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Abstract

Background.  The  association  between  PM2.5  and  mortality  widely  differs  from  country-to-

country  as  well  as  within  countries.  Differences  in  PM2.5 composition  can  play  a  role  in

determining differential risks, but there is little evidence about which components have larger

impacts on mortality.

Objectives.  To  assess  the  role  of  the  PM2.5 composition  on  its  associated  risk  and  identify

potentially harmful components through the statistical framework of compositional data analysis.

Methods. We applied a two-stage analysis on data collected from 202 locations in 18 countries.

In the first stage, a relative risk for mortality associated with PM2.5 was estimated for each city

through a time series regression analysis. The estimates were then pooled in a second-stage meta-

regression model that included city-specific average PM2.5 composition as well as meta-predictors

derived from socio-economic and large-scale environmental indicators. The PM2.5 components

were  represented  by  sulfate  (SO4
2-),  nitrate  (NO3

-),  ammonium  (NH4
+),  black  carbon  (BC),

organic carbon (OC), mineral dust (DUST), and sea salt (SS). They were included in the meta-

regression model through an additive log-ratio transformation to enforce a sum-to-one constraint.

Results.  We found strong evidence that  mortality  risk varies depending on the proportion of

some PM2.5 components. Specifically, an increase of relative levels of NH4
+ from 0 to 20% was

associated with a RR of PM2.5 on mortality increase from 1.005 to 1.009. Conversely, locations

with higher levels of NO3
- or DUST presented RR decrease from 1.008 to 1.004 and from 1.004

to 1.000 at their highest proportion respectively. No change in risk was found for variations of the
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proportion of BC, OC, and SS. Differences in composition explained a substantial part of the

heterogeneity in PM2.5 risk.

Discussion. This study indicates that mortality risks associated with PM2.5 are enhanced by a

higher proportion of ammonium in the composition of the particulate, while the risk decreases in

the presence of large concentrations of nitrate and dust. These findings can contribute to identify

more dangerous emission sources and to implement  more effective policies  to prevent health

risks related to air pollution.

4

86

87

88

89

90

91

92

7
8



Introduction  

Particulate matter is a major environmental risk factor to which the Global Burden of Diseases

attributes between 4.1 and 5 million deaths in 2017  (Stanaway et al. 2018). In particular, the

short-term impact of fine particulate matter (PM2.5) on mortality has been well-studied and it is

now firmly established (Atkinson et al. 2014; Rückerl et al. 2011). However, some heterogeneity

is observed on the health impacts of air pollution,  both between  (Liu et al. 2019) and within

countries (Chen et al. 2017; Franklin et al. 2007). 

A potential factor explaining such differences in health risks across populations is the variation in

the chemical composition of PM2.5. Particulate matter is a complex chemical mixture of various

liquid or solid components varying in size, chemical composition, and other factors (Adams et al.

2015; Kelly and Fussell 2012). Some components are naturally present in the atmosphere and

others  emanate  from anthropogenic  activities,  either  as  primary  emissions  or  after  chemical

reactions  in the atmosphere.  The proportions  of the components  wildly vary across locations

(McDuffie et al. 2020), and some may be more harmful than others.

Among the PM2.5 components, previous studies have focused on black carbon/elemental carbon

(BC/EC, thereafter only called BC), with systematic reviews suggesting a more important risk on

all-cause mortality associated with BC alone when compared to the whole PM2.5 concentration,

both for short and long-term exposure (Janssen et al. 2011; Li et al. 2016). However, the review

of Luben and colleagues  (2017) found no particular impact on cardiovascular diseases for BC

compared to PM2.5. Sulfate (SO4
2-) has also emerged as a potentially harmful component both in

long-term cohort studies (Kioumourtzoglou et al. 2015; Ostro et al. 2010) and as a PM2.5 short-

term effect modifier  (Franklin et  al.  2008). The larger group of inorganic secondary aerosols
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(including SO4
2-) has also been found as harmful in a recent cohort study in Denmark (Hvidtfeldt

et al. 2019). Large scale studies and meta-analyses also suggest effects from specific metallic

components such as nickel and vanadium, especially on cardiovascular and respiratory mortality

(Bell  et  al.  2009;  Yang  et  al.  2019).  Nonetheless,  the  wide  ranges  of  components  and

methodologies considered in these studies yield largely inconsistent results, in part due to studies

being conducted in single locations or countries and in part by focusing on single components

models  (Achilleos et al. 2017). Explaining these differential risks is critical for developing and

implementing effective actions to reduce health burdens related to air pollution.

A rigorous analysis of these associations requires disentangling the contributions of various PM2.5

elements,  a  step  that  poses  important  methodological  challenges.  Individual  components  are

highly correlated to each other, as well as to total PM2.5, and components-specific estimates from

separate models are likely to be affected by confounding from other components. Controlling for

these biases  is  no simple  matter,  mainly  due to  the nature  of  such data,  i.e.  the  sum-to-one

constraint of the composition (Butler 1979; Mostofsky et al. 2012). To address statistical issues

posed by such constraint, Aitchison  (1986) and references therein developed the coherent and

elegant  theory  of  compositional  data  analysis.  This  theory  led  to  the  adoption  of  logratio

transforms,  which  can  then  be  used  in  standard  statistical  methods,  including  regression

(Aitchison and Bacon-Shone 1984; Hron et al. 2012). However, this methodology has been rarely

used in epidemiological analyses on the health effects of PM2.5 components. To the best of our

knowledge, the sole exception is the study by Crouse and colleagues  (2016), although without

specifically referring to the statistical theory of Aitchison. 

The  objective  of  the  present  study  is  to  identify  and  compare  the  all-cause  mortality  risks

associated  with  constituents  of  PM2.5 through  the  application  of  compositional  data  analysis
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methods,  using  a  large  international  dataset  gathered  within  the  Multi-Country  Multi-City

Collaborative Research Network (MCC).

Methods

Data

Data include daily time series of all-cause mortality,  PM2.5 concentration,  and temperature,  as

well as annual PM2.5 composition and socio-economic indicators for 202 locations (exclusively

urban areas) belonging to 18 countries included in the MCC dataset. This dataset, including the

derivation of city-specific PM2.5 series, is well described in Liu et al.  (2019). Cities included in

the present study must have at least one common year of record for each of the variables used in

the study. Daily time series for the selected cities include record lengths spanning one to 18

years,  with  the  earliest  being  1999 and the  latest  2017 to  roughly  match  the  availability  of

composition data. We assume the association between PM2.5 and mortality did not significantly

change in the last 20 years, allowing us to extend first-stage time-series length compared to the

availability of composition data, and thus obtain more accurate RR estimates. This assumption

has been checked with graphical tools. Table 1 provides details about data for each represented

country. 

To control for confounding from location-specific socio-economic and environmental indicators

potentially correlated with specific composition patterns, we collected the proportion of people

aged 65 and above in 2000, the average of gross domestic product per capita (GPD) between

2001 and 2010, average poverty rate after taxes and transfers between 2009 and 2014, as well as

from  the  Organisation  for  Economic  Co-operation  and  Development  (OECD)  Regional  and

Metropolitan Database  (Maraut et al.  2008; Sera et al.  2019b). In addition,  we consider total
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built-up area in 2000 and 2015, and average greenness estimated for 2000 and 2014, gathered

from the GHS Urban Centre Database (Florczyk et al. 2019). Details are given in Supplemental

Material A (Table S1).

PM2.5 composition

We extracted  PM2.5 composition  estimates  for  all  MCC cities  from the Dalhousie  University

Atmospheric  Composition  Analysis  Group  website  (http://fizz.phys.dal.ca/~atmos/martin/?

page_id=140). These estimates are available annually between 2003 and 2017 on a grid of 1km

by 1km. To attribute a value to a city, we extract and average all grid points on a buffer of 10 km

around the city reference location. 

Estimates of PM2.5 concentration are obtained via multiple satellite-based retrievals of aerosol

optical depth in combination with the GEOS-Chem Chemical Transport Model, and enhanced

through statistical incorporation of ground-based observations, as described in van Donkelaar et

al.  (2019).  This  yields  partitioned  data  of  seven  components  that  are  sulfate  (SO4
2-),  nitrate

(NO3
-), ammonium (NH4

+), the three of them forming the group of secondary inorganic aerosols,

as well as black carbon (BC), organic carbon (OC), mineral dust (DUST) and sea salt (SS). These

components provide a comprehensive classification of the main sources of PM2.5.

SO4
2- and NO3

- are secondary inorganic components that originate from the oxidation of sulphur

and  nitrogen  oxides,  whose  sources  include  fossil  fuel  combustion  (gas  and  oil)  as  well  as

volcanoes. The third secondary inorganic aerosol, NH4
+, originates mainly from fertilizer use and

livestock  (Park  et  al.  2004).  Organic  components,  OC and  BC,  are  emitted  by  all  types  of

combustion, being more associated with residential sources such as biofuel than NO3
- (McDuffie

et al. 2020). In some countries such as Canada and Australia, OC is also associated with wildfires
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(Meng et al. 2019). BC (sometimes called black smoke or elemental carbon) is more related to

transportation  (Bond  et  al.  2004).  DUST mainly  contains  coarser  particles  transported  from

deserts (Hashizume et al. 2020; Stafoggia et al. 2016), but it can also include industrially emitted

particles such as metals and cement (Philip et al. 2017). Finally, SS originates from sea spray and

is thus more prominent in coastal areas (van Donkelaar et al. 2019).

Statistical analysis

The statistical analysis follows a two-stage design, first estimating a relative risk (RR) for PM2.5

at the city level, and then modeling the heterogeneity of these RR in a meta-regression model.

The analysis is entirely performed using the R software version 4.0.3 (R Core Team 2020) with

additional packages  dlnm (Gasparrini 2011),  mixmeta (Sera et al. 2019a),  compositions

(van den Boogaart  and Tolosana-Delgado 2008),  and  zCompositions (Palarea-Albaladejo

and Martín-Fernández 2015).

First-stage modeling

At the city level, we performed a time series analysis with a quasi-Poisson regression model,

following the  specification  of  a  previously  published study  (Liu  et  al.  2019).  Briefly,  PM2.5

entered the model linearly as a 2-day moving average to account for both concurrent and lag-1

delayed effects. We accounted for confounding by temperature by including a natural spline of its

4-day moving average with knots at the 10th, 75th, and 90th percentiles. Finally, the model also

included a factor for day-of-week to account for weekly cycles in mortality and a natural spline

of time with 7 degrees of freedom per year to account for seasonal effects. 
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Second-stage modeling

The second stage consists of a two-level random-effects meta-regression (Sera et al. 2019a) using

the PM2.5 components as meta-predictors. Random effects are added at the city and country level,

allowing to control for confounding due to structural differences at different grouping levels and

spatial  scales.  Besides,  we  accounted  for  potential  confounding  from the  long  list  of  socio-

economic  and large-scale  environmental  variables  described above by including in  the meta-

regression model their first two principal components (PC), which accounted for 58% of this

dataset’s  variance  (Figure  S1  in  Supplemental  Material  A).  The  inclusion  of  the  PM2.5

components to the meta-regression model follows a compositional data approach as described

below.  To  interpret  the  RR at  the  city  level,  we report  the  best  linear  unbiased  predictions

(BLUPs) from the meta-regression model described above (Gasparrini et al. 2012). Finally, we

also checked the residuals to ensure that there is no obvious bias, heteroscedasticity, or departure

from normality (see Supplemental Material B).

We quantified  heterogeneity  between locations  with standard measures of  I 2 and Cochran Q

(Higgins and Thompson 2002). To assess how much effect modification is brought by variation

in  the  components,  these measures  were  estimated  first  from a  meta-analysis  model  without

meta-predictors  (the  “null”  model),  then  from  a  model  with  only  the  PC  of  confounding

indicators,  and  finally  from  the  full  meta-analysis  model  that  includes  the  components.  In

addition,  a Wald test is performed between nested models to assess the reduction in residual

heterogeneity provided by the PM2.5 composition. All the models were fitted through restricted

maximum likelihood (REML).
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Compositional data and logratio transforms

The basic definition of a compositional dataset is a collection of variables  x1,…, xD such that

x j>0∀ j and  ∑
j=1

D

x j=1,  where  D=7 in  the  present  analysis.  Because  of  this  sum-to-one

constraint,  the  components  x j are  necessarily  correlated,  and  the  compositional  data  only

provides  information  about  the relative  variations  of the components  to each other.  This  led

Aitchison to develop the logratio approach of compositional data analysis in a series of papers

(Aitchison 1981, 1982, 1983), to consider quantities  log (x j / xk). A logratio gives information

about the relative proportion of the components x j and xk in a symmetric way. 

The  basic  process  of  compositional  data  analysis  is  to  transform  the  compositional  dataset

x1,…, xD into D−1 new variables through the additive logratio (ALR) transformation:

z j=log( x jxD) (1)

for  j=1 ,…, D−1,  using the  Dt h component  as the baseline  comparison.  This  transformation

allows  removing  the  sum-to-one  constraint  while  retaining  the  relative  information  of  all

components. Classical statistical analyses can then be performed on the z j variables. Note that the

final results are insensitive to the chosen baseline component xD in equation (1) (Aitchison 1986,

chapter 5).

As summary statistics of the PM2.5 composition, we computed the compositional mean of each

country. We thus transformed the data of each year and each city using the ALR of equation (1)

and computed  their  mean by country.  The compositional  mean  was  then  obtained  by back-

transforming  the  mean  of  z j variables  (Aitchison  1982).  As  a  compositional  equivalent  to
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correlations, we also computed the variation matrix of the compositions. The variation matrix

contains at position ( j , k ) the value var (log ( x j/ xk)) which intuitively represents how much the

two components  vary relative  to each other  (Aitchison 1986).  A large variation  value would

roughly mean that the components tend to replace each other.

For  the  second-stage  meta-analysis,  we  first  transformed  the  composition  through  ALR,  we

averaged these ALR by city, and we used the ALR transformed averages as meta-predictors. This

results in the meta-regression model:

log (R Rij)=β0+∑
k=1

D−1

β j log( xijkx ijD )+γ1 PC ij1+γ2PC ij2+ω j+ξ ij+ϵ ij

¿ β0+∑
j=1

D

β j log (x ijk )+C ij

(2)

where βD=−∑
j=1

D−1

β j.  log (R Rij) is the PM2.5 coefficient obtained in the first stage of the analysis

for  city  i of  country  j.  In  the  second line  of  (2),  the term  C ij=γ1 PC ij 1+γ2 PC ij2+ωj+ξ ij+ϵ ij

includes  all  location-level  confounding,  where  PCijm indicate  the  indicators’  principal

components,  ω j and  ξ ij are respectively the country and city-level random effects and ϵ ij is the

residual.  The second representation  in  (2)  shows that  the  coefficients  β1 to  βD sum to  zero

because we deal with a composition,  and that the final results do not depend on the baseline

component xD in the ALR. Using the ALR as in the first representation in (2) is useful for model

fitting since it removes the sum-to-zero constraint of the coefficients.

To interpret the results of the meta-regression model in (2), we predict the expected RR for a

range of values of each component  x j while keeping the sub-composition of other components
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constant under the sum-to-one constraint. For each value of x j between 0 and 1, we set the other

components equal to their mean over the whole dataset, adjusting it to keep their sum to 1. Thus,

only the relative proportion of x j to the other components varies, while the relative proportion of

the other components between them stays constant. In addition, the two principal components of

the socio-economic and environmental indicators are set to zero. The prediction obtained with the

model in (2) is then exponentiated to report it on the RR scale.

The PM2.5 composition dataset contains many zero values (especially SS and DUST) which are

not  allowed  in  the  logratio  analysis  for  obvious  reasons.  We  thus  consider  the  imputation

procedure of Martín-Fernández et al. (2003) that replaces zeros by small values (here equal to 10-

5) and adjusts other components accordingly to keep the sum-to-one constraint as well as the

relative values between components.

Results

Descriptive statistics

Table  1 shows  some  summary  statistics  of  the  mortality  and  pollution  data  aggregated  per

country. The data used for the first stage span around 10 years on average, scattered between

1999 and 2016. A total of more than 15 million deaths occurred overall. Figure 1 shows all the

cities with mean observed PM2.5.  The highest levels of PM2.5 are observed in China, Taiwan,

South-Africa as well as South-America. On the other hand, the lowest PM2.5 levels are observed

in northern countries (i.e. Sweden and Canada) as well as in Australia.

Figure 2 shows the mean PM2.5 composition in each country. Overall, no obvious pattern can be

found in the composition, although some countries show widely variable distributions. The wider
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variability is observed in countries affected by DUST since it can represent a significant part of

PM2.5 one year and be almost absent the next one. Countries particularly impacted are Australia

and Mediterranean  countries  (Greece,  Portugal,  and Spain).  Overall,  the  two most  important

components seem to be SO4
2- and NO3

-, both linked to the burning of fossil fuel. NO3
- is more

represented in European countries except for Mediterranean ones, while SO4
2- is widely present in

hotter countries. OC represents an important part of the composition in Nordic countries since it

is linked to wildfires but also residential wood burning. BC and NH4
+ are overall lower parts of

the PM2.5 composition, and SS is only present in seaside countries, notably Portugal and the UK.

The variation matrix in Figure  3 shows how the components vary in relation to each other. In

particular, DUST varies substantially against other components (except SO4
2-), since it tends to be

a major part of the composition when present. We also observe a large variation between BC and

SS, although this can be an artefact due to SS being present in only two countries that happen to

have low proportions of BC. BC and NO3
- also vary against each other,  which indicates  the

interaction between volatile organic components and secondary inorganic aerosols (Aksoyoglu et

al. 2017).

Second stage city-specific relative risks

The BLUPs of RRs are reported in Figure  1 for each city and range from 0.995 in Valladolid

(Spain) to 1.021 in Sendai (Japan). Predicted RRs are above 1 for 197 cities among the 202 used

in  the  model.  The highest  RRs  are  found in  North-America,  Mexico,  and Japan,  as  well  as

specific locations in Europe such as Switzerland and Greece. In contrast, lower predicted RRs are

found in Europe.
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Supplemental  Material  C provides insight on the location-specific  residuals from the second-

stage  meta-regression.  Their  distribution  indicates  that  the  model  overall  fits  well  European

cities, while residuals are slightly more variable for North-America and Asia. Six outliers can be

seen on the residuals. Three Spanish cities RRs are overestimated by the model (San Sebastian,

Vitoria,  and  Leon).  Indeed,  these  cities  correspond  to  low  first-stage  RRs  despite  elevated

proportions of SO4
2- (above 80%, see Figure S4). The three high residuals correspond to North

American cities (Madison, Halifax, and Abbotsford) and which correspond to particularly high

first-stage RRs despite average compositions.

Second-stage meta-regression interpretation

Predicted PM2.5 RRs within observed ranges of each component are shown in Figure 4. A more

direct comparison of the predicted curves, but without confidence intervals, along with ternary

representations, are shown in Supplemental Material C. The logit form of reported curves stems

from the ALR transformation applied to the components prior to the meta-regression model (see

Equation 2). Results show a significantly positive effect modification of NH4
+, suggesting that the

effect of PM2.5 is  larger  for cities  with a higher relative proportion of NH4
+ levels.  RRs also

increase with SO4
2- although with a wider interval at lower proportions. Conversely, an increase

in the proportion of NO3
- and DUST results in a decrease of the RRs. Surprisingly, the RR curve

is flat for carbonaceous components (BC and OC) meaning that the RR does not seem to be

affected by relative variation in these components. Finally, although a slight decrease is seen, SS

is too rare for inferring specific associations, as demonstrated by the wide confidence intervals.

Note that three of the estimated coefficients used to obtain these predictions (the β j of Equation

(2)) differ substantially from the null value: NH4
+ in a positive direction, while NO3

- and DUST

showing negative effect modification (Figure S7). 

15

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

29
30



Table  2 shows that including the components as meta-predictors significantly reduces residual

heterogeneity in the meta-analysis model. The  Q statistics drops from 473 in the model fitted

using only the socio-economic and environment PC model to 318 in the full model, with an I 2 of

58% and 39%, respectively. A Wald test on these nested models has a p-value of about 0.01,

indicating that the composition explains a large part of the heterogeneity. Table 2 also shows that

the model including only the socio-economic and environment PCs results in almost no added-

value compared to the null model. This is confirmed by the fact that in the full model, the socio-

economic and environment PCs are associated with approximately null coefficients.  All these

criteria concur in providing strong evidence that the heterogeneity in risk to PM2.5 is in large part

explained by its composition. 

Discussion

The main finding of this study is the evidence of a role of ammonium (NH 4
+) in enhancing the

mortality risks of PM2.5. This is a component that has received little attention, compared to others

such as BC, OC, and SO4
2-, although it is one of the three secondary inorganic aerosols. Among

the published studies reviewed by the authors (Bell et al. 2009; Chen et al. 2020; Franklin et al.

2008; Kioumourtzoglou et al. 2015; Peng et al. 2009; Wang et al. 2014), none of them reported a

significant effect modification of NH4
+. However, in a study on a Canadian cohort, Crouse et al.

(2016) identified NH4
+ as the component with the highest coefficient in a model that included all

components and total PM2.5  concentration. Note that this is the only study we are aware of that

used  a  strategy  similar  to  the  compositional  data  approach  considered  in  this  contribution.

Besides,  few  studies  focusing  on  the  concentration  of  components  rather  than  their  effect

modification found positive associations between mortality and NH4
+ (Huang et al. 2012; Lin et
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al.  2016; Liu and Zhang 2015; Son et  al.  2012),  although the analyses  included many other

components.  In addition,  confounding by total  PM2.5 concentration  is  rarely  accounted  for  in

these studies.

Interestingly, NH4
+ shows low variation with the two other secondary inorganic components (see

Figure 3), indicating that when NH4
+ is high, it is likely that the whole proportion of secondary

inorganic aerosols is important. Also, NH4
+ is the most correlated component with the total PM2.5

mass in our dataset (see Table S2). It has been suggested that ammonia, the main precursor of

NH4
+, is a major driver of PM2.5, at least in some countries  (Air Quality Expert Group 2013;

Pinder et al. 2007; Wu et al. 2016). From a policy point of view, our study suggests that a larger

focus on ammonia for mitigation strategies may provide important health benefits.

The other important result of our analysis is the observed reduction in RRs for high proportions

of nitrate (NO3
-) in the composition of PM2.5. Indeed, NO3

- represents a large part of the total

concentration in northern European countries (Estonia, Finland, Germany, Switzerland, Sweden,

and the UK, see Figure 2), which are areas displaying non-significant associations between PM2.5

and mortality (Liu et al. 2019). NO3
- is a secondary product of nitrogen oxides emissions, emitted

by gas and oil burning, and is thus mainly related to traffic. Note that in the data used here, it

presents an important compositional variation value with BC (see Figure 3), meaning that when it

increases,  NO3
- tends  to  replace  BC.  Note  that  both  are  usually  considered  traffic-related

components, NO3
- being mainly related to oil and gas combustion while BC also includes all

biofuel  combustion  (McDuffie  et  al.  2020).  Therefore,  related  to  traffic  policies,  mitigation

strategies focusing more heavily on BC emissions compared to NO3
- precursors may prove more

effective from a public health point of view.
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The model  assessments  suggest that  the results  reported above are robust  to confounding by

either  socio-economic  indicators  or  specific  regional  effects.  Indeed,  the  socio-economic  and

environmental PCs added to the second-stage regression model contribute to explain a negligible

part of the heterogeneity observed between cities (as reported in Table 2). The residual analysis

does not show obvious patterns that may have been missed by the model either, since no regional

or component-specific pattern emerges. 

The regression results  rely on the ALR proposed by Aitchison  (1986) for compositional data

analysis. However, note that other types of logratio transformation exist, such as centered logratio

(CLR) and isometric  logratio  (ILR,  Egozcue et  al.  2003).  CLR does  not  remove the closure

constraint of compositional data and it is, therefore, difficult to use in a regression analysis. ILR

enjoys the mathematical advantages of both ALR and CLR and it is popular  (e.g. Mert et al.

2016), but it is less straightforward to use in regression analysis due to redundancy of information

between the logratio variables. Hron and colleagues  (2012) propose a procedure for regression

with ILR that involves performing a separate regression model for each component, a procedure

that gained popularity in recent years (Giancristofaro et al. 2020; Muller et al. 2018). However, it

can be shown that this procedure is equivalent to the one used here, with identical coefficient

estimates up to a scaling factor, while being less convenient than the approach considered here

because of the requirement of multiple model fitting.

The strengths of the study lie in both the data used and the methods applied. It takes advantage of

a large international dataset from the MCC network to evaluate how PM2.5 composition affects its

association  with  all-cause  mortality.  A  wide  heterogeneity  in  the  composition  is  observed

between locations, allowing the comparison of different compositional patterns. In addition, the

study uses state-of-the-art statistical methods, including the recently proposed mixed-effect meta-
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analysis two-stage framework  (Sera et al. 2019a) and compositional data analysis. The mixed-

effect framework allows considering several levels of heterogeneity to the meta-analysis, which

are country and city level here. This allows capturing heterogeneity at both levels, for instance

related  to  differential  country-wide  and  city-specific  policies,  as  well  as  climatic  or

environmental conditions that may modify the association between PM2.5 and all-cause mortality.

Compositional  data  analysis  provides  a  rigorous  framework  to  analyse  the  role  of  different

constituents of PM2.5. Such data structures are prone to spurious results and misinterpretations if

not analysed properly, as already observed by Pearson (1897). To the best of our knowledge, this

study is the first to consider compositional data approaches to evaluate the effect modification of

PM2.5 composition.

Although the wide range of locations  available  is  a strength of the study, it  comes with the

limitation that the measurement of total PM2.5 differs across locations. A part of this uncertainty is

nonetheless  captured  by  the  random  effect  on  countries  added  to  the  model.  However,  the

composition data we used are derived from remote sensing rather than station measurement. This

provides a consistent measure of the compositions across locations. A side effect is that the sum

of components does not always exactly add to the mean annual measured PM2.5, due to complex

interactions between diverse emission sources as well as uncertainties in the models generating

the data. However, this difference is usually negligible (van Donkelaar et al. 2019). 

The analysis performed here relies on the underlying assumption that the composition of PM2.5

and its association with mortality have stayed roughly constant during the past 20 years. Figure 2

suggests that it is a reasonable assumption with few exceptions (UK and Greece). A potential

extension of our approach would be to account for temporal differences, both as a long-term

trend and as a seasonal pattern by using monthly data. However, this would require longer time-
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series than what is available for many countries in the MCC dataset,  and it poses non-trivial

methodological problems. This extension can be the topic of future research studies. 

An important limitation related to compositional data analysis is the high number of zero values

in the compositional dataset, especially for DUST and SS. It is recognized that the presence of

zero values is an issue in compositional data analysis, and ad-hoc methods have been used to deal

with it (Martín-Fernández et al. 2012). 

The main message of the present paper is that PM2.5 composition plays a significant role in the

observed heterogeneity of mortality risk linked to air pollution and that it necessitates appropriate

analytical methods. We hope that the present study will encourage researchers to make use of

compositional data analysis tools in future studies. Surprisingly, we found that the most harmful

component  may  be  ammonium,  while  the  widely  studied  black  carbon  and  organic  carbon

components were found to have no impact on the health effects of PM2.5. At the same time, a

significant decrease in the health risk was found for higher proportions of nitrates. These results

may suggest that specific action aimed at ammonia precursors, including the agricultural sector,

as well as decreasing the part of BC compared to nitrates precursors in traffic-related emissions

may prove effective in reducing the health impacts of air pollution.
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Tables

Table 1: Description of first-stage data aggregated per country

Country Cities Data period* Total mortality
Mean PM2.5 (10 – 90 percentiles)

in μg/m3

Australia 3 2000-2009 388 122 7.0 (3.2 – 11.9)
Canada 18 1999-2015 1 767 732 8.1 (2.6 – 15.2)
Chile 3 2008-2014 265 084 34.2 (8.7 – 64.7)
China 3 2013-2015 248 716 61.2 (19.9 – 120.4)
Estonia 1 2008-2015 8 226 9.6 (2.1 – 19.4)
Finland 1 1999-2014 117 610 16.8 (4.8 – 34.4)
Germany 11 2004-2015 1 051 813 15.4 (5.6 - 29.0)
Greece 1 2007-2010 118 034 21.9 (11.5 – 34.0)
Japan 35 2011-2015 1 292 348 14.3 (5.5 – 25.5)
Mexico 3 2003-2012 1 148 573 27.0 (14.0 – 41.3)
Portugal 1 2004-2018 315 615 12.5 (4.9 – 23.2)
South Africa 1 2004-2013 322 999 37.4 (16.6 - 64.0)
Spain 12 2009-2013 229 992 11.6 (4.9 - 20.1)
Sweden 1 2001-2010 90 670 8.2 (3.6 - 14.4)
Switzerland 4 1999-2013 128 779 19.3 (6.7 - 35.8)
Taiwan 2 2007-2014 369 048 30.5 (13.8 - 51.5)
UK 24 1999-2016 1 556 506 12.3 (4.8 - 23.3)
USA 78 1999-2006 5 251 542 13.1 (5.1 - 23.5)

* For the first stage only. It may slightly vary within countries because of missing values.

Table 2: Measures of residual heterogeneity for nested fixed-effects specifications. 

Cochran Q I2 (%) Wald statistic* p-value*
Full model 318.3 39.4 16.7 0.0103
Only indicator PC 473.5 58.0 0.4 0.8111
No fixed effect 488.2 58.8 - -

* Wald statistic and associated p-value test nested hypotheses compared to the model on the line
below.
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Figures

Figure 1: Locations used in the study with their mean PM2.5 concentration and best linear
unbiased predictions (BLUPs) of relative risks (RRs) for mortality.
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Figure 2: Geometrical mean of the PM2.5 composition in each country.
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Figure  3: Variation matrix of the PM2.5 composition. The upper side colour and circle size
represent  the values displayed on the lower side of  the diagonal.  A large variation value
indicates that components tend to vary against each other.

31

640

641
642
643

644

61
62



Figure 4: Predicted relative risks (RRs) for different values of each component while keeping
the other constituents constant. The predicted RR is associated with an increase of 10μg/m3 in
PM2.5.  Thick  lines  indicate  the  range  of  observed  values  for  each  component,  while  thin
dashed lines indicate extrapolations. Coloured bands represent 95% confidence regions. 
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