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Abstract

Large metabolomics datasets inevitably contain unwanted technical variations which can obscure meaningful biological signals and
affect how this information is applied to personalized healthcare. Many methods have been developed to handle unwanted variations.
However, the underlying assumptions of many existing methods only hold for a few specific scenarios. Some tools remove technical
variations with models trained on quality control (QC) samples which may not generalize well on subject samples. Additionally,
almost none of the existing methods supports datasets with multiple types of QC samples, which greatly limits their performance
and flexibility. To address these issues, a non-parametric method TIGER (Technical variation elImination with ensemble learninG
architEctuRe) is developed in this study and released as an R package (https://CRAN.R-project.org/package=TIGERr). TIGER integrates
the random forest algorithm into an adaptable ensemble learning architecture. Evaluation results show that TIGER outperforms four
popular methods with respect to robustness and reliability on three human cohort datasets constructed with targeted or untargeted
metabolomics data. Additionally, a case study aiming to identify age-associated metabolites is performed to illustrate how TIGER
can be used for cross-kit adjustment in a longitudinal analysis with experimental data of three time-points generated by different
analytical kits. A dynamic website is developed to help evaluate the performance of TIGER and examine the patterns revealed in our
longitudinal analysis (https://han-siyu.github.io/TIGER_web/). Overall, TIGER is expected to be a powerful tool for metabolomics data
analysis.
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Introduction
Metabolomics provides a unique perspective to quan-
titatively characterize small molecule (<1500 Dalton),

metabolites, which can represent the metabolic status of
a subject. Metabolomics analyses facilitate the identifi-
cation of biomarkers and improve the understanding of
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biological pathways in health and metabolic disease such
as diabetes [1]. Despite significant advances in recent
years, unwanted technical variation still remains a crit-
ical issue in the current metabolomics workflow [2] and
prevents the translation of metabolomics analyses in
personalized healthcare. Liquid chromatography-mass
spectrometry (LC-MS) is the most widely used technique
for metabolomics studies because of its high sensitivity
and metabolite coverage [3–5]. But the unwanted tech-
nical variation can be introduced by changes in experi-
mental conditions such as batch effects, temporal drifts,
temperature changes and variation of analytical plat-
forms. In metabolomics experiments, biological varia-
tion of interest is inevitably confounded with system-
atic errors which can be categorized as intra- and inter-
batch technical variation [6]. Intra-batch variation gen-
erally refers to the incremental changes in instrumental
response during the measurement of a batch of samples
[7]. And inter-batch variation occurs when samples in a
large-scale study have to be separated into batches [8].
Intra- and inter-batch variations can cause detectable
differences between samples irrespective of biological
variation and further lead to false discoveries [9, 10].

Technical noises and systematic errors in meta-
bolomics data are hard, even impossible to control
[10, 11]. Therefore, many practical methods and tools
(Table 1) have been proposed to normalize data and
remove unwanted variation, so that samples from
different batches can be combined and compared
[12]. One of the most common approaches is to use
normalization factor (NF). For each metabolite of each
batch, the raw metabolite values of the QC samples
in this batch act as test values, while the averaged
metabolite values of the QC samples from all batches
are used as target value. The NF is the median [13] or
mean [14] of the ratios of the test values relative to the
target value. Each metabolite of each batch has its own
NF which measures the deviation caused by the potential
variations. For subject samples, the deviation can be
finally offset by dividing the values of subject samples
by the corresponding NF. In this case, the method can be
viewed as fitting a linear equation where the calculated
NF acts as the slope term. In addition to linear regression,
local polynomial regression (LOESS) is also being applied
to eliminate technical variation [15, 16]. LOESS has an
advantage over linear equation with respect to model
flexibility. Compared to a straight line determined by NF,
LOESS fits a polynomial curve by assigning more weights
to points near the one whose response is being estimated.
An LOESS model for technical variation removal is
usually trained with the information of injection order,
the idea of which is that the training samples temporally
close to a given test sample may better characterize
the temporal drifts it suffers than those that are far
away. Recently, a machine learning-based method, SERRF
(Systematic Error Removal using Random Forest) [17],
has been developed to normalize large-scale untargeted
metabolomics data. The study of SERRF demonstrates

that technical variation in the intensity of one compound
can be modelled by the intensities of other compounds.
SERRF builds random forest (RF) [18] model to regress
unwanted systematic variation and has surpassed many
popular methods, including NOMIS (Normalization using
Optimal selection of Multiple Internal Standards) [19],
cubic splines normalization [20] and a method based on
support vector machine (SVM) [21], on several bench-
mark datasets. Another state-of-the-art tool WaveICA
[22] was developed for the cases where QC samples are
not available. WaveICA utilizes the wavelet transform
[23] and independent component analysis (ICA) [24, 25]
to capture and remove technical variation. Based on
the assumption that metabolite intensities may display
temporal trends over the injection order, WaveICA first
uses the wavelet transform to decompose the trend into
multi-scale data with different frequencies. Then ICA is
used to detect and remove unwanted variation in the
multi-scale data. And the normalized data are finally
reconstructed using the inverse wavelet transform. The
experiments show that WaveICA outperforms ComBat
(combatting batch effects when Combining Batches) [26],
a well-known QC-free method based on empirical Bayes,
as well as QC-RLSC (Quality Control-based Robust LOESS
Signal Correction) [27].

Many valuable and helpful methods have been devel-
oped, but the current approaches are subject to several
limitations. One underlying assumption of NF is that the
increase in one metabolite value can be balanced by the
decrease in the values of another metabolites, but it has
been argued that this assumption is only valid in lim-
ited practical scenarios [19, 28]. LOESS’s normalization
capability is boosted by its more advanced algorithm,
but the model of LOESS neglects the potential associa-
tions between metabolites and tends to overfit the data.
Regarding data structure, LOESS can hardly be applied to
datasets that contain more variables (metabolites) than
samples [17]. SERRF is one of the most robust methods,
but its model trained on QC samples cannot guarantee
to yield satisfactory results on subject samples—this is
also the issue of most QC-based methods. WaveICA is not
afflicted by the common issues of QC-based methods,
but it still has its own drawbacks. WaveICA assumes that
biological variation mainly exists in the data with high
frequency, whereas the temporal drifts are in the low-
frequency part. During the normalization, the biological
variation in the low-frequency area might be removed as
well.

Recently, the routine use of common, well-
characterized QC samples has been recognized as a
valuable tool to improve the external validity of large-
scale metabolomics studies. [12, 29, 30]. QC samples
cannot only help eliminate temporal drifts, batch effects
and other technical variations, but also help achieve
better inter-laboratory reproducibility so that data from
different centres can be effectively compared [5]. With
the growth of QC-provided metabolomics datasets, the
development of highly flexible and readily adaptable
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Table 1. Overview of four popular normalization methods and TIGER

Method Algorithm Metabolite type QC-based Injection order required Multiple QC supported Reference

NF Linear regression Targeted and untargeted Yes No No [13, 14]
LOESS Local polynomial regression Targeted and untargeted Yes Yes No [15, 16]
SERRF Random forest Untargeted Yes Yes No [17]
WaveICA Wavelet transform Untargeted No Yes No [22]
TIGER Ensemble learning Targeted and untargeted Yes No Yes This study

QC-based methods become a necessity. Now more
and more QC-based methods are employing machine
learning algorithms to normalize datasets and remove
technical variation. Metabolite values of QC samples and
subject samples are typically used as training and test
data. A traditional machine learning model is generally
trained and fine-tuned on a training set that is highly
representative of unseen examples. However, QC samples
may not be fully representative of subject samples.
Due to underfitting and overfitting issues, many QC-
based methods only yield weak performance on subject
samples [22, 31]. As to performance assessment, the
same QC samples are often divided into two subsets
for model training and evaluation, which may make
the evaluation result too optimistic—strong evaluation
performance on QC samples does not guarantee a
satisfactory result on subject samples. To improve
generalization and achieve reliable evaluation, datasets
of many cohorts or studies contain multiple types
of QC samples, sometimes corresponding to different
metabolite concentration levels. The availability of
different QC samples provides more flexibility and better
reproducibility for metabolomics data pre-processing.
However, almost none of the existing methods is able to
process the datasets with different kinds of QC samples.

To address these issues, a novel method TIGER (Techni-
cal variation elImination with ensemble learninG archi-
tEctuRe) is developed based upon an adaptable ensem-
ble learning architecture. TIGER is evaluated with three
datasets constructed with targeted or untargeted LC-MS
metabolomics data. Moreover, a case study is performed
to illustrate how TIGER can be applied to longitudinal
analysis.

TIGER is released as an R package which can be
installed in R via command install.packages

(”TIGERr”). The package manual provides detailed
descriptions and examples to help users apply TIGER to
different scenarios (see Supplementary File—R Package
Manual). A dynamic website (https://han-siyu.github.io/
TIGER_web/) is also developed, which enables users to
interactively compare TIGER with other popular methods
and review the patterns revealed in our longitudinal
analysis.

Methods
TIGER eliminates the technical variation using an
adaptable ensemble learning architecture. This section

describes the framework of the architecture and illus-
trates how this architecture is adapted to build TIGER.

Architecture of Ensemble Learning
The ensemble learning architecture designed in this
study is inspired by the idea of super learner [32]
and tailored for the cases where training samples are
limited and cannot fully represent test samples. The
architecture is comprised of several base models and one
meta model. The base models are trained with different
hyperparameter sets, which could mitigate the potential
overfitting issue caused by one specific hyperparameter
set. The meta model assigns weights to base models
such that high-performing base models can obtain great
weights, but information of underperforming learners
can be considered as well.

Base Model

The ensemble model has n base models. Each base model
is determined by θi, a hyperparameter set from pool
{θ1, θ2, ..., θn}. The base model φi(·) is a machine learning
model of the form:

φi(y ∼ X) = ϕ(y ∼ X|θi). (1)

where X and y represent variable and response; ϕ(·)
denotes a function that can be generalized to various
approximators, such as SVM, k-nearest neighbours (k-
NN) or other user-defined functions.

When fitting base models, a specific training set D =
{y ∼ X|m ∈ 1 : M, d ∈ 1 : D} including M instances and D
variables will be shuffled randomly and split into K folds
for cross-validation (CV). For any fold k ∈ {1, 2, ..., K}, base
models are trained with K − 1 training folds {y−k ∼ X−k}
and tested on the remaining validation fold Xk:

ŷi,k = φi(Xk|y−k ∼ X−k), (2)

where ŷi,k is the predicted result of the validation fold {Xk}
produced by φi(·|y−k ∼ X−k), the base model φi trained
with the training folds {y−k ∼ X−k}. The base models
here are only used to evaluate their performances. All
base models will be retrained with the whole training set
and used to normalize new data. Finally, values of ŷi,k are
collected and concatenated:

ŷi = {ŷi,1, ŷi,2, ..., ŷi,k}. (3)
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Meta Model

Meta model �(·) corresponds to a model of the form:

�(y ∼ X) =
n∑

i

wiφi(y ∼ X). (4)

Unlike many blending models that average the pre-
dictions of all ensemble members, the architecture here
assigns each base model a weight wi which is trans-
formed from the loss of each validation set via a softmax-
like formula:

wi = exp(−�i)∑n
i exp(−�i)

, (5)

where �i, the loss of the corresponding base model φi(·),
is defined as follows:

�i = L(ŷi, y), (6)

L(ŷ, y) = 1
M

M∑

m=1

|ŷ(m) − y(m)|
y(m)

. (7)

Here, L(·) is the loss function that measures error ratio;
ŷ(m)

i denotes the m-th values predicted by φi(·) in CV, and
y(m) is the corresponding target value. The numerator
of Eq. 5 calculates the exponential of the negative loss
of each individual base model, and the denominator
sums over the exponentials. This ensures base mod-
els with small losses have more weights, but learners
having large losses can also get some weights, which
alleviates the overfitting problem caused by one specific
hyperparameter set. And the resulting ensemble model
might outperform the constituent models.

TIGER Algorithm
TIGER iterates many times during the correction (Alg. 1).
Only one metabolite will be processed in one iteration.
In each iteration, TIGER constructs ensemble models
separately for different batches. The model construction
can be outlined in three steps: variable selection, model
construction and data correction.

Variable Selection

The correlation coefficients (CCs) of any two metabolites
are calculated separately using training (i.e. QC samples
in a general case) and test samples (i.e. subject samples).
For an objective metabolite to be normalized, the
metabolites with CCs greater than 0.5 in both training
and test samples are selected. Then the intersection of
the selected metabolites determines t highly-correlated
metabolites. To ensure stable and consistent perfor-
mances of the models in different iterations, the number
of highly-correlated metabolites is limited to a specific
range [tmin, tmax]. If t < tmin, tmin metabolites with top CCs
in both training and test samples will be selected. If
t > tmax, only top tmax of t metabolites will be selected.
By default, TIGER selects 5 to 10 variables to train
models.

Both Pearson product–moment correlation and Spear-
man’s rank correlation are supported in TIGER to com-
pute CCs. Partial correlation [33] is also supported for
variable selection, such that pairwise CCs are condi-
tioned against the correlation with all other metabo-
lites, and indirect associations between distantly related
metabolites are ignored [34]. In this study, TIGER uses
rank-based CCs.

The training set constructed with the data of highly
correlated metabolites not only reduces the model
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complexity but also considers the potential interactions
between metabolite values. Moreover, the selected
variables also imply the variation introduced by temporal
drifts, well position effects and other unobserved noises.
Thus, the model can capture the relevant information
even if the data of injection order and well position
are not available. In practice, users can also explicitly
include injection order and well position into the training
data to train TIGER (see Supplementary File—R Package
Manual).

Model Construction

The architecture described in the previous section is a
general framework which can be extended and adapted
to various use cases. In the implementation of TIGER, the
ensemble learning architecture is further tailored to suit
the case of technical variation removal. Alg. 2 shows how
the model is constructed in TIGER using our ensemble
learning architecture.

Specifically, the base model ϕ(·) in TIGER is defined as:

ϕ(y ∼ X|θi) = y
ψ(y′ ∼ X|θi) + 1

, (8)

where ψ(·) is an RF model trained with θi which is one
hyperparameter combination from the hyperparameter
pool. By default, the pool contains {mtry_percent = {0.2,
0.4, 0.6, 0.8}, nodesize_percent = {0.2, 0.4, 0.6, 0.8}}. Users
can include more hyperparameters into the pool (see
Supplementary File—R Package Manual for further
details). Response y in Eq. 8 denotes the raw values
of an objective metabolite, while variable X is the raw
data of y’s highly correlated metabolites. The RF model
ψ(·) is to predict the error ratio of y, denoted by y′ and
defined as:

y′ = y − ȳ
ȳ

, (9)

where ȳ is the mean or median of y. ȳ can be calculated
based on the whole dataset or each batch. By default,
TIGER computes mean-based ȳ from the whole dataset
(ȳ = ȳall). But batch-specific ȳ = ȳbatch is also supported
in TIGER. In this case, the obtained metabolite value will
be additionally multiplied by a factor, ȳall/ȳbatch, to offset
inter-batch variations. This will make the algorithm more
aggressive and competent to process the datasets with
strong batch effects. When fitting the meta model, ȳ is
used as the target value to compute the loss in Eq. 6. If a
training set has more than one kind of QC sample, then
ȳ and y′ will be calculated separately for each kind.

Overall, for a specific training set D = {y ∼ X}, TIGER
first transforms raw metabolite values of an objective
metabolite y into the corresponding error ratio y′ (Eq. 9).
Then y′ and X are fed into an RF model ψ(·). Accordingly,
the predicted result of ψ(·) is also an error ratio denoted
by ŷ′. Before being passed to the meta model, the pre-
dicted error ratio is converted back to metabolite values

by equation ŷi = y/(ŷ′ + 1). The output of TIGER’s base
models ŷi and ȳ are passed to meta model, and the loss
is obtained by computing �′

i = L(ŷi, ȳ). Thus, the weight
assigned to each base model is based on how close the
predicted metabolite value ŷi is to the target value ȳ.

Data Correction

Given the cross-validated weights, base models can be
combined together for data correction. The outcomes
are the weighted sums of the predicted results of all
base models, which are also the corrected values of
the objective metabolite converted from predicted error
ratios.

In the implementation of TIGER, test samples are
scheduled to be processed on-the-fly during the model
construction, rather than being corrected in a separate
stage, to avoid redundant computational costs. Parallel
computing is supported to accelerate computational
speed.

Evaluation Criteria
We use relative standard deviation (RSD, also known as
the coefficient of variation), mean absolute percentage
error (MAPE) and principal component analysis (PCA) to
evaluate TIGER.

As one of the most widely used metrics, RSD is a
unitless and standardized measure defined as the ratio
of the standard deviation to the arithmetic mean.

MAPE is one of the most common measures in com-
putational fields, used to evaluate the difference ratio
between true values and predicted values (Eq. 7). A lower
MAPE value indicates the predicted value is closer to the
target value which in this study is defined as the average
of the corresponding metabolite values.

Considering that some datasets only provide one kind
of QC, while training and testing using the same kind
of QC may lead to an over-optimistic evaluation, we
further use PCA plots to compare the clusters of samples
before and after applying different normalization meth-
ods. Identical samples in the PCA plot should be clustered
together.

Data Description
Data from KORA (Cooperative Health Research in the
Region of Augsburg) study [35], P20 Negative (negative
mode, Functional Cardio-Metabolomics study) [17] and
Amide of WaveICA [22] are used to evaluate normaliza-
tion methods. Data in the KORA study are the concentra-
tions of targeted metabolites, while data in P20 Negative
and Amide measure the compounds or peak intensities
of untargeted metabolomics data (Table 2).

Targeted Metabolomics Datasets

We use targeted metabolomics data of three time-
points from the KORA cohort: the baseline survey
(KORA S4, examined between 1999 and 2001), the
first follow-up study (KORA F4, 2006–2008) and the
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Table 2. Summary of the datasets used in this study

Dataset Targeted Untargeted

KORA S4 KORA F4 (Original) KORA F4 (Remeasured) KORA FF4 P20 Negative Amide

Number of Batches/Plates1 22 38 4 29 4 4
Number of Subjects 1614 3061 288 2218 1174 644
Number of Variables2 103 103 103 103 268 6402
Number of QC Samples
QC 114 – 22 145 125 85
QC1 22 38 4 29 – –
QC2 22 38 4 29 – –
QC3 22 38 4 29 – –
Median of RSD
QC 0.0921 – 0.0884 0.1178 0.2752 0.5139
QC1 0.0946 0.1225 0.0770 0.1090 – –
QC2 0.0799 0.1251 0.0678 0.1065 – –
QC3 0.0797 0.1070 0.0724 0.1093 – –
Median of MAPE
QC 0.0741 – 0.0697 0.0947 0.2256 0.4171
QC1 0.0726 0.0993 0.0537 0.0870 – –
QC2 0.0603 0.0977 0.0475 0.0818 – –
QC3 0.0630 0.0878 0.0546 0.0884 – –

1Plates for KORA S4, F4, FF4. Batches for P20 Negative and Amide. 2KORA data include 103 metabolites. P20 Negative contains 268 lipids. Amide has 6402 peaks.

second follow-up (KORA FF4, 2013–2014), as well as
the accompanying QC samples to construct targeted
metabolomics datasets. The metabolite profiling of
KORA S4 (March–April 2011), F4 (August 2008–March
2009) and FF4 (February–October 2019) serum samples
spans more than a decade during which analytical
procedures have been upgraded several times. The
samples of KORA F4 were measured with the analytical
kit AbsoluteIDQ

®
p150 (p150, BIOCRATES Life Sciences

AG, Innsbruck, Austria), while the samples of KORA
S4 and FF4 were quantified with AbsoluteIDQ

®
p180

(p180). To evaluate the technical variation introduced
by different kits, samples of 288 individuals from the F4
study were remeasured using the p180 kit (September–
October 2019). During the measurement, three different
manufacturer-provided QC samples, denoted by QC1,
QC2 and QC3, were allocated to each 96-well kit plate.
For the p180 kit, each plate additionally quantified
five identical pooled EDTA-plasma QC samples (Sera
Laboratories International Ltd., Hull, United Kingdom)
[36], denoted by QC. Manufacturer-provided QC1, QC2
and QC3 varied due to the platform update, but pooled
EDTA-plasma QC remained the same. We use KORA F4
(Original) and F4 (Remeasured) to distinguish the two
subsets of the KORA F4 dataset (Table 2).

Quality inspection [37, 38] is applied to the metabolomics
data. Kits p150 and p180 allow simultaneous quantifi-
cation of 163 and 188 metabolites, respectively. Only
metabolites that meet the following five criteria will be
selected: (1) the overlap between p150 and p180; (2) at
least 50% of its measured sample values are above the
limits of detection (LOD) of its corresponding plates; (3)
missing values <10% (4) median RSD of different QC
samples <25% (5) the spearman CCs between KORA
F4 (Remeasured) and F4 (Original) >0.5. In total, 103
metabolites satisfy all criteria and are selected to

construct the target metabolomics datasets (see Table
S1 for detailed quality inspection).

The latest surveyed dataset KORA FF4 is used for
method evaluation where QC are selected as training
samples, while QC1, QC2, QC3 and subject samples are
used as test data (see Figure 1 for an example variable
from KORA FF4). In case study section, datasets of
three time-points (KORA S4, F4 and FF4) are used for
longitudinal analysis.

Untargeted Metabolomics Datasets

P20 Negative and Amide are two ready-to-use datasets
provided by SERRF and WaveICA. Relevant quality
inspection has been conducted in their original studies.
P20 Negative dataset is based on plasma samples and
acquired using a validated lipidomics assay [17]. In P20
Negative, 1174 subject samples and 125 identical QC
samples were separated into four batches (Figure 1). Each
sample has 268 lipids (Table 2).

Dataset Amide is based on plasma samples processed
with a UHPLC-QTOF/MS system [22]. A total of 644 sub-
ject samples and 85 identical QC samples were collected
from four batches, and each sample has 6402 detected
peaks (Figure 1 and Table 2).

Both P20 Negative and Amide only provide one kind of
QC sample, 80% of which will be used as training sets,
while the remaining QC samples and all subject samples
are used as test sets.

Evaluation Results
We first evaluate how our ensemble learning architec-
ture performs on the task of metabolomics data nor-
malization. Second, TIGER is benchmarked against four
popular methods, NF, LOESS, SERRF and WaveICA, using
KORA FF4, P20 Negative and Amide.
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Figure 1. Raw data of selected metabolites from datasets KORA FF4, P20 Negative and Amide. The x-axis indicates the injection order, and the y-axis
represents metabolite concentration (μM) or intensity. Samples from different batches are distinguished by colours.

Evaluation of Ensemble Learning Architecture
To validate the ensemble learning architecture, the
ensemble models whose base models are trained
with three machine learning algorithms of different
complexities, namely k-NN [39], random forest [40] and
extreme gradient boosting (XGB) [41, 42], are compared
with the corresponding models without using ensemble
technique. The non-ensemble models are trained with
the same hyperparameter sets (Table S2) as the ensemble
models and tuned with a 5-fold cross-validated grid
search. All models are trained with QC and tested with
QC1, QC2 and QC3 and subject samples from the KORA
FF4 dataset.

Figure 2 demonstrates the improvement of our ensem-
ble learning architecture to the models trained with
original algorithms. As shown in Figure 2, all ensemble
models show some improvements upon their prede-
cessors, which demonstrates the effectiveness of our
ensemble learning architecture. k-NN and XGB give
the best and the worst results among non-ensemble
models. After adopting the ensemble learning strategy,
these two algorithms yielded the least and the greatest
improvement. Model complexity may account for this
fact (see discussion). Algorithm RF is selected to build
the base models in TIGER as it helps to achieve the
best performance on both RSD and MAPE with moderate
complexity. After incorporating the RF algorithm into the
ensemble learning architecture, the medians of RSD and
MAPE are„ 14.43% and 14.79% better than the original
model.

Evaluation on Targeted Metabolomics Data
From the evaluation of KORA FF4’s 103 metabolites, we
found that the performances of TIGER, NF, LOESS, SERRF
and WaveICA on the three manufacturer-provided QC
samples are very similar (Table S3). Compared to the
other four methods, TIGER has the lowest median of
RSD. For example, for QC2 from KORA FF4, the median
of RSD is reduced from 0.1065 (raw) to 0.0509 after
being processed by TIGER (Figure 3). All four methods
are able to lower the RSD, which means the normalized
values are less dispersed than raw values. In addition
to RSD, low medians of MAPE of TIGER, NF and SERRF
are observed (Table S3), suggesting good performances

of these three methods. However, the metabolite values
seem to further deviate from the target values after
being processed by LOESS and WaveICA—the median
of MAPE (QC2) increases from 0.0818 (raw) to 0.5444 and
0.2537, respectively (Figure 3). TIGER achieves the best
performance among all investigated methods and strikes
a superior balance between RSD and MAPE.

The detailed performances of TIGER and the other four
methods on each metabolite are available at our dynamic
website.

Evaluation on Untargeted Metabolomics Data
Untargeted datasets P20 Negative and Amide are further
used to evaluate the performances of different methods.
As dataset Amide contains stronger technical variation
(see Table 2) than KORA FF4 and P20 Negative, the target
value (in Eq. 7), an argument of TIGER’s programme, is
configured to compute based on each batch.

Figure 3 shows that TIGER effectively lowered the tech-
nical errors and improved the data quality of the P20 Neg-
ative dataset—the median of RSD is reduced by 19.06%
(from 0.2741 of raw data to 0.0835), while the median of
MAPE is reduced by 14.67% (from 0.2117 of raw data to
0.0650).

The evaluation results of the Amide dataset show that
all four methods can lower the RSD values of QC samples
(Figure 3 and Table S3), while WaveICA has the lowest
median of RSD. In terms of the error ratio, the evaluation
reveals similar good performance among TIGER, LOESS,
NF and SERRF, while WaveICA gets the highest median of
MAPE.

PCA analysis is further performed to evaluate how
each method generalizes to subject samples. Figure 4
shows four clusters representing four batches of raw
data of P20 Negative and Amide, respectively. The QC and
subject samples in P20 Negative and Amide are clustered
together without distinct batch differences after being
normalized by TIGER, SERRF and WaveICA, which
demonstrates that these methods effectively eliminate
the technical variation. By contrast, after normalized by
NF, QC and subject samples still contain strong batch
effects, which means NF underfits the data. From the
RSD and MAPE results (Figure 3), it seems that LOESS
achieves the best performance on the Amide dataset.
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Figure 2. Performance evaluation of general and ensemble architecture of k-nearest neighbours (k-NN), random forest (RF) and extreme gradient boosting
(XGB). The results of non-ensemble models are obtained from the corresponding fine-tuned model (see Table S2 for the hyperparameter list). Ensemble
models are trained using the same hyperparameters as the corresponding non-ensemble models. Each dot in each box plot represents the corresponding
metric value of one metabolite, while the box shows the overall distribution of the metric values of all metabolites. The RSD (a) and MAPE (b) results
show that all ensemble architectures yield performance improvement over their predecessors which are constructed without using ensemble learning
techniques. Please note that the y-axis has been sqrt-transformed.

Figure 3. Box plot of RSD (a) and MAPE (b) results on QC samples from datasets KORA FF4, P20 Negative and Amide. Each dot in each box plot represents
the corresponding metric value of one metabolite or variable, while the box shows the overall distribution of the metric values of all metabolites. The
performance in this figure is yielded by TIGER’s ready-to-use R package, thus the performance of the ensemble RF model here slightly differs from the
result in Figure 2 which is obtained from the fine-tuned model of each architecture. Please note that the y-axis has been log10-transformed.

However, the PCA evaluation shows that the batch effect
can still be detected in its normalized Amide dataset,
although QC samples cluster tightly. This suggests
that LOESS suffers from the overfitting problem with

a favourable result on QC samples but a substandard
performance on subject samples. Evaluated on P20
Negative and Amide dataset, TIGER achieves the most
compact clusters for both QC and subject samples, which
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demonstrates that TIGER is an appropriate candidate for
technical variation removal.

Case Study
This case study is conducted to illustrate how TIGER can
be integrated into longitudinal analysis where batch/-
plate correction and systematic errors removal are criti-
cal and indispensable.

Data Imputation
KORA F4 (Original) has a few missing values which need
to be imputed before correction. To ensure an accurate
result, a template dataset with simulated missing values
is created using KORA F4 (Original). Out of 3061 individ-
uals of 103 metabolites (315 283 data points), six missing
values are scattered in the data of four metabolites (PC
aa C32:2, PC ae C42:4, SM (OH) C14:1 and SM C20:2).
A subset without missing values is first extracted from
F4 (Original). For each of these four metabolites, we
randomly remove 10 values with the assumption that
data of one specific metabolite are missing completely
at random (MCAR) [43]. The resulting template dataset is
then imputed by four popular algorithms [44, 45] namely
predictive mean matching (PMM) [46], classification and
regression trees (CART) [47], k-NN imputation [48] and
Bayesian linear regression (Norm) [49]. The results are
evaluated with MAPE which measures the difference
between original values and imputed values. Method
PMM achieved the best performance with an MAPE of
0.1220, compared with 0.1301 for k-NN, 0.1323 for Norm
and 0.1588 for CART. PMM is used to impute the missing
values in KORA F4 (Original).

Data Correction and Cross-Kit Adjustment
In this case study, we aim to correct datasets of three
time-points, namely KORA S4, F4 (Original) and FF4. The
three datasets exhibit obvious inter-batch technical vari-
ation (see the distributions of raw data in Figure 5). Thus,
data correction and adjustment are absolutely necessary
to ensure a reliable longitudinal analysis. Considering
that only KORA FF4 and F4 (Remeasured) used the same
kinds of manufacturer-provided QC samples (QC1, QC2
and QC3), but all three datasets provided the same kind
of pooled EDTA-plasma QC sample (QC, five per plate),
we use QC to correct the datasets of three time-points.
And KORA F4 (Original) will be adjusted using the 288
repeated measurements of F4 (Remeasured).

We use KORA FF4 as a reference dataset to which
the other datasets are aligned for inter-batch correction.
Intra-batch technical variation within the data from 29
plates of KORA FF4 is first eliminated with TIGER. When
normalizing KORA S4, the target values (ȳ in Eq. 9) are
calculated from KORA FF4 so that TIGER attempts to
remove the inter-batch technical variation by minimiz-
ing the discrepancy between KORA S4 and FF4. TIGER
by default eliminates the technical variation within the

input dataset, in which the target values are automati-
cally computed using the input dataset itself. With the
help of TIGER’s flexibility functionality, the target values
can be calculated from a reference dataset and then
passed to the programme as an argument. This will
enable TIGER to align the input dataset with the refer-
ence dataset (see Supplementary File–R Package Man-
ual).

The adjustment of dataset KORA F4 consists of two
steps. KORA F4 (Remeasured) was generated from four
plates of the p180 kit. Data correction is first performed
through the method we used for KORA S4 to combat
intra- and inter-batches, such that the values in KORA F4
(Remeasured) are aligned to FF4. In the second step, the
samples with repeated measurements in KORA F4 (Orig-
inal) are used as training samples for cross-kit adjust-
ment. In a broad sense, the noises introduced by different
kits can be categorized as inter-batch technical variation,
but the noises are further amplified due to the change of
analytical kit. In our experiment, we regard each of these
288 subject samples as a QC sample. And the remeasured
data are used as target values to minimize the difference
between KORA F4 (Remeasured) and F4 (Original). After
the cross-kit adjustment, dataset KORA F4 (Original) is
comparable to FF4.

To evaluate the quality of the adjusted data, RSD of
QC1, QC2 and QC3 are calculated on raw F4 (Original)
and adjusted F4 (Original). After TIGER’s adjustment, the
median of RSD calculated on QC1, QC2 and QC3 reduce
from 0.1225, 0.1251 and 0.1070 to 0.0967, 0.0953 and
0.0914, respectively. Compared with the data dispersion
indicated by RSD, we are more concerned about how
close the adjusted original remeasured data are to
the normalized remeasured data. Because QC1, QC2
and QC3 are different in KORA F4 (Original) and F4
(Remeasured), we cannot directly compute MAPE on
these manufacturer-provided QC samples. To investigate
how well TIGER performs on cross-kit adjustment, 4-fold
stratified CV is conducted using the 288 samples with
remeasurements in normalized KORA F4 (Remeasured)
and F4 (Original). MAPE is computed on each validation
fold to quantify the difference between the adjusted
original data and the normalized remeasured data. In
KORA F4 (Original), the 288 original measured samples
were spread across 38 plates. For each plate, we randomly
and equally split the samples into four groups. Groups
of each plate are combined together to construct four
folds for stratified CV. After TIGER’s adjustment, the
median and mean of MAPE were reduced by 16.81% (from
0.2501 to 0.0814) and 19.29% (from 0.2958 to 0.1029),
respectively, which indicates that TIGER is effective for
cross-kit adjustment.

Analysis for ageing Trends
We further use raw and TIGER normalized datasets
of KORA S4, F4 and FF4 to investigate age-associated
metabolites. To weaken the influence of diseases and
medical treatments on metabolite concentration, subject
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Figure 4. PCA plots of P20 Negative (a) and Amide (b) dataset. QC samples and subject samples are represented by bigger solid points and smaller
partially transparent dots. Samples from different batches, marked with different colours, are expected to mix together after being normalized by a
method. (a) For P20 Negative dataset, the QC samples are tightly clustered after being processed by TIGER, and the subject samples from different
batches are also mixed together. By contrast, NF still has evident batch effects in both QC and subject samples, which proves that NF underfits the
data. The patterns of QC samples in the panels of LOESS, SERRF and WaveICA demonstrate noticeable intensity drifts and noises remain in the data
they corrected. (b) As to the Amide dataset, NF still underfits the data, while LOESS overfits the data. In the panel of LOESS, it can be noted that the
QC samples cluster in one group, but subject samples of different batches still gather in their respective communities. This overfitting problem leads
to a deceptive good performance of LOESS in Figure 3. TIGER, SERRF and WaveICA yield better results than LOESS and NF, and the PCA plots show that
TIGER achieves more reliable results and a better balance between RSD and MAPE than its competitors.
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Figure 5. The distribution of the metabolite concentration of C14:1 (Tetradecenoylcarnitine) from the KORA-derived datasets. N denotes the number of
samples. The box of S4 in the first plot is higher than that of both F4 (Remeasured) and FF4 for the identical QC samples. The second plot shows that
the values of F4 (Original) are higher than the values in F4 (Remeasured). The last two plots show the concentration of C14:1 of S4, F4 and FF4 for the
374 individuals with and without TIGER’s normalization. The raw values of subject samples theoretically suffer from similar technical variations to the
raw values of QC and remeasured samples.

samples of KORA are screened according to their
corresponding phenotype data. For each time-point, we
exclude individuals with obesity (body mass index, BMI,
higher than 35 kg/m2), or with hypertension (systolic
blood pressure higher than 160 mmHg), or with type 1 or
type 2 diabetes. Non-fasting samples are also removed.
The remaining data of three time-points consist of
374 individuals. The average age of these participants
from KORA S4, F4 and FF4 were 61.75, 68.75 and 75.75
years old. The mean values of BMI, fasting glucose and
haemoglobin A1c (HbA1c) were relatively stable during
the 14 years investigation, whereas the mean of systolic
blood pressure decreased (Table S4).

We use a linear mixed-effects model [50] with
a random intercept to investigate the relationships
between each of the 103 metabolites and age (Table S5).
Overall, age is found to be significantly associated with 73
metabolites (P-value <4.85e-04 = 0.05/103). By contrast,
age is associated with 89 metabolites in the raw data.
We notice 38 metabolites show the different significance
of age associations in raw and TIGER normalized data.
Figure 5 shows the concentration distribution of metabo-
lite C14:1 (Tetradecenoylcarnitine). Estimated on raw
data, the regression coefficient of C14:1 ∼ age is -5.68e-04
(P-value = 0.0038). When fitting the model using the data
processed by TIGER, the regression coefficient goes to
3.16e-03 (P-value = 3.04e-91). The positive correlation
found in C14:1 is consistent with recent longitudinal
research, conducted on cohort Wisconsin Registry for
Alzheimer’s Prevention (WRAP), which demonstrates
that C14:1 and C18:1 (Octadecenoylcarnitine) are among
the most age-dependent metabolites [51]. Another study
[52] also shows that many fatty acids, including C14:1
and C18:1, are significantly increased in midlife. The
positive correlation between C14:1 and age can only
be revealed in the corrected data, which confirms
TIGER’s effectiveness in technical variation removal.
We also notice the positive correlation between age and
metabolite C18:1. Fitting the models with raw and TIGER

corrected data, the regression coefficients of C18:1 ∼ age
are 2.45e-3 (P-value = 8.13e-53) and 3.14e-3 (P-value =
5.81e-90), respectively. This result implies TIGER does
not impair true biological variations within the data.

Using TIGER’s dynamic website, readers can interac-
tively examine the associations between age and the con-
centrations of different metabolites. The ratio and sum
of the concentrations of multiple metabolites are also
supported to maximize the availability of our website.

Discussion
In this study, we developed TIGER, a reliable method for
metabolomics data normalization powered by an adapt-
able ensemble learning architecture. Evaluated with tar-
geted and untargeted metabolomics datasets, TIGER out-
performs four widely used methods (NF, LOESS, SERRF
and WaveICA) on both intra- and inter-batch technical
variation removal. A case study is performed to illus-
trate how TIGER improves the detection of true ageing-
associated metabolites in a longitudinal analysis.

For many machine learning tasks, models are trained
and fine-tuned on training sets which can be regarded
as representative of the unseen examples. And more
and more advanced machine learning models have been
developed to capture the complex but subtle structure
hidden within the data. However, a highly sophisticated
model may not be robust enough for a dataset with
limited sample size or a large quantity of noises, which is
often the case in the bioinformatics field. To tackle these
issues, an ensemble learning architecture was devised
in this study. Instead of turning a weak learner into a
strong one or searching for a specific hyperparameter
combination that achieves the lowest training error, the
architecture improves a model’s robustness to noises
and mitigates the risk of overfitting by considering the
output from multiple learners, though some of them
may yield mediocre outcomes. The main idea underlying
the proposed architecture is that even weak- performing

D
ow

nloaded from
 https://academ

ic.oup.com
/bib/advance-article/doi/10.1093/bib/bbab535/6492643 by G

SF Zentralbibliothek user on 08 February 2022



12 | Han et al.

base models may help lower the potential variation and
contribute information to the ensemble model, which
could theoretically outperform a fine-tuned individual
model.

TIGER selects RF, an algorithm with moderate com-
plexity, to train its base models. Models trained with
high complexity algorithms, such as XGB, can capture
not only patterns of technical variation but also random
noises in the training set, thus may not generalize well
on the unseen examples which greatly differs from the
training data. A model with low complexity, such as k-NN,
is less prone to overfit the training set, but, on the other
hand, has limited hyperparameters, which means it only
has limited base models to improve accuracy. TIGER by
default only selects 5 to 10 highly correlated variables
to build ensemble models. We additionally evaluated the
impact of different variable numbers on TIGER’s perfor-
mance using the KORA FF4 dataset (Table S6). In the most
extreme scenario, TIGER is able to perform normalization
with only one available variable and obtain a median of
RSD of 0.0570 (QC2) and a median of MAPE of 0.0581
(QC2). In our evaluation, only one type of QC sample
(pooled EDTA-plasma) was used as training data, but we
expect the performance can be further boosted if the
training set can be constructed with additional types
of QC samples. This helps the meta model compute
more reliable weights to ensure a better generalization
ability. The application scope of this ensemble learning
architecture is not limited to remove unwanted technical
variation and systematic errors in metabolomics data.
Its remarkable improvements in generalization ability
and satisfactory performance on noisy data may play a
positive role in other data modelling tasks.

In addition to RSD, we also used MAPE as well as PCA
plots to evaluate the performance of different methods,
as RSD alone may not be sufficient to assess one method
when raw data are expected to be as close as possible to
the corresponding target values. In addition, using RSD
alone may result in over-optimistic results and the prob-
lem of overcorrection, in which case biological variations
are also removed during the normalization. In the case
study, MAPE was our primary criterion for quantifying
TIGER’s performance, as (1) we expect to evaluate how
much the adjusted KORA F4 (Original) data differ from
F4 (Remeasured) data; (2) the repeated subject samples
involve both technical variation and their own biological
variation–RSD is no longer applicable. In this scenario,
MAPE is more practical than RSD for a reliable evaluation.

We further noticed though LOESS and WaveICA
produced results with high error ratios of MAPE,
they displayed different patterns with the increase of
technical variation. The MAPE of LOESS was higher
than that of WaveICA on KORA FF4, the most stable
dataset in this study, but when evaluated on the Amide
dataset, LOESS already surpassed WaveICA in terms
of MAPE. In fact, LOESS achieved the most balanced
result among the five methods, if we only consider the
QC samples (Figure 3). But when focusing on subject

samples, we found the normalized data still showed
strong batch effects (Figure 4). The problem is that the
LOESS-based model captures data patterns that only
exist in QC samples and only partially reflect the whole
datasets, thus yielding unfavourable results for subject
samples. Although QC samples can be split into training
(80%) and test sets (20%), the evaluation still entails
the risk of producing over-optimistic results. Therefore,
the evaluation in this scenario can be deceptive and
should be viewed with caution. LOESS overfitted the
data though the QC samples in Amide are the mix of the
aliquots of all subject samples. The method may yield
worse results if the training samples are more distinct
from subject samples. To avoid potential bias, we highly
recommend using different kinds of evaluation metrics
and methods, including, but not limited to, RSD, MAPE
and PCA, to perform data evaluation. Furthermore, it is
also beneficial to introduce several kinds of QC samples
into the acquisition process of metabolomics data. In
the evaluation of the KORA FF4, identical pooled EDTA-
plasma QC samples (five on each plate) were used to train
QC-based methods, while manufacturer-provided QC
plasma samples (QC1, QC2 and QC3) and subject serum
samples were used to construct the test set and evaluate
performance. The overall data distribution of the QC can
greatly differ from the distributions of QC1, QC2 and QC3.
Hence, a method with good results on QC1, QC2 and QC3
will theoretically generalize robustly on subject samples.
Although plasma and serum metabolite concentration
profiles are different, as we have previously shown with
377 KORA individuals, they are also highly correlated
[53]. The strong performance of TIGER in the evaluation
of the KORA dataset demonstrates that TIGER is effective
in reducing technical variation, even if the training data
are not fully representative of the test data.

Another observation is that as the technical varia-
tion increases, the performance of NF becomes weaker.
This linear regression-based method was only inferior
to TIGER in the evaluation of KORA FF4, but it was
surpassed by LOESS, SERRF and WaveICA on P20 Negative
and Amide. We speculated that this might result from the
ineptitude of the linear regression in capturing complex
data patterns. The raw data of KORA FF4 used in this
study are already of quite high quality, thus NF is able
to further improve the data quality [54]. When being
applied to a dataset with a large quantity of noises, such
as Amide, NF underfits the data and fails to yield satis-
factory results. We also noticed that SERRF, contrasting
with NF, gradually outperformed LOESS and WaveICA,
with the increase of technical variation. The favourable
performances achieved by TIGER and SERRF may be
partly owing to the robustness of the RF algorithm that
underlies the methods. The ensemble learning architec-
ture further improved TIGER’s stability and effectiveness,
thus achieving better overall performances than SERRF
across the three datasets.

Data acquisition of a large data cohort often spans
many years and utilizes different analytical platforms,
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which makes data inevitably contain various unwanted
noises. In the case study, TIGER was applied to a
longitudinal analysis which involved three time-points
data measured with two kits (p150 and p180). We
demonstrated that TIGER can considerably reduce intra-
and inter-batch/plate effects introduced by different
kits and improve the homogeneity and comparability
of data, which helps identify true candidate biomarkers
of disease-associated metabolites. Previous studies have
shown that the concentrations of many metabolites,
including C14:1 and C18:1, are positively correlated with
age [37, 51, 52, 55]. Our case study shows that many other
metabolites are also associated with age (see Table S5
and interactive website). Many associations can only be
revealed after removing the potential technical variation.
It would be of great significance to perform more in-
depth investigations and replicate these novel findings
with further studies.

Aiming to offer practical and customizable functions
for technical variation elimination, TIGER can also be
used to eliminate the systematic errors introduced by
different analytical kits. To our knowledge, TIGER is the
first ready-to-use tool that supports cross-kit adjust-
ment. Cross-kit adjustment in this study was evaluated
on the kits of two different versions. The performance of
adjusting data from two completely different kits is not
tested. Adjusting data from entirely distinct sources is
not recommended, and the results may be misleading.
TIGER makes no assumption about data source and is
theoretically applicable to numeric data measured with
various techniques. But in this study, TIGER was only
evaluated with data from LC-MS analysis.

In terms of computational speed, as one dataset gen-
erally has only a small number of QC samples for model
training, the limited increase of samples may not make
a big impact on the complexity of TIGER. Additionally,
because TIGER by default only selects 5–10 highly cor-
related variables to train each model, the increase of
variables will not increase the complexity of each ensem-
ble model. However, the running time can grow with
the number of variables and batches as TIGER builds
different ensemble models for different metabolites and
batches. For a dataset with D variables and B batches or
plates, TIGER needs to train D×B models to normalize the
whole dataset. Evaluated on a general hardware environ-
ment configured with a processor Intel

®
Core™ i9-10885,

32 GB memory and 64-bit Windows 10 OS, TIGER took 2
min 28.85 s, 2 min 21.75 s and 57 min 30.46 s to process
datasets KORA FF4 (103 variables, 22 plates), P20 Negative
(268 variables, four batches) and Amide (6402 variables,
four batches) in parallel with 8 cores. In this case, TIGER
takes around 140 s to build 1000 models when 20–30
QC samples per batch are available for model training.
We also evaluated the running time of TIGER under
different numbers of highly correlated variables (Table
S6). The result shows that the running time increases
approximately linearly with the number of variables.
TIGER trades model complexity for a robust prediction

and requires more processing time than other competing
methods, but the increased cost is still acceptable.

In sum, TIGER has the following merits:

(i) TIGER integrates the RF algorithm into an innovative
ensemble learning architecture. Benefiting from this
advanced architecture, TIGER is robust to outliers,
free from model tuning and less likely to be affected
by specific hyperparameters. Although many QC-
based methods require at least 10 QC samples per
batch to perform reliable normalization, TIGER in
our evaluation achieved strong performance with
only five QC samples. The good generalization ability
makes TIGER also suitable for small-scale datasets.

(ii) TIGER is highly reliable and robust. As shown with
multiple criteria (RSD, MAPE and PCA) and evaluated
using three different kinds of metabolite datasets,
the overall performance of TIGER surpasses four
popular methods, including NF, LOESS, SERRF and
WaveICA. TIGER is also less prone to underfit or
overfit the data.

(iii) TIGER is remarkably flexible and versatile. TIGER
supports targeted and untargeted metabolomics
data and is competent to perform intra- and
inter-batch technical variation removal as well
as cross-kit adjustment to ensure data obtained
from different analytical assays can be effectively
combined and compared. Moreover, unlike many
existing tools that only support one kind of QC
sample, TIGER takes advantage of all available QC
samples to build ensemble models, which helps the
model generalize well on unseen examples.

(iv) TIGER is readily accessible and convenient to use.
Released as an R package, TIGER is compatible
with almost all widely used operating systems (OS),
including Windows, UNIX/Linux and macOS. TIGER
is accepted by Comprehensive R Archive Network
(CRAN) and can be installed easily in R. In contrast
to many tools that rely on users to manually perform
parameter optimization, which requires users to be
familiar with the algorithms and related arguments,
TIGER can effectively process the datasets with
its default set-up. TIGER also supports parallel
computing to make full use of computing resources
and accelerate the process.

Availability
Data
KORA FF4’s QC data are included in TIGER’s R package.
The cohort data that support the findings of this
study are operated by Helmholtz Zentrum München
and available via KORA platform https://www.helmho
ltz-muenchen.de/en/kora/index.html upon reasonable
request.

P20 Negative dataset, provided by SERRF as a demo
dataset, is available at https://slfan2013.github.io/SE
RRF-online/. The dataset is downloaded and used with
the consent of the authors.
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Amide dataset is included in WaveICA’s R package
and available at https://github.com/dengkuistat/WaveI
CA. The dataset was downloaded and used in compliance
with the copyright policy of the publisher.

R Package
The R implementation of TIGER, TIGERr, is a free R pack-
age under the GNU General Public Licence. The package
is developed with the help of dependencies ppcor [33],
randomForest [40], caret [56] and pbapply [57]. The doc-
umentation is generated with roxygen2 [58].

The package has been included in CRAN. Users can
simply install TIGER in R via command install.

packages(”TIGERr”), and an appropriate version, as
well as dependencies, will be installed automatically.
The package is also available at CRAN (https://CRAN.R-
project.org/package=TIGERr) and GitHub (https://github.
com/HAN-Siyu/TIGER).

Dynamic Website
The dynamic website (accessible at https://han-siyu.gi
thub.io/TIGER_web/) is a shiny-based application [59]
which supports interactive figures for the detailed results
of KORA-derived datasets. Packages including shinydash-
board [60], flexdashboard [61], ggplot2 [62], ggsci [63] and
plotly [64] are employed in the background to control
layouts, output figures and enable interactive features.

The dynamic website contains two function modules
for the results of method evaluation and longitudinal
analysis, respectively. Users can enter the name of the
metabolite of interest to compare the results of different
methods and check the distribution of its concentration.
Relevant statistics will be displayed when the cursor
hovers over the plots.

Key Points

• An ensemble learning architecture is devel-
oped to enhance model performance on noisy
metabolomics datasets. The architecture, com-
prised of multiple base models and one meta
model, can be adapted to a wide range of
machine learning algorithms and expanded to
a scope beyond the correction of metabolomics
data.

• Based on our ensemble learning architecture,
we developed TIGER as a novel algorithm for
eliminating technical variation in metabolomics
data. Benchmarked against several widely used
methods, TIGER shows the most robust and
reliable performance on targeted and untar-
geted metabolomics datasets for eliminating
intra- and inter-batch technical variation. TIGER
also demonstrates strong performance on cross-
kit adjustment, which greatly improves data
reproducibility. It enables the combination and
comparison of experimental data from different

analytical kits to reliably identify candidate
metabolite biomarkers of interest.

• Using TIGER normalized data, many age-
associated metabolites are revealed in our
case study. Important patterns only appear after
data correction, which proves that the removal of
systematic errors is crucial for the longitudinal
analysis of metabolomics data.

• TIGER is released as an R package and can be
run on multiple OS platforms. Our dynamic web-
site allows users to compare the performance of
different methods and browse the associations
between metabolite concentrations and age.

• Various critical metrics and methods, includ-
ing, but not limited to, RSD, MAPE and PCA,
should be considered to evaluate the normalized
metabolomics data to ensure a reliable result and
avoid the risks of overfitting and over-correction.
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