frobenius norm of the output photon fluence8; and the TV
of the output absorption coefficientµa . In order to prove the effect
of the first three terms in the loss function, we retrained the neural
network three times with only two of the three terms included.
The results of inputting the same test data into those retrained
networks are displayed in Fig. S2 in Supplement 1, showing the
best performance using the loss function including all three terms.

Both networks were trained using adaptive moment estimation
optimization [69] with a learning rate of 10−4. The batch size in
our training stage was 16. Loss functions quickly converge to an
equilibrium stage after 200 epochs, after which they remain stable,
as shown in Fig. S3 in Supplement 1. The dual-path network trains
in 94 min with a training dataset of 3040 pairs of simulation square
images.
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3. DATASETS AND EXPERIMENTAL SETUP

A. Simulation Datasets

Two numerical simulations were carried out to construct datasets.
We first synthesized the absorption coefficient µa and then calcu-
lated the photon fluence8 and initial pressure P0 using the Monte
Carlo method [61,62]. The Grüneisen parameter 0 was consid-
ered to be spatially constant and equal to 1, so that P0 =µa ×8.
We assumed symmetric, vertically incident illumination with four
laser outputs in the form of a line in order to simulate wide-field
light. In the first simulation, square phantoms consisting of several
rectangular and circular absorbers with µa ranging from 0.01 to
0.2 mm−1 were considered. The absorbers in each sample were
the same size but located in different positions. Additional details
of the simulation parameters are described elsewhere [54]. The
second simulation involved circular phantoms comprising four
tubular vessel structures with µa ranging from 0.01 to 0.3 mm−1.
The radii of inner absorbers ranged from 1 to 3 mm, while the
positions were set randomly. In both simulations, we chose a con-
stant reduced scattering coefficient of 1 mm−1 and anisotropy
parameter g of 0.9 for the background and absorbers, while µa of
the background was set to 0.01 mm−1. The circular and square
datasets in QOAT-Net respectively contained 3800 pairs of train-
ing samples, of which 80% were used as training datasets, 10% as
validating datasets, and 10% as test datasets.

More sophisticated simulations were carried out using digital
models of mouse and human brains [56–60]. These digital models
were partitioned according to anatomical structures. Different
sections of the models were imaged to obtain 400 images. We then
carried out data augmentation by rotating each image by 45, 90,
135, 180, 225, 270, and 315 degrees clockwise to increase the size
of the datasets by a factor of 8. In total, the datasets of the digital
mouse and human brains respectively contained 3200 pairs of
training samples, of which 80% were used as training datasets,
10% as validating datasets, and 10% as test datasets. After training
the dual-path network, we blindly tested its inference by feeding it
P0 images that did not overlap with the images used in the training
datasets.

B. Phantom Datasets

Cylinder-shaped agar phantoms were constructed with a radius of
12.5 mm and height of 60 mm, inside of which four absorbers were
embedded with different shapes and positions intended to mimic
mouse organs. Low-melting-point agar [2.8% (m/v); congealing
temperature 26◦C–30◦C; catalog no. A9414, Sigma] was used. To
create optical scattering and absorption, different concentrations
of intralipid (10%) and India ink were added to the agar [70]. To
simulate tissue, backgroundµa was set as 0.01 mm−1, absorberµa

ranged from 0.015 to 0.04 mm−1, and the reduced scattering coef-
ficient throughout the domain was defined as 1 mm−1 [38]. Minor

Fig. 3. Implementation and validation of unsupervised data translation from the simulation to experiment domain to provide generated experiment data
with the ground truth. (a) The principle of optoacoustic tomography (OAT) and the generation of experiment data. The OAT system obtains real experi-
ment pressures PE

0 . Monte Carlo (MC) simulation produces simulation pressures PS
0 from synthesized µa , then the trained generator GS→E produces gen-

erated experiment pressures PG
0 from PS

0. BN, batch normalization; Conv, convolution; LReLU, leaky rectified linear unit. (b) Image results and distribu-
tion of image intensity with phantoms to verify unsupervised simulation-to-experiment data translation. The x axis of the histogram shows image intensity,
while the y axis indicates the proportion of total intensity found at the given position on the x axis. Scale bar, 5 mm.
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errors in the optical coefficients of the phantoms may occur during
their production, which have little influence on the experimental
results.

A total of 22 images were acquired from 22 experimental
phantoms embedding targets with different shapes (Fig. S4 in
Supplement 1), four of which served as test datasets, while the
remainder were rotated by 360 deg in 2-degree steps to obtain 180
images from each original. Except for the test data, a total of 3240
OAT images were obtained, of which 90% were used as the train-
ing datasets and the rest were used as the validating datasets. All
these images were combined with the abovementioned simulation
datasets PS

0 to train the SEED-Net, giving the so-called generated
experimental datasets PG

0 .

C. Ex Vivo and In Vivo Tissue Datasets

All animal procedures in this study were reviewed and approved by
the Subcommittee on Research Animal Care at Tianjin Medical
University Cancer Institute & Hospital. Fresh porcine tenderloin
containing two small pieces of porcine liver of higher µa were
fixed within agar. The tenderloin, approximately 1.5 cm thick,
was defined as background. In other experiments, liver and kidney
from mice were fixed in agar and imaged, or a 4-week-old healthy
male KM mouse (∼20 g) was imaged after anesthesia with 10%
chloral hydrate. In the live-mouse imaging studies, cross-sectional
thoracic and abdominal OAT images were sequentially acquired.
Images of tenderloin, mouse liver or kidney, or mouse thorax and
abdomen were reconstructed after training the dual-path network
with the generated experiment mouse datasets. We used 3200 and
3800 generated data-label pairs to train the networks for the ex vivo
and in vivo experiments, respectively.

D. OAT System

A self-built OAT system was used to image phantoms, as well as
ex vivo and in vivo tissues [44]. A pulsed Nd:YAG laser followed

by a tunable optical parametric oscillator laser generated 10 ns
pulses at a repetition rate of 10 Hz. The excitation light at 705 nm
was guided into a custom-made 540-fiber bundle and split into
four arms [Fig. 3(a)] to provide wide-field illumination. The light
was delivered to the imaging plane with an incident energy den-
sity below the ANSI limit of 20 mJ/cm2. Acoustic signals were
detected using a cylindrical-focused ultrasound transducer with
the central frequency of 3.5 MHz, the focal length of 80 mm, and
the diameter of 25 mm. The signals were amplified using a 50 dB
amplifier and digitized using a data acquisition (DAQ) card . The
scanning radius of the transducer was set to 80 mm to match the
focal length. In order to ensure constant speed of sound, especially
for in vivo experiments, the heating elements were placed in a
water tank maintained at 33◦C. Two-dimensional optoacous-
tic images were reconstructed using a universal backprojection
algorithm [71]. More details of this OAT system can be found in
Supplement 1.

4. RESULTS

A. SEED-Net Evaluation

Phantom experiments were conducted to demonstrate the validity
of the SEED-Net [Fig. 1(a)] by performing simulation-to-
experiment data translation after training. Real experiment PE

0 of a
phantom with knownµa was reconstructed from optoacoustic sig-
nals obtained using a custom-built OAT system (see Section 2.D)
[Fig. 3(a)]. According to the digitized µa derived from the phan-
tom, we calculated PS

0 using the Monte Carlo method [Fig. 3(a)],
then translated PS

0 into the experiment domain, generating PG
0 by

GS→E (see Section 2.B for architecture details). The distribution
of internal brightness differed between PG

0 and PS
0, and similar

features were observed between PG
0 and PE

0 . The probability dis-
tributions of image intensity showed correspondence between
PG

0 and PE
0 , which are different from PS

0 [Fig. 3(b)]. These results

Fig. 4. Performance of the dual-path network on simulation samples. (a) Reconstructed results for four simulation samples. (b) Comparison of relative
error between the dual-path network and conventional U-Net. (c) Comparison of peak signal-to-noise ratio (PSNR) between the dual-path network and U-
Net. Scale bar, 5 mm.

https://doi.org/10.6084/m9.figshare.17064329
https://doi.org/10.6084/m9.figshare.17064329


Research Article Vol. 9, No. 1 / January 2022 / Optica 38

Fig. 5. Performance of the QOAT-Net on biomimicking phantoms as well as ex vivo and in vivo samples. (a) Results of phantom experiments.
Reconstructed µa refers to absorption coefficients reconstructed by the QOAT-Net after training only with generated experimental data. The right panels
show reconstructed µa along the dotted white lines. (b) Reconstructed images of ex vivo porcine tissue, mouse liver, and mouse kidney. (c)Reconstructed
images of three thoracic and abdominal cross sections of an anesthetized mouse taken at positions 1, 2, and 3, shown beneath a photograph of the corre-
sponding cryoslice. Arrows identify equivalent positions across each row to highlight differences between the initial pressure and absorption coefficient.
BO, bowel; LV, liver; SC, spinal cord; SM, stomach; VS, vessel. Scale bar, 5 mm.

indicated that the proposed data translation network was able to
generate experimental data resembling actual experimental data.

B. Dual-Path Network Evaluation

The top and bottom paths learned to reconstruct8 andµa , respec-
tively, such that feeding P0 into the dual-path network generated
µa (Fig. 2). The relationship between8 and µa was preserved by
forcing the deviation between input P0 and reconstructed P0 to
be as small as possible (see Section 2.C for architecture details).
Four simulation samples (square, circle, digital mouse, and digital
brain) were chosen to evaluate the proposed dual-path network
[Fig. 4(a)]. Large differences were observed between P0 and ground
truth µa due to heterogeneity in 8. However, the reconstructed

images of µa determined by the dual-path network were quite
consistent with the corresponding ground truth images. In fact, the
proposed dual-path network led to reconstructions that showed
at least 36% lower relative error and at least 15% higher peak
signal-to-noise ratio than the conventional U-Net method [54]
[Figs. 4(b) and 4(c)].

C. QOAT-Net Evaluation

We demonstrated good application performance of our QOAT-
Net [Fig. 1(b)] in reconstructing inner targets of a phantom
mimicking different organs of the mouse when contrast was low,
i.e., when the µa of the target was close to that of the background
[Fig. 5(a)]. When we compared the reconstructed µa obtained
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with or without real experiment PE
0 , we found that the best results

were obtained with real experiment input (Fig. S5 in Supplement
1). Reconstruction using a network trained only with simulation
datasets gave unacceptably large errors. In contrast, a training strat-
egy involving only generated PG

0 , though potentially less accurate
than a strategy based on both generated PG

0 and real experiment
PE

0 , may still be reliable enough for practical applications, and may
be the best choice when real labeled experiment datasets cannot be
obtained. Moreover, QOAT-Net based on generated PG

0 can recon-
struct various types of experimental datasets for a specific OAT
system because training data generated from simulation datasets
is flexible and easy to extend. Figure S6 in Supplement 1 illus-
trates the ability to process different data types of the QOAT-Net.
In addition, comparison between the QOAT-Net and the latest
non-linear iterative perturbation method [72] has been displayed
in Fig. S7 in Supplement 1, showing better performance of the
QOAT-Net in the noise suppression and spatial resolution. The
time required by various algorithms to reconstruct µa is listed in
Table S2 in Supplement 1.

Encouraged by these phantom results, we compared conven-
tional OAT results (P0) and QOAT results (reconstructed µa ) for
imaging porcine liver and tenderloin ex vivo [Fig. 5(b), top row].
OAT led to bright regions at the boundaries between target tissue
and background, indicating poor distinction between areas with
differentµa . QOAT, in contrast, led to starker target–background
distinction, and each target was internally more homogeneous
than with OAT. QOAT gave reconstructed µa of 0.2 mm−1 for
liver tissues and 0.01 mm−1 for tenderloin, only slightly lower than
in previous reports [59,73].

Similar superiority for QOAT over OAT was observed when
imaging mouse liver and kidney ex vivo [Fig. 5(b), middle and lower
rows]. With OAT, inner vessels could not be easily differentiated
from one another, but they did appear different from tissues near
the boundaries. With QOAT, inner vessels could be distinguished
more easily from one another. With OAT, blood vessels of the same
size had different intensities, whereas with QOAT they appeared
more homogeneous and more distinguishable from background.

Finally, we compared OAT and QOAT in the more com-
plex context of an entire mouse, as a more demanding test of the
(pre)clinical potential of our proposed QOAT-Net [Fig. 5(c)].
OAT provided inaccurate absorption information in three cross
sections with rich anatomical content due to heterogeneous pho-
ton density. For example, image intensities in the liver regions were
lower than those of external skin tissues, and some vessel regions
were similarly bright as surrounding tissues. QOAT provided obvi-
ously better absorption information: vessels and organs appeared
different from other tissues, and various anatomical structures
appeared similar to the images from the digital mouse. For exam-
ple, QOAT reconstructed µa of 0.065− 0.075 mm−1 in the liver
area, consistent with the 0.072 mm−1 in the digital mouse [59].

5. DISCUSSION AND CONCLUSION

To extend OAT to high-resolution quantitative imaging, QOAT
was developed to reconstruct µa values that are accurately related
to the physiological characteristics of tissues. However, conven-
tional QOAT relies on complex and time-consuming iterative
calculations that require extensive computational resources,
and the final fidelity and spatial resolution depend strongly on
experience-based selection of optimization parameters. DL may

be a more efficient alternative but requires appropriate data-label
pairs for accurate reconstruction of tissue imaging. To avoid this
requirement, we have developed a dual-path QOAT network with
unsupervised data translation from simulation to experiment
domains. This QOAT-Net can reconstruct µa with relative errors
below 10% in less than one second, approaching the real-time
imaging requirements for many biomedical and preclinical appli-
cations. The comparison between QOAT-Net and the iterative
method demonstrates that QOAT-Net can solve the optical inverse
problem without the reference sample and the trade-off between
accuracy and spatial resolution, which are typical of optimiza-
tion algorithms. To the best of our knowledge, this is the first
demonstration that DL-based QOAT can accurately estimate
high-resolution images ofµa in deep tissues.

The strong performance of QOAT-Net is due in large measure
to the three loss functions of absorption coefficient, photon flu-
ence, and initial pressure in the dual-path network. These three loss
functions cover all three variables in the OAT mathematical model,
allowing QOAT-Net to function more accurately. The strong
performance can also be attributed to the unsupervised simulation-
to-experiment data translation, in which the SEED-Net is trained
with simulation data and typical experimental results for the spe-
cific QOAT system being used, effectively generating experimental
data-label pairs to substitute for actual manual labeling.

The framework we suggest here may be feasible for image
reconstruction using various OAT systems and types of tissues.
Combining this approach with a multispectral optoacoustic
tomography system may further reconstruct the physiological and
pathological parameters of deep tissue. In this way, the framework
may compensate for the lack of labeled datasets that hinders DL
in various types of imaging, such as diffuse optical tomography
and fluorescence molecular tomography. Our approach can cover
a wider range of biomedical imaging tasks by introducing more
complete data models.
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