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 Methods  for  profiling  RNA  and  protein  expression  in  a  spatially-resolved  manner  are 
 rapidly  evolving,  making  it  possible  to  comprehensively  characterize  cells  and  tissues 
 in  health  and  disease.  To  maximize  the  biological  insights  obtained  using  these 
 techniques,  it  is  critical  to  both  clearly  articulate  the  key  biological  questions  in  spatial 
 analysis  of  tissues  and  to  develop  the  requisite  computational  tools  to  address  them. 
 Developers  of  analytical  tools  need  to  decide  on  the  intrinsic  molecular  features  of 
 each  cell  that  need  to  be  considered  and  how  cell  shape  and  morphological  features 
 are  incorporated  into  the  analysis.  Also,  optimal  ways  to  compare  different  tissue 
 samples  at  various  length  scales  are  still  being  sought.  Here  we  propose  to  group 
 these  biological  problems  and  related  computational  algorithms  into  classes  across 
 length  scales,  thus  characterizing  common  issues  that  need  to  be  addressed  to 
 facilitate further progress in spatial transcriptomics and proteomics. 

 Function  in  multicellular  organisms  depends  on  the  balance  of  interactions  between  cells  in  tissues, 
 which  are  complex,  structured  and  dynamic  cellular  ecosystems.  In  health,  tissues  maintain 
 homeostasis  through  the  joint  action  of  multiple  cells,  with  a  dynamic  division  of  labor  between 
 different  parenchymal  and  accessory  cell  types  1  .  In  disease,  malfunction  often  spans  cells  of  multiple 
 types  and  is  accompanied  by  changes  in  the  composition,  structure  and  organization  of  tissues. 
 Deciphering  the  relation  between  structure  and  function  in  tissues  is  the  cornerstone  of  tissue  biology 
 and  pathology,  because  the  way  in  which  cells  and  molecules  are  organized  in  histological  patterns  at 
 different scales  often  reflects their joint functionality. 

 In  recent  years,  there  has  been  a  dramatic  growth  in  methods  for  spatial  molecular  profiling,  which 
 vary  in  resolution,  scale  and  molecular  multiplexing.  Methods  capture  diverse  information  across 
 different  length  scales:  from  single-molecule  resolution  in  techniques  such  as  MERFISH  2  or  SeqFISH  3 

 to  averages  across  cells  spanning  dozens  of  micrometers  in  spot-based  protocols  such  as  Spatial 
 Transcriptomics  4  .  Methods  also  vary  in  the  number  of  molecular  features  acquired:  from  tens  in 
 fluorescent  in  situ  hybridization  (FISH),  CyCIF  5  and  imaging  mass  cytometry  (IMC)  6  to  hundreds  or 
 thousands  in  specialized  probe-based  spatial  transcriptomics  methods  (MERFISH  2  or  SeqFISH  3  )  or 
 Imaging  Mass  Spectrometry  7  ,  and  tens  of  thousands  in  spot-based  spatial  transcriptomics,  such  as 
 Slide-Seq  8,9  ,  Visium  10  ,  DBiT-seq  11  and  high-definition  spatial  transcriptomics  (HDST)  12  .  Such  examples 
 highlight  a  key  feature  of  current  spatial  technologies:  they  are  diverse  in  terms  of  resolution, 
 throughput  and  multiplexing  and  should,  accordingly,  be  employed  to  address  different  classes  of 
 questions. 
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 Computational  methods  are  key  to  extracting  patterns  from  such  data  and  will  be  especially  powerful  if 
 they  are  designed  to  take  into  account  the  specific  biological  questions  at  hand  as  well  as  the  distinct 
 features  and  limitations  of  different  measurement  methods.  Here,  we  review  the  computational 
 methods  for  spatial  molecular  analysis  organized  by  the  biological  questions  they  address  and  the 
 spatial  methods  capable  of  measuring  relevant  parameters.  We  will  focus  specifically  on  the 
 challenges  that  different  length  scales  pose  for  experimental  methods,  and  highlight  the  types  of 
 analysis  methods  that  can  be  deployed  in  such  studies.  We  define  ‘length  scales’  as  the  spatial 
 context  in  which  a  biological  process  occurs:  short-range  length  scales  include  direct  cell-cell 
 interactions,  whereas  long-range  length  scales  include  global  gradients,  such  as  in  oxygen  or 
 metabolites  (  Fig.  1).  In  addition,  we  emphasize  conceptual  overlaps  with  and  distinctions  from 
 computational  methods  currently  used  for  analyzing  single  cell,  dissociation-based  methods  to  show 
 how  studies  based  on  single-cell  profiling  approaches  can  be  complemented  by  spatial  approaches, 
 and  vice  versa.  We  hope  this  conceptual  and  methodological  roadmap  will  help  drive  the  development 
 of  new  computational  methods  for  key  biological  questions  in  tissue  biology,  provide  guidance  to 
 biologists seeking to apply methods, and help in sharpening concepts in cell and tissue biology. 

 Modeling variation at length scales for cell and tissue biology 
 A  long-standing  goal  in  biology  is  to  understand  how  tissue  organization  (‘structure’)  relates  to  tissue 
 physiology  (‘function’).  In  a  cell-centric  model,  tissue  organization  can  be  described  by  the  different 
 properties  (or  variables)  that  distinguish  cells  from  each  other  (Fig.  1a)  .  Some  of  these  components 
 can  be  seen  as  dependent  variables,  with  which  we  are  able  to  measure  variation  between  cells, 
 whereas  others  can  be  seen  as  independent  variables,  with  which  we  are  able  to  explain  the 
 observed  variation  .  In  dissociated  single  cell  profiling  data,  cellular  phenotypes  can  be  described 
 based  on  dependent  variables,  such  as  overall  gene  expression,  protein  expression  or  chromatin 
 accessibility.  These  dependent  variables  are  a  function  of  independent  variables  such  as  sample 
 covariates,  assay  technology  or  sequencing  batch.  Spatial  models  of  cellular  variation  extend  this 
 paradigm  by  incorporating  additional  dependent  variables,  such  as  subcellular  spatial  distribution  of 
 molecules  and  cell  morphology,  and  independent  variables,  such  as  spatial  context  of  the  cell, 
 opening  directions  to  novel  formulations  of  causal  models  and  representation  learning.  Notably,  the 
 complementary  view,  with  cells  as  independent  variables  “generating”  the  tissue  is  just  as  biologically 
 compelling, but it is not our focus here. 

 We  distinguish  two  main  influences  on  cell  states  in  the  spatial  context  (“dependency  classes”)  :  direct 
 cell-cell  communication  and  tissue  context  (Fig.  1)  .  These  dependency  classes  appear  as  high-  and 
 low-frequency  patterns  in  a  variance  decomposition  across  a  tissue,  where  the  frequency  of  the 
 pattern  mirrors  the  length-scale  of  the  biochemical  phenomenon  underlying  the  statistical 
 dependency:  High-frequency  patterns  can  occur  multiple  times  within  the  same  tissue  but  are 
 localized  to  the  direct  neighbourhood  of  a  cell,  and  often  correspond  to  cell-cell  communication. 
 Low-frequency  patterns  can  represent  global  processes,  such  as  developmental  gradients  in  tissue 
 ontogeny  or  oxygen  availability  gradients  and  other  physiological  characteristics  .  In  a  pathological 
 setting,  such  as  a  tumor,  a  low  frequency  component  could  be  associated  with  signals  related  to 
 metabolic  gradients,  while  a  high  frequency  component  could  be  associated  with  T  cell  cytotoxic 
 activity  (Fig.  1b)  .  As  is  often  the  case  in  biology,  we  expect  nesting  as  well  within  scale.  For  example, 
 within  a  cell,  we  expect  both  local  patterns  (molecular  complexes  and  liquid-liquid  phase  separated 
 “  membraneless  ”  organization),  intermediate  ones  (organelles)  and  global  ones  (gradients  in  epithelia). 
 Below, we stratify spatial effects and models by cell biology and tissue biology phenomena. 

 Cell biology reflected in spatial variation at cellular and subcellular resolution 

 In-situ  cell  biology  has  largely  been  investigated  with  microscopy-based  techniques,  usually  by 
 visualizing  a  limited  number  of  molecular  proteins  or  RNAs  13  ,  whereas  single-cell  profiling  has 
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 characterized  the  molecular  features  of  cell  states  and  types  and  their  underlying  circuitry  at 
 unprecedented  scale  and  molecular  detail  in  dissociated  samples  14–16  .  Spatial  molecular  profiling 
 offers  the  possibility  of  unifying  these  two  worlds  of  cell  biology  and  molecular  biology,  thus  advancing 
 our understanding in two core areas: cell state variation and extrinsic effectors of cell states. 

 Molecular  information  collected  with  subcellular  resolution  characterizes  cell  states  both  by  molecular 
 abundance  and  the  molecular  distribution  across  the  cell:  Subcellular  features  can  also  extend  the  cell 
 state  space  and  can  disentangle  cell  states  that  cannot  be  distinguished  based  on  cell-level  molecular 
 features  in  unsupervised  analyses  (Fig.  1a)  .  Among  the  phenomena  that  can  only  be  disentangled  by 
 subcellular-resolved  molecular  features  are  the  effect  of  epidermal  growth  factor  (EGF)  signaling  on 
 the  cell  cycle  17  and  organization  of  the  transcriptome  in  the  nucleus  18  and  in  the  central  nervous 
 system  3,19  .  In  practice,  if  pixel-level  molecular  profiles  are  available,  cellular  phenotypes  can  be 
 defined  based  on  both  organelle  properties  (e.g.,  nucleus  size)  and  the  distribution  characteristics  of 
 molecules  across  the  cell,  including  their  covariance  structure  (to  define  complexes,  membraneless 
 compartments,  etc).  Subcellular  features  of  cells  can  yield  hypotheses  on  their  functional  states, 
 where the distribution of proteins and mRNA in a cell hints to organelle or pathway activity. 

 Spatial  assays  are  also  used  to  profile  the  effects  of  cell-cell  communication  occurring  at  short  length 
 scales  (µm)  in  cellular  neighborhoods  20,21  via  physical  contact,  compound  exchange  via  tight  junctions 
 and  synapses,  and  paracrine  or  autocrine  signaling.  Although  single  cell  profiling  methods  have  been 
 adapted  to  capture  some  direct  cell-cell  interactions  22–24  ,  many  communication  modes  in  tissues  can 
 currently  only  be  directly  observed  by  spatial  protocols.  These  interactions  between  neighboring  cells 
 have  the  potential  to  explain  the  variation  observed  within  cell  types  in  dissociation-based  protocols. 
 For  example,  activated  immune  cell  states  can  be  understood  based  on  the  cells’  neighborhoods,  and 
 correspond  to  variation  observed  in  single-cell  RNA-seq  data  25,26  .  It  is  important  to  carefully  consider 
 the  experimental  techniques  used  to  probe  cell-cell  communication,  as  this  inference  depends  both  on 
 the  molecular  features  measured  and  whether  true  single-cell  resolution  is  achieved  (  Fig.  1b,c  ,  see 
 box description). 

 Inference  of  cell-cell  communication  (a  functional  feature)  from  molecular  profiling  data  has  been 
 addressed  by  statistical  association  methods  that  typically  relate  cell  types  to  each  other  via  prior 
 knowledge  annotation  27–30  ,  or  by  co-variation  patterns  across  samples  26,31  .  A  spatial  neighborhood 
 provides  strong  evidence  of  co-occurring  molecular  and  structural  phenotypes,  and  should  therefore 
 be  encoded  as  a  strong  prior  in  any  model  of  tissue  biology  29,30,32,33  .  Information  on  cell-cell 
 communication  also  allows  the  development  of  causal  inference  frameworks,  where  directional 
 models  for  cell  state  dependencies  resulting  from  cell-cell  communication  in  spatial  neighborhoods 
 may  be  used  to  yield  causal  and  mechanistic  hypotheses.  Causal  inference  frameworks  can  e.g. 
 elucidate  the  effect  that  a  T  cell  has  on  a  tumor  cell  34,35  ,  or  how  the  metabolic  states  of  the  tumor 
 microenvironment  reshape  protein  expression  of  immune  cells  36  .  Importantly,  a  causally  interpretable 
 model  of  these  extrinsic  effects  in  the  microenvironment  requires  dependencies  between  cells  and 
 violates  the  independence  assumption  commonly  used  in  cell-centric  (intrinsic)  models  of  gene 
 expression  in  many  analyses  of  scRNA-seq  37,38  ,  39  .  An  encoding  of  spatial  proximity  of  cells  as  a  spatial 
 graph  40,41  is one promising prior for such cell-cell  dependency models. 

 Finally,  recent  advances  in  pooled  perturbation  screens  with  high  content  readouts,  either  optically  42,43 

 or  by  single  cell  profiling  16,44  ,  open  the  way  to  inform  and  test  such  causal  models,  by  observing  both 
 cell  biology  and  molecular  features  under  a  large  number  of  perturbations  in  cell  cultures  or  in  a 
 tissue.  An  orthogonal  approach  to  large-scale  perturbation  modelling  with  spatial  information  would  be 
 to  selectively  perturb  cells  in  situ  in  spatially-constrained  regions  of  the  system  (for  example  by  light 
 activation  in  animal  models),  to  observe  the  perturbation  effect  on  cellular  communication  and  tissue 
 architecture  45  . 
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 Tissue biology reflected in spatial variation on super-cellular length scales 

 Deciphering  the  emergent  properties  of  tissue,  the  modular,  multicellular  units  of  tissue  function  at 
 different  scales,  and  their  dysregulation  in  disease  will  require  spatial  technologies  with  larger  fields  of 
 view, together with computational methods that can identify functional units and structures. 

 These  ‘tissue  modules’  are  constituted  by  recurrent  cellular  communities  that  exert  specific  functions 
 in  tissue,  are  spatially  organized  to  execute  this  function  ,  and  may  occur  at  different  sites  in  varying 
 compositions.  Such  structures  emerge  at  different  length  scales,  and  therefore  can  be  very  different  in 
 terms  of  size  and  cell  composition.  For  instance,  both  germinal  centers  in  lymph  nodes  and  glomeruli 
 in  the  kidney  can  be  viewed  as  tissue  modules,  although  they  are  very  different  structures  in  terms  of 
 size and function. 

 Tissue  modules  are  defined  by  phenotypes  that  characterize  areas  of  a  tissue,  as  opposed  to  cell-  or 
 sample-centric  phenotypes  that  are  often  the  focus  of  models  of  dissociation-based  data.  Clearly, 
 models  for  identifying  tissue-level  modules  require  molecular  profiles  as  well  as  spatial  resolution  46,47  . 
 However,  spatial  length  scales  are  difficult  to  account  for  in  such  models.  First,  tissue  modules  are 
 increasingly  difficult  to  pinpoint  as  the  length  scale  and  the  number  of  putative  structures  increase, 
 because  the  relevant  biological  processes  are  likely  to  be  convoluted  with  each  other  or  with  other 
 co-occurring  signatures.  Second,  the  resolution  of  lab  methods  often  decreases  as  the  field  of  view 
 increases  in  size  (e.g.  imaging  time  becomes  limiting  when  imaging  large  volumes  at  high  resolution  ) 
 so  that  the  potential  for  discovery  of  large  and  small  structures  is  often  anticorrelated.  Third,  the 
 relation  between  length  scales  and  functional  structures  or  cellular  communities  will  be  different 
 across  tissues:  the  stereotypical  layered  organization  of  brains  is  different  from  the  globular  structure 
 of  the  pancreas  or  the  tree-like  structure  of  lungs.  Cross-length  scale  models  that  work  in  one  organ 
 might not be useful for another organ. 

 Metabolic  and  morphogenetic  gradients  48–50  convey  information  about  and  arise  from  developmental 
 processes  as  well  as  environmental  differences,  such  as  oxygen  or  nutrient  availability,  hormone 
 concentration,  metabolite  concentration  or  physical  stress  49  .  They  can  be  assayed  with  most  of  the 
 current  spatial  techniques,  as  they  do  not  strictly  require  single-cell  resolution.  Additionally, 
 biophysical  forces,  such  as  the  stiffness  of  the  extracellular  matrix  and  its  interaction  with  cell 
 membrane,  or  cell  densities  in  specific  tissues  51  ,  could  be  inferred  with  spatial  molecular  techniques  in 
 combination  with  morphological  features  .  Biophysical  tissue  features  are  relevant  in  many  biological 
 systems,  from  development  to  cancer  biology  51,52  ,  and  they  occur  at  multiple  length  scales.  Coupling 
 those  phenotypic  observations  with  molecular  changes  assayed  by  spatial  omics  has  the  potential  to 
 elucidate molecular determinants of mechanobiology. 

 Tissue-wide  phenomena  can  be  modeled  via  spatial  variance  decompositions  and  other  unsupervised 
 techniques  53–58  .  Clustering  approaches  that  account  for  spatial  proximity  46  or  morphological  similarity  59 

 could  also  be  used  to  discover  tissue  models  that  go  beyond  molecular  similarity.  Unsupervised 
 representation  learning  has  been  tremendously  successful  and  widely  used  for  scRNA-seq 
 analyses  37,60  .  Advanced  representation  learning  approaches  can  improve  unsupervised  models  and 
 offer  promising  tools  to  relate  spatial  patterns  directly  to  tissue  properties.  These  include  established 
 approaches  in  image-based  deep  learning  that  can  deal  with  the  absence  of  sufficiently  informative 
 labels,  such  as  unsupervised,  self-supervised  and  multi-task  learning  61  .  These  techniques  will  be 
 increasingly  used  for  jointly  modeling  extrinsic  features  of  cells  from  images,  such  as  neighborhood 
 density  and  morphology,  as  well  as  intrinsic  features,  such  as  expression  profiles,  thus  learning  a  joint 
 latent  representation  that  encodes  information  from  both  modalities  62  .  Biology-centered  representation 
 learning  can  be  directly  performed  on  image-structured  data,  which  is  often  the  raw  version  of  spatial 
 molecular  profiling  assays.  However,  this  neglects  the  strong  prior  knowledge  that  cells  are  discrete 
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 functional  units  in  tissues.  To  leverage  this  information,  we  can  represent  tissue  as  a  spatial  graph  of 
 cells  (nodes)  and  their  proximity  (edges).  Representation  learning  on  images  and  graphs  relies  on 
 very  different  model  classes:  graph-based  models  will  often  have  interpretability  advantages  as  they 
 are  defined  on  an  interpretable  input  space  of  cells  rather  than  pixels,  analogous  to  capturing  ‘social 
 networks’  of  cells  with  cell–cell  communication  and  larger  cliques.  However,  information  aggregation 
 across  graphs  is  not  straightforward  63,64  ,  posing  limitations  for  representing  large-scale  effects  and 
 could miss some of the continuous nature of the tissue, as reflected in images  . 

 Whether  such  tissue  modules  are  identified  by  unsupervised  approaches  or  expert  annotation, 
 methods  are  necessary  to  harmonize  them  and  coherently  join  them  across  samples  and  individuals 
 to  validate  pattern  discoveries.  This  validation  requires  a  common  coordinate  framework  for  molecular 
 variation across organs and individuals in which tissue modules can be registered across samples  65  . 

 Tissue-level models of cell fate decision making 

 A  key  question  addressed  with  single-cell  genomic  is  inference  of  cell  fate  cell  lineage  maps: 
 arranging  cells  from  one  or  more  snapshots  into  continuous  transitions  across  the  molecular  state 
 space  that  explain  cell  fate  decision  making  66  ,  as  well  as  defining  which  cells  are  related  by  shared 
 lineage  through  cell  division  events.  Current  spatial  profiling  techniques  face  the  same  issue  of 
 observing  only  a  snapshot  of  biological  processes,  but  they  capture  substantial  auxiliary  information 
 that  impacts  cell-fate  decisions,  cell  lineage  and  cell  differentiation:  given  the  limited  movement  of 
 cells  in  tissue  in  many  contexts,  physical  proximity  often  reflects  relatedness  (  e.g.  ,  between  stem  cells 
 in  an  intestinal  crypt  and  their  progeny  in  the  villus),  as  well  as  the  dependence  of  cells’  differentiation 
 on  external  signals  provided  by  neighboring  cells  and  morphogenetic  gradients  (  e.g.  ,  between  stromal 
 cells and stem cells in the crypt). 

 Analysis  of  single  cell  profiles  has  enhanced  our  understanding  of  cell-fate  decisions  and  cell 
 differentiation.  Methods  developed  for  dissociation-based  data  can  be  directly  applied  to  spatial  data, 
 thus  providing  trajectory  visualization  in  a  spatial  context  2,67,68  .  Moreover,  spatial  data  sets  allow  cell 
 fate-inference  methods  to  interpolate  in  not  only  the  molecular  cell  state  space,  but  also  the  spatial 
 coordinates,  with  the  potential  to  resolve  subtle  differences  in  cellular  fates  that  were  previously 
 hidden  (  Fig.  2  ).  From  a  causal  modeling  perspective,  branching  events  might  be  explained  by  the 
 spatial  context;  in  particular,  it  may  be  possible  to  infer  the  paracrine  signals  affecting  developmental 
 processes  69,70  ,  readily  moving  from  a  cell-intrinsic  view  of  differentiation  to  a  more  comprehensive 
 tissue  view.  Developmental  processes  where  morphogenic  factor  localization  is  tightly  regulated  on 
 large  length  scales,  such  as  in  Drosophila  embryos  71  ,  could  be  modeled  by  additionally  accounting  for 
 cell-cell  interactions  and  other  spatial  effects  on  short  length  scales.  Overall,  the  spatial  context  of  cell 
 fate  decision  making  could  help  to  disentangle  intrinsic  and  extrinsic  effects  of  cell  differentiation  and 
 developmental processes  72–75  . 

 To  determine  cell  lineages,  efforts  to  integrate  spatial  molecular  information  with  lineage-tracing 
 techniques  in  engineered  models  76–78  and  native  human  tissue  79  can  also  spur  the  development  of 
 new  modeling  approaches  to  disentangle  spatial  contribution  to  lineage  formation.  For  instance,  a 
 recent  study  80  has  used  lineage  barcoding  experiments  in  cerebral  organoids  to  show  that  cellular 
 clones  have  a  strong  regionalization  during  development  and  accumulate  in  specific  brain  regions. 
 Another  study  81  has  developed  a  lineage  barcoding  system  suitable  for  spatial  imaging  techniques, 
 such  as  multiplexed  FISH,  and  applied  it  to  the  Drosophila  brain,  observing  that  gene  expression 
 similarity  between  different  clones  was  not  related  to  spatial  proximity,  but  that  cells  from  the  same 
 lineage  (i.e.,  members  of  the  same  clone)  had  higher  expression  similarity  when  proximal  in  space 
 than  cells  from  the  same  lineage  that  were  farther  apart.  With  such  data,  lineage  tracing  can  be  used 
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 not  only  to  validate  proposed  lineage  relationships  but  also  to  constrain  inference  models  and  infer 
 intrinsic and extrinsic factors of cell identity. 

 A  key  innovation  in  the  field  of  trajectory  inference  from  single-cell  profiles  has  been  the  discovery  of 
 molecular  states  that  relate  to  velocities  in  the  state  space  (RNA  velocity  67,82  ).  Similarly,  RNA  velocity 
 could  be  directly  measured  in  situ  .  For  example,  MERFISH  could  determine  RNA  velocity  by 
 distinguishing  intra-nuclear  from  cytoplasmic  concentrations  for  specific  transcripts  2  .  These 
 state-space  velocities  could  again  be  coupled  to  biological  axes  of  variation.  In  a  spatio-molecular 
 lineage,  one  could  extend  molecular  state  space  velocities  with  spatial  velocities  of  migrating  cells. 
 Taken  together,  these  examples  highlight  the  opportunities  to  directly  translate,  extend  or  re-formulate 
 concepts developed for  single cell genomics  to spatial  molecular profiling. 

 Spatial signatures of disease 

 Most  disease  processes  involve  the  complex  ecosystem  of  the  entire  tissue,  and  histology  is 
 accordingly  a  cornerstone  of  pathological  characterization  and  definition  of  disease.  Advances  in 
 single  cell  profiling  have  highlighted  the  aberrations  in  cell  states,  compositions,  and  interactions  that 
 are  associated  with  disease  onset,  progression,  or  response  to  therapy  83,84  and  have  begun  to 
 delineate  the  coordinated  changes  across  them  34,35  .  Spatial  information  can  complement  these 
 signatures,  explain  the  changes  observed  in  dissociation-based  protocols,  disentangle  additional 
 alterations  of  tissue  organization,  and  relate  them  to  the  rich  legacy  of  histopathology,  which  underlies 
 both  biomedical  research  and  patient  care.  In  addition,  disease  and  treatment  labels  provide  strong 
 indicators of emergent properties of a tissue, such as tissue modules, and help in their discovery. 

 Spatial  dimensions  of  disease  state  entail  both  tissue-scale  deranged  cellular  communities  and 
 short-range  perturbed  cell-cell  communications,  therefore  requiring  models  tailored  to  capturing 
 effects  at  the  relevant  length  scales.  Several  recent  studies  follow  this  approach  in  conditions  as 
 diverse  as  cancer  34,35,85–89  ,  myocardial  infarction  90  and  neurodegenerative  diseases  91  .  For  example,  a 
 recent  study  reported  immune  cell  distributional  signatures  of  T  cells  in  colorectal  cancer  that  do  not 
 manifest  on  a  compositional  level,  at  least  for  broad  cell  categories  35  .  Specifically  ,  T  cell  aggregation 
 correlated  with  core  tumor  phenotypes,  whereas  T  cell  number  did  not.  Another  study  applied  spatial 
 transcriptomics  to  biopsies  from  prostate  cancer  tumors  and  identified  cancer  foci  as  multicellular 
 sub-tissue  compartments,  often  not  identified  by  typical  histopathological  analysis  87  .  An  extensive 
 multicenter  study  of  breast  cancer  tissue  showed  how  cellular  communities  identified  by  IMC  explain 
 inter-  and  intra-sample  variation,  as  well  as  define  cancer  subtypes  with  strong  associations  to  patient 
 survival  92  .  These  communities,  newly  discovered  tissue  modules,  have  characteristic  cell  type 
 enrichments  and  putative  cell–cell  interactions.  An  integrative  analysis  of  scRNA-seq  and  spatial 
 transcriptomics  of  the  same  pancreatic  cancer  tumors,  showed  co-localization  of  stress-response 
 cancer  cells  and  inflammatory  fibroblasts  86  forming  a  cancer  specific  cellular  neighborhood.  Such 
 studies  are  also  relevant  in  non-oncological  pathologies.  For  example,  spatial  transcriptomics  and 
 FISH-based  measurements  of  brain  sections  from  a  mouse  model  of  Alzheimer’s  disease  showed  a 
 local,  multicellular  interplay  in  cellular  response  to  amyloid  plaques  91  .  These  examples  show  how 
 spatial  information  can  both  elucidate  novel  disease  features,  and  highlight  the  potential  causal 
 mechanism  that connects a deranged cellular state  to diseased tissue. 

 Analytical challenges and current approaches 

 So  far,  we  have  described  how  spatial  components  of  variation  can  be  mapped  to  cell  and  tissue 
 biology  questions,  and  highlighted  some  of  the  modeling  approaches  to  disentangle  spatial 
 components  of  molecular  variation.  Next,  we  describe  methods  and  analysis  strategies  that  have 
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 been  already  proposed,  and  the  practical  problems  of  working  with  spatial  molecular  data,  in  terms  of 
 processing,  representation,  integration  and  analysis.  We  highlight  available  solutions  and  the  open 
 challenges that still need to be addressed. 

 Image processing, segmentation, coordinate registration and data structure 

 In  contrast  to  dissociation-based  protocols,  most  spatial  methods  require  a  computational  mapping  of 
 the  measured  molecules  to  their  cellular  origin,  either  by  segmentation  or  deconvolution  93  94–104  .  It  is 
 likely  that  segmentation-based  approaches  will  need  to  be  fine-tuned  for  the  data  at  hand,  due  to  the 
 high  diversity  in  spatial  technologies  (both  in  terms  of  resolution,  multiplexing  and  modality)  as  well  as 
 variation  across  tissues.  Semantic  segmentation  methods  that  assign  each  pixel  of  an  image  to  a 
 label  of  interest,  such  as  blood  vessels,  stroma  or  connective  tissue,  offer  an  orthogonal  approach  to 
 annotate  tissue  regions  by  morphology  features.  Their  representation  could  be  used  for  downstream 
 tasks,  such  as  integration  with  molecular  data  105  .  Benchmarks  and  evaluations  of  segmentation 
 methods,  as  well  as  integrating  them  in  a  processing  pipeline  106–108  could  help  decision  making  on 
 nuclear  versus  cytoplasmic  segmentation,  different  segmentation  algorithms  109,110  ,  and  experimental 
 design  consideration  on  segmentation-auxiliary  membrane  stains  74  .  For  imaging-based  spatial 
 technologies,  alternative  segmentation-free  approaches  have  emerged.  Such  methods  are  often 
 based  on  maximum  likelihood  estimation  and  graph  representation  learning,  and  aim  at  finding 
 pseudo-cells  based  on  spatial  aggregates  of  molecular  probes  111–114  .  They  present  a  viable  alternative 
 when experimental settings hinder robust segmentation-based approaches. 

 In  addition  to  the  molecular  profiles  associated  with  segmented  cells,  images  convey  invaluable 
 statistics  on  cell  area,  morphology  and  population  density  that  can  help  uncover  principles  of  tissue 
 organization  and  higher-order  structure  across  tissue  samples.  Image  analysis  techniques  are  also 
 suitable  for  registering  multiple  tissue  samples  to  a  common  coordinate  framework  65  .  For  example, 
 methods  that  leverage  convolutional  neural  networks  for  feature  extraction  and  sample  mapping  have 
 already  been  proposed  in  the  context  of  spatial  molecular  data  115–118  .  Furthermore,  in  order  to  build  3D 
 molecular  maps  of  complex  tissues  and  organs,  techniques  such  as  image  registration  and  stitching 
 will be essential  115–117,119–121  . 

 A  key  computational  question  concerns  data  representation:  spatial  dimensions  can  be  maintained  as 
 vector  coordinates  or  transformed  in  a  graph,  while  image  information,  such  as  extracted  features  and 
 segmentation  masking,  should  be  easily  accessible  and  directly  linked  to  observations.  Most  of  the 
 existing  software  for  (spatial)  single  cell  analysis  should  accommodate  such  data  types  associated 
 with  segmented  cells  in  its  existing  framework  59,108,122–128  .  Efficient  and  flexible  integration  of 
 image-structured  data  is  often  still  difficult  in  cell-centric  workflows  as  both  data  handling  infrastructure 
 and algorithmic approaches are missing (  Fig. 3a,  Table  1  ). 

 Integrating modalities 

 Some  spatial  methods  capture  rich  molecular  information  at  the  cost  of  resolution,  but  computational 
 analysis  can  be  used  for  deconvolution  and  mapping  by  integrating  the  spatial  data  with  microscopy 
 data  or  single  cell  profiles  that  have  been  determined  using  dissociation-based  methods  .  For 
 example,  spot-based  protocols  such  as  HDST  12  ,  Slide-seq  8,9  and  Spatial  Transcriptomics/Visium  4 

 capture  RNA  or  proteins  from  areas  spanning  more  (or  less)  than  one  cell,  without  consideration  of 
 cell  boundaries.  When  spots  are  smaller  than  average  cells,  computational  analysis  can  reveal  cell 
 identities  by  clustering,  as  has  been  demonstrated  in  HDST  12  and  is  possible  through  grouping  of 
 spots  by  segmentation  masks  defined  in  bright-field  microscopy  (FISH-based  protocols  and  IMC  3,6,129  ). 
 If  spots  are  larger  than  one  cell  (  e.g.  ,  Visium),  deconvolution  methods  can  relate  transcriptomes 
 measured  in  a  spot  to  the  cell  profiles  present  in  tissue  (  Fig.  3b,  Table  1  )  130–139  .  In  contrast  to 
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 deconvolution  approaches,  that  explicitly  model  the  spatial  observation  as  an  aggregate  of  cells,  label 
 projection  methods  have  been  developed  to  map  the  cellular  states  identified  in  scRNA-seq 
 experiments  to  lower  resolution  spatial  data  86,140,141  .  These  methods  transfer  cell  type  labels  from 
 scRNA-seq  to  spot  transcriptomics  by  manifold  alignment  techniques  142  .  Novel  methods  should 
 include  the  additional  information  provided  by  spatial  omics  data,  such  as  morphology  features 
 derived  from  imaging  data  and  spatial  neighbor  graph  computed  from  spatial  coordinates.  Such 
 additional  information  could  include  smoothing  constraints  on  cell-type  proportions  in  space  or 
 morphological  similarity  derived  from  imaging  data  of  cellular  niches.  The  histology  stain  collected  by 
 Spatial  Transcriptomics  methods  is  invaluable  for  such  mappings  as  it  can  be  used  to  derive  nuclei 
 densities  under  each  spot  array,  as  well  as  other  constraints  in  terms  of  morphology-based  cell 
 variability  .  For  example,  a  recent  method  accounts  for  nuclei  densities  derived  from  tissue  and  adopts 
 a probabilistic framework to assign cell type proportions  116,143  . 

 A  second  challenge  lies  in  the  feature  space  mapping:  probe-based  protocols  like  FISH  and  IMC  yield 
 many  fewer  features  and,  in  the  case  of  protein  measurements,  also  a  different  modality  than  in  single 
 cell  RNA-seq  ,  and  several  methods  have  been  proposed  for  mapping  unobserved  gene  expression 
 profiles  in  sparse  spatial  data  by  learning  a  correlation-based  representation  from  single  cell 
 references  74,140,141,144–146  .  Beyond  feature  imputation,  multiple  tools  are  focused  on  mapping  single  cell 
 transcriptomes to spatial coordinate systems, using the spatial data as a reference map  71,147–149  . 

 Recently,  new  methods  emerged  that  reconstruct  the  spatial  arrangement  of  cells  mainly  based  on 
 scRNA-seq  data  with  little  or  no  spatially  resolved  experimental  data  29,150  .  They  rely  only  on  a  few 
 markers  to  perform  the  mapping,  based  on  the  assumption  that  similarity  in  gene  expression  space 
 correlates  with  spatial  distances,  and  that  such  a  trend  is  monotonic  in  a  defined  neighborhood.  While 
 reference-free  methods  have  been  applied  for  biological  systems  where  there  is  a  strong  stereotypical 
 organization,  for  example  due  to  global  gradients  (e.g.,  Drosophila  embryo),  it's  unclear  how  they 
 perform  in  tissues  that  display  disordered  spatial  heterogeneity,  salt-and-pepper  patterns,  and 
 perturbation  states,  such  as  human  organs  and  diseases.  Learning  such  patterns  from  some  spatial 
 data,  including  the  nature  of  cell-cell  interactions,  may  help  us  find  ways  to  introduce  additional 
 constraints  for  reference-free  mapping,  for  example  through  receptor-ligand  interactions.  Mapping  cell 
 states  to  spatial  coordinates  is  a  challenging  problem  that  we  expect  to  remain  an  active  area  of 
 research for other spatial molecular data. 

 Finally,  there  is  a  rich  set  of  opportunities  around  integration  of  molecular  and  cellular  information  with 
 the  non-molecular  features  of  the  image,  to  better  define  both  cells  and  their  tissue  relationships  (  Fig. 
 3c,  Table  1  ).  Image  analysis  techniques  and  deep  learning  approaches  can  gather  additional 
 information  from  imaging  data,  including  explicit  or  latent  representation  of  cell  area,  morphology  and 
 population  density  151  .  These  can  help  improve  performances  on  different  tasks  such  as  cancer  cell 
 classification  152,153  and  mapping  molecular  counts  at  higher  resolution  154  .  Multimodal  representation 
 learning  that  captures  both  imaging  and  molecular  features  can  enhance  our  definition  of  cells  (and 
 neighborhoods),  and  allow  training  models  that  generate  one  modality  from  the  other.  On  paired  data, 
 such  models  could  be  learnt  jointly  yet  should  encode  sources  of  variation  separately  across 
 modalities,  enhancing  interpretability  and  biological  discovery.  When  models  are  learnt  from 
 uncoupled,  separate  data  modalities  62  (e.g.,  a  collection  of  microscopy  images  and  of  single  cell 
 RNA-seq  profiles),  joint  measurements  provides  validation  data  with  which  to  test  predictions  155  . 
 Disjoint  data  sources  are  very  likely  to  outmatch  joint  measurements  in  terms  of  datasets  sizes  (e.g., 
 H&E  tissue  slides  for  imaging,  and  single  cell  atlases  for  molecular  data).  For  these  very  large 
 datasets  of  different  data  types  measured  on  different  samples,  (self-)supervised  approaches  such  as 
 contrastive  learning  could  be  used  for  pre-training  and  transfer  learning  156,157  .  Learnt  representations 
 could  then  be  integrated  ex-post  with  interpretable  linear  methods  158,159  .  Such  models  could  also  be 
 integrated  with  high-resolution  imaging  efforts,  such  as  recently  proposed  high  resolution  cellular 
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 maps  160,161  .  We  forecast  transfer  learning  efforts  to  be  broadly  useful  for  enriching  legacy  data 
 (measured only in one modality) and facilitating future studies. 

 Spatially variable features and cellular neighborhoods 

 Although  scRNA-seq  has  taught  us  how  gene  expression  differs  between  individual  cells,  cell  types 
 and  between  different  experimental  conditions,  spatial  methods  add  another  dimension  to  the  analysis 
 of  gene  expression  regulation  .  Several  methods  have  been  proposed  to  identify  spatially  variable 
 genes  in  the  tissue  of  interest  (  Fig.  3d,  Table  1  )  162–167  .  These  methods  vary  greatly  in  terms  of 
 assumptions  and  model  classes  employed.  They  can  be  broadly  categorized  into  Gaussian  Process 
 based  frameworks  164,165,168–170  ,  methods  that  employ  hidden  markov  random  fields  171–173  and 
 graph-based  methods  114,174  .  The  power  and  sensitivity  of  these  methods  to  detect  spatial  variability 
 depends  on  the  experimental  technology  and  sample  characteristics  and  thus  has  to  be  chosen 
 carefully  for  the  data  at  hand.  Currently,  the  metrics  that  quantify  spatially  variability"  are  still  very 
 heterogeneous,  because  of  the  diversity  in  underlying  algorithms,  and  this  problem  will  need  to  be 
 stratified  in  the  future.  Furthermore,  established  approaches  such  as  differential  expression  analysis 
 across  conditions  should  be  expanded  to  account  for  the  variation  of  the  spatial  dependency  over 
 samples,  as  well  as  model  latent  spatial  variance  components  of  the  data  53  .  We  expect  that 
 techniques  borrowed  from  the  field  of  spatial  statistics  will  also  be  useful  to  model  spatial  components 
 of  molecular  variation,  in  particular  accounting  for  different  views  of  tissue  organization:  from  direct 
 cell-cell  interaction  to  higher  scale  interactions  such  as  paracrine  communication  to  metabolic 
 gradients. 

 Spatial  techniques  will  also  be  useful  to  study  cellular  networks  and  cell-cell  communications  (  Fig. 
 3e  ).  Few  methods  have  been  proposed  that  aim  at  estimating  cell  type  neighborhood  enrichments  in 
 spatial  context  59,106,175  ,  and  inferring  cell  interaction  and  signaling  genes  from  spatial  graph 
 structure  33,41,58,59,106,172,176  .  The  modeled  phenomena  differ  drastically  between  these  methods,  and  will 
 both need to be stratified in the future. 

 Spatial power analysis 

 Power  analysis  enables  researchers  to  determine  the  sample  sizes  required  to  observe  an  effect  of 
 interest.  In  the  context  of  spatial  molecular  data,  such  effects  are  subject  not  only  to  sample  variation 
 but  also  to  its  spatial  coordinates  in  the  samples.  This  is  of  particular  importance  in  spatial  systems 
 since  realistically  attainable  sample  sizes  (image  size  or  image  number)  depend  strongly  on  the 
 chosen  experimental  protocol.  For  clarity,  we  propose  to  frame  the  problem  in  two  sub-challenges: 
 gene-centric and cell-centric power analysis (  Fig.  3.f  ). 

 ‘Gene-centric’  power  analysis  entails  the  power  calculation  to  find  significant  spatially  variable  genes 
 in  tissue.  In  this  context,  each  gene  is  considered  separately  and  a  power  calculation  can  be 
 performed  based  on  an  estimated  effect  size  of  gene  variability  in  non-random  regions  of  the  tissue 
 samples.  A  recent  comprehensive  power  analysis,  using  synthetic  datasets  165  ,  evaluated  several 
 methods  that  rely  on  different  test  statistics  162,163  164,165  .  Importantly,  the  superposition  of  multiple 
 confounding  spatial  expression  trends,  such  as  high-  and  low-frequency  patterns  (Fig.  1b),  further 
 complicates  trend  discovery.  Notably,  asking  an  algorithm  to  identify  any  dependence  of  expression 
 on  spatial  coordinates  is  often  too  general  a  question,  whereas  a  user  might  be  interested  in  finding 
 patterns  of  a  certain  shape,  such  as  radial  symmetries  in  tumors.  Such  pattern-based  trend  discovery 
 has  previously  been  attempted  in  spatial  variable  gene  detection,  but  may  be  limited  by  the 
 hypothesis that can be framed as patterns  164,165  . 
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 ‘Cell  centric’  power  analysis  concerns  features  of  tissue  organization,  such  as  cellular  neighborhoods, 
 cellular  communities  and  tissue  composition.  For  instance,  the  optimal  sample  size  (total  number  of 
 cells)  to  observe  a  particular  enrichment  of  cellular  neighborhoods  depends  on  the  frequency  of  the 
 participating  cell  types  and  the  required  significance  threshold.  Moreover,  large  scale  tissue  features 
 often  correspond  directly  to  images  so  that  the  sample  size  is  the  number  of  images  obtained,  posing 
 trade-offs  between  number  and  size  of  images.  This  problem  has  been  investigated  in  the  context  of 
 dissociation based assays  177,178  but is yet unexplored  for spatial molecular data. 

 Conclusions 

 Spatial  profiling  carries  the  promise  of  connecting  variation  in  high-dimensional  single-cell  omics  data 
 sets  with  interpretable  biological  phenomena  in  tissue.  These  spatial  dependencies  exist  on  drastically 
 different  length  scales  and  correspond  to  cell  biological  effects  with  different  implications  at  tissue 
 level.  Here,  we  considered  effects  that  can  be  modeled  across  these  length  scales  and  coupled  the 
 existing  spatial  profiling  methods  that  provide  pertinent  measurements.  We  formulated  a  roadmap  for 
 modeling  dependencies  in  spatial  data  based  on  the  length-scale  of  underlying  molecular 
 phenomena  .  We  also  classified  current  processing  and  analysis  approaches  to  spatial  molecular  data. 
 As  highlighted  by  different  application  settings,  such  as  spatial  signatures  of  disease,  models  for 
 spatial  variation  can  resolve  cellular  states  and  tissue  phenotypes  that  were  previously  hidden. 
 Accordingly,  model-based  experimental  design  of  spatial  profiling  studies  is  not  only  limited  by 
 resolution but is also a compromise among resolution, section size and sample size. 

 Data  analysis  currently  still  presents  many  bottlenecks,  as  opportunities  inherent  in  integrating  data 
 from  spatial  to  non-spatial  and  between  spatial  assays  of  different  resolutions  and  for  different 
 analytes  are  not  fully  realized.  Major  challenges  remain  in  the  analysis  of  image-structured  data  in 
 terms  of  cell  segmentation,  image  processing  and  the  relation  of  tissue  structures  observed  in  the 
 image  to  the  of  the  measured  molecular  profiles.  Novel  ways  of  thinking  about  processing  imaging 
 data  in  light  of  modelling  particular  length  scales  may  alleviate  data  processing  bottlenecks  as  spatial 
 models  move  from  pipelines  to  end-to-end  models.  On  the  other  hand,  mathematical  models  for 
 length-scale  specific  and  cross-length-scale  spatial  variation  have  only  started  to  emerge.  Ultimately, 
 we  will  find  solutions  to  the  remaining  analytical  and  experimental  problems  that  will  allow  the  creation 
 of  single-cell resolved and spatially aware tissue atlases. 
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 Figures 

 Figure  1:  Components  of  variation  in  spatial  profiling  assays.  a):  Molecular  profiles  from  spatial 
 technologies  entail  dissociation-based  measurements  such  as  gene  expression  and  sample-based 
 covariates,  as  well  as  additional  measurements  such  as  subcellular  variation,  cell  morphology, 
 multi-modal  measurements  in  spatial  context  and  spatial  coordinates.  In  the  figure,  we  highlight  how 
 such  systems  entail  both  long-range  and  short-range  effects  that  should  be  accounted  for  in  modelling 
 molecular  variation  in  spatial  dimensions.  b)  The  study  of  several  biological  phenomena  such  as 
 morphogenic  gradients  in  development,  T  cell  cytotoxic  activity  and  the  tumor  microenvironment  can 
 greatly  benefit  from  the  use  of  spatial  technologies.  In  this  figure,  we  also  discriminate  between 
 observed  variables  (in  solid  lines)  and  latent  variables  (biological  processes,  dashed  lines)  that  have 
 to  be  unveiled  from  the  data.  Finally,  the  resolution  of  spatial  technologies  is  also  different  and  should 
 be taken into account in the context of interest. 

 Figure  2:  Trajectory  inference  in  new  dimensions.  Spatial  data  allows  trajectories  inferred  from  the 
 transcriptome  to  be  placed  in  spatial  context.  It  also  opens  up  analytical  approaches  to  infer 
 trajectories with additional spatial information. 

 Figure  3:  Analytical  challenges  and  opportunities  of  spatial  molecular  data.  a)  Image 
 processing,  segmentation,  registration  and  data  structure:  spatial  molecular  data  are  diverse  and 
 require  tailored  solutions  for  processing  and  data  infrastructure.  b)  Deconvolution  and  data 
 integration  :  spot-based  technologies  require  deconvolution  analysis  to  approximate  proportions  of 
 cell  composition  within  spots.  Integration  methods  can  also  be  used  to  map  known  cell  phenotypes  to 
 spatial  data.  c)  Multi  modality:  integration  of  shapes  and  morphometric  features,  as  well  as 
 additional  molecular  profiles  improve  cell  state  identification  and  tissue  phenotyping.  d)  Spatially 
 variable  genes:  regression  frameworks  that  aim  at  finding  spatially  variable  molecular  features  are 
 key  in  understanding  cell  states  and  tissue  organization.  e)  Cellular  neighborhoods:  tissue 
 coordinates  are  key  in  understanding  spatial  communities  and  cellular  communication,  and  graph 
 abstraction  is  a  suitable  representation  of  the  data  .  f)  Spatial  power  analysis:  understanding 
 tissue-level  effects  across  samples  and  individuals  requires  power  analysis  that  accounts  for  spatial 
 distribution.  Table 1  contains an overview of tasks  and methods for spatial single cell analysis. 

 Box descriptions 
 Spatial  molecular  profiling  technologies  differ  in  terms  of  resolution  and  multiplexing.  Therefore, 
 technology  capability  should  be  accounted  for  by  modelling  approaches.  Here,  we  show  how 
 techniques  can  be  grouped  together  based  on  the  molecular  entity  they  are  able  to  capture,  as  well  as 
 the resolution (and therefore length scale) that they are able to profile. 

 Transcriptome  :  spot-based  spatially  barcoded  microarrays  that  capture  transcriptome-wide  gene 
 expression  profiles:  Low  resolution  (spatial  transcriptomics  (ST),  Visium,  Slide-seqV1)  and  high 
 resolution  (HDST,  Slide-seqV2).  In-situ  transcriptome  profiles  with  barcoded  oligos:  High  throughput 
 (MERFISH,  seqFISH,  NanoString),  low  throughput  (SCRINSHOT  (CARTANA),  Barista-seq, 
 osmFISH), sequencing by synthesis in situ (STARMAP) and others. 
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 Proteins:  Imaging  mass  cytometry  (MALDI-TOF,  MiBI-TOF)  and  multiplexed  IHC  (4i,  cyCIF,  CODEX, 
 Immuno-SABER). 
 Metabolites:  Imaging mass spectrometry 
 Several reviews covered experimental techniques for spatial molecular profiling:  179–191 
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 Table 1: Challenges and current solutions for spatial single cell analysis* 

 Challenge  References 

 Image processing, segmentation, registration and data structures 

 -  Cell entity identification via segmentation 
 -  Cell entity identification via segmentation-free methods 
 -  Image processing 
 -  Image registration and alignment 
 -  Toolkit for spatial molecular data analysis 

 94–100,109 

 111–113,192–195 

 101–103,107,119,196–200 

 115,116,119,126,201 

 59,107,108,122,125–128,167,202–206 

 Deconvolution and multimodal integration 

 -  Cellular-interaction inference 
 -  Data integration and deconvolution 
 -  Gene-expression mapping and imputation 
 -  Spatial mapping of gene expression profiles 
 -  Multi-modal integration 

 27,28,32,33,41,53,207,208 

 130–134,136–139,141,143,209–213 

 104,144–146,154,214,215 

 29,147,148,150,216 

 54,62,152,153,155,159,217,218 

 Spatially variable features, spatial communities and spatial power analysis 

 -  Spatially variable genes 
 -  Spatial decomposition and clustering 
 -  Spatial power analysis 

 114,163–165,168–170,172,174,219–222 

 46,47,54,56–59,114,162,171–173,195,223–226 

 165,170,227–229 

 Tasks  in  the  data  analysis  pipeline  can  be  broadly  divided  into  pre-processing,  integration  and  spatially  variable  features 

 identification. For each step in the analysis, we outline tasks and proposed solutions present in the literature. 
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