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1.	In	the	sentence	beginning	&#x00027;The	meQTL	are	enriched	for	functionally	relevant	characteristics&#x00027;,	please	provide	a	de�inition	for
Hi-C.

2.	In	the	author	list,	there	are	two	authors	with	the	name	Panos	Deloukas	with	different	af�iliations.	Please	con�irm	whether	this	is	the	same
individual	and	whether	the	two	authors	can	be	merged.

3.	Please	check	your	article	carefully,	coordinate	with	any	co-authors	and	enter	all	�inal	edits	clearly	in	the	eproof,	remembering	to	save	frequently.
Once	corrections	are	submitted,	we	cannot	routinely	make	further	changes	to	the	article.

4.	Note	that	the	eproof	should	be	amended	in	only	one	browser	window	at	any	one	time;	otherwise	changes	will	be	overwritten.

5.	Author	surnames	have	been	highlighted.	Please	check	these	carefully	and	adjust	if	the	�irst	name	or	surname	is	marked	up	incorrectly.	Note	that
changes	here	will	affect	indexing	of	your	article	in	public	repositories	such	as	PubMed.	Also,	carefully	check	the	spelling	and	numbering	of	all
author	names	and	af�iliations,	and	the	corresponding	email	address(es).

6.	You	cannot	alter	accepted	Supplementary	Information	�iles	except	for	critical	changes	to	scienti�ic	content.	If	you	do	resupply	any	�iles,	please	also
provide	a	brief	(but	complete)	list	of	changes.	If	these	are	not	considered	scienti�ic	changes,	any	altered	Supplementary	�iles	will	not	be	used,	only
the	originally	accepted	version	will	be	published.

7.	If	applicable,	please	ensure	that	any	accession	codes	and	datasets	whose	DOIs	or	other	identi�iers	are	mentioned	in	the	paper	are	scheduled	for
public	release	as	soon	as	possible,	we	recommend	within	a	few	days	of	submitting	your	proof,	and	update	the	database	record	with	publication
details	from	this	article	once	available.

8.	Your	paper	has	been	copy	edited.	Please	review	every	sentence	to	ensure	that	it	conveys	your	intended	meaning;	if	changes	are	required,	please
provide	further	clari�ication	rather	than	reverting	to	the	original	text.	Please	note	that	formatting	(including	hyphenation,	Latin	words,and	any
reference	citations	that	might	be	mistaken	for	exponents)	has	been	made	consistent	with	our	house	style.

9.	Please	con�irm	or	correct	the	city	name	inserted	in	af�iliations	5,	10,	12,	13,	21,	22,	39	and	44.

10.	In	the	sentence	beginning	&#x00027;Our	meQTL	replicate	in	data	generated	by	the	Illumina&#x00027;,	please	provide	a	de�inition	for	EPIC	and
con�irm	whether	the	de�inition	provided	for	MeDIP-seq	is	correct.

11.	In	the	legend	for	Fig.	2g,	please	provide	a	de�inition	for	SAT.

12.	In	the	sentence	beginning	&#x00027;We	used	summary	data-based	Mendelian&#x00027;,	please	con�irm	whether	it	is	correct	to	say
&#x00027;0.05	&#x000F7;	<Emphasis	Type="Italic">n</Emphasis>	tests&#x00027;.

13.	In	the	sentence	beginning	&#x00027;We	then	tested	the	4,811	eQTL	genes&#x00027;,	please	provide	a	de�inition	for	coloc	PP4.

14.	Please	note,	we	reserve	&#x02018;signi�icant&#x00027;	and	its	derivatives	for	statistical	signi�icance.	This	has	been	reworded	where	this	was
not	the	intended	meaning	(for	example	to	important,	notable,	substantial)	in	the	sentence	beginning	&#x00027;We	used	our	meQTL	as	genetic
instruments&#x00027;.	Please	check	and	con�irm.

15.	In	the	sentence	beginning	&#x00027;At	four	of	the	45	genetic	loci	with	trans	CpG&#x00027;,	please	include	a	de�inition	for	FET.

16.	In	the	sentence	beginning	&#x00027;The	<Emphasis	Type="Italic">trans</Emphasis>	CpG	sites	localize&#x00027;,	please	include	the	of�icial
gene	symbol	for	<Emphasis	Type="Italic">IKBE</Emphasis>.

17.	In	the	legend	for	Fig.	4d,	please	include	the	of�icial	gene	symbols	for	<Emphasis	Type="Italic">ELE1</Emphasis>	and	<Emphasis
Type="Italic">HKR1</Emphasis>.

18.	In	the	legend	for	Fig.	4a,	please	indicate	what	is	designated	by	the	asterisk	&#x0002A;.
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19.	In	the	sentence	beginning	&#x00027;To	further	test	the	hypothesis	that	ZNF333&#x00027;,	please	con�irm	whether	it	is	correct	to	say
&#x00027;FLAG-	and/or	Myc-tagged&#x00027;.

20.	In	the	legend	for	Fig.	6a,	please	provide	de�initions	for	KORA	and	LOLIPOP.

21.	For	Fig.	6f,	please	con�irm	whether	the	position	is	in	units	of	bp.

22.	The	sentences	beginning	&#x02018;As	proof	of	principle&#x02019;	and	&#x00027;Our	study	provides	new	insights	into	the	genetic
regulation&#x00027;	have	been	edited	to	remove	the	priority	claim,	according	to	style.	Please	check	and	con�irm.

23.	In	the	sentence	beginning	&#x00027;We	carried	out	similar	analyses	using&#x00027;,	please	con�irm	whether	MethylEpic	can	be	changed	to
MethylationEPIC.

24.	For	the	sentence	beginning	&#x00027;Finally,	we	used	the	topology	of	the	locus	graph&#x00027;,	please	include	complete	reference	details	for
111	and	112.

25.	In	the	sentence	beginning	&#x00027;We	de�ined	the	symmetric	transition	matrix&#x00027;,	please	con�irm	whether	the	equation	is
represented	correctly.

26.	In	the	sentence	beginning	&#x00027;The	�inal	ranking	of	candidate	gene&#x00027;	and	the	following	sentence,	please	con�irm	whether	the
equations	are	represented	correctly.

27.	In	the	sentence	beginning	&#x00027;To	avoid	confounding	by	<Emphasis	Type="Italic">cis</Emphasis>	effects&#x00027;,	please	con�irm
whether	the	equation	is	represented	correctly.

28.	In	the	sentence	beginning	&#x00027;For	the	NFBC	studies&#x00027;,	please	provide	a	de�inition	for	NFBC	and	clarify	which	author	is	meant	by
M.W.	by	including	the	full	last	name.

29.	Please	check	that	all	funders	have	been	appropriately	acknowledged	and	that	all	grant	numbers	are	correct.

30.	In	the	Author	contributions,	two	individuals	appear	who	are	not	in	the	author	list:	Eva	Reischl	and	James	Scott.	Please	clarify.

31.	In	the	sentence	beginning	&#x00027;The	web	links	for	the	publicly	available	datasets&#x00027;,	please	include	full	reference	details	for
Bonder	et	al.	2015,	as	no	study	by	Bonder	et	al.	in	2015	appears	in	the	reference	list.

32.	Please	check	that	the	Competing	Interests	declaration	is	correct	as	stated.	If	you	declare	competing	interests,	please	check	the	full	text	of	the
declaration	for	accuracy	and	completeness.

33.	Please	con�irm	or	correct	details	for	ref.	82	(Hawe	et	al.,	Zenodo).
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Abstract
We determined the relationships between DNA sequence variation and DNA methylation using blood samples from 3,799 Europeans
and 3,195 South Asians. We identify 11,165,559 SNP–CpG associations (methylation quantitative trait loci (meQTL), P < 10 ),
including 467,915 meQTL that operate in trans. The meQTL are enriched for functionally relevant characteristics, including shared
chromatin state, Hi-C interaction and association with gene expression and metabolic and clinical traits. We use molecular interaction
and colocalization analyses to identify multiple nuclear regulatory pathways linking meQTL loci to phenotypic variation, including
UBASH3B (body mass index), NFKBIE (rheumatoid arthritis), MGA (blood pressure) and COMMD7 (white cell counts). For
rs6511961, chromatin immunoprecipitation followed by sequencing (ChIP–seq) validates zinc finger protein (ZNF)333 as the likely
trans acting effector protein. Finally, we used interaction analyses to identify population- and lineage-specific meQTL, including
rs174548 in FADS1, with the strongest effect in CD8  T cells, thus linking fatty acid metabolism with immune dysregulation and
asthma. Our study advances understanding of the potential pathways linking genetic variation to human phenotype.

Editor's Summary

Genome-wide association analyses of DNA methylation in peripheral blood from 3,799 Europeans and 3,195 South Asians identify
unique SNP–CpG associations (meQTL), providing insights into molecular mechanisms and the potential links to phenotypic variation.

These authors contributed equally: Johann S. Hawe, Rory Wilson, Katharina Schmid.

These authors jointly supervised this work: Jaspal S. Kooner, Marie Loh, Matthias Heinig, Christian Gieger, Melanie Waldenberger, John
C. Chambers.

A list of authors and their affiliations appears at the end of the paper.

Main
Methylation of DNA plays a key role in determining genomic structure and function, including regulation of cellular differentiation and
coordination of gene expression[ 1, 2, 3, 4 ]. Disturbances in DNA methylation have AQ1 been implicated in the development of
atherosclerosis, cancer, obesity, type 2 diabetes and neuropsychiatric illness and other AQ2 complex multifactorial diseases and predict all-
cause mortality[ 5, 6, 7, 8, 9, 10, 11, 12 ]. Improved understanding of the mechanisms influencing DNA methylation is therefore anticipated
to provide new insights into the biological pathways that determine genome regulation, molecular phenotypes and development of
disease. AQ3 AQ4 AQ5 AQ6 AQ7 AQ8

DNA methylation is strongly influenced by underlying genetic variation, both in cis (same chromosome) and in trans (across
chromosomes)[ 9, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 ]. Genetic variants that influence DNA methylation in trans are of particular
interest and identify nuclear regulatory pathways that play a critical role in the coordination of genomic function and impact multiple
biological processes[ 14, 18, 19, 20, 23 ]. We AQ9 aimed to build on this previous work and to advance understanding of the molecular
mechanisms linking regulatory genetic variation to gene expression, molecular interactions, phenotypic variation and disease susceptibility.

Results
Genome-wide	association	and	replication	testing
Our study design is summarized in Extended Data Fig. 1 . We first carried out a genome-wide association study (GWAS) of DNA
methylation in peripheral blood, with replication testing, of 3,799 Europeans (n = 1,731, discovery; n = 2,068, replication) and 3,195
South Asians (n = 1,841, discovery; n = 1,354, replication). DNA methylation was quantified using the Illumina Infinium
HumanMethylation450 BeadChip. Genome-wide association was performed on Europeans and South Asians separately[ 24 ]. meQTL
reaching genome-wide significance (P < 10 ) were selected for replication testing. This stringent statistical threshold for genome-wide
significance provides complete Bonferroni correction for the ~4.3 trillion statistical tests carried out and reduces the risk of false positive
results ( Methods ). Replication testing was first performed using an ancestry-specific approach; this was followed by a final trans-

ancestry analysis (Extended Data Fig. 1 ). At each stage of replication, we required that meQTL reach (1) P < 0.05 with consistent
direction of effect and (2) P < 10  in the combined analysis of discovery and replication results. The meQTL identified by genome-wide
association showed a high rate of replication (>90%) in both ancestry-specific and cross-ancestry replication testing (Supplementary
Table 1  and Extended Data Fig. 2 ). Replication rates were comparable or higher than those for meQTL reported in published studies

(Supplementary Tables 2  and 3 ). AQ10 Our meQTL replicate in data generated by the Illumina MethylationEPIC array (>96% at P < 

0.05 with the same direction of effect, n = 1,848 samples, Methods ) and by methylated DNA immunoprecipitation coupled with next-

generation sequencing (MeDIP–seq) peripheral blood DNA methylomes (47% of testable meQTL at P < 0.05; Supplementary Table 4

and Extended Data Fig. 2 )[ 25 ], demonstrating that our findings are generalizable across platforms.
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−14
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The output is a high-confidence cosmopolitan set of 11,165,559 meQTL (comprising 2,709,428 SNPs and 70,709 CpG sites) that are
experimentally stringent and highly reproducible and operate across human populations (Fig. 1  and Supplementary Table 5 ). The
median effect size for the 11.2 million meQTL was 2.0% (interquartile range, 1.2–3.5%) absolute change in methylation per allele copy.
On average, the SNPs explain 10.3% (interquartile range, 4.4–11.5%) of variation in methylation at the respective CpG sites
(Supplementary Table 6  and Extended Data Fig. 3 ).

Fig. 1

Summary of results for genome-wide association and replication testing.

a, Chessboard plot. Each dot represents a unique SNP–CpG pair reaching genome-wide significance in discovery (P < 10 ) and showing
both ancestry-specific and cross-ancestry replication. CpG position and background CpG density (450K array) are annotated on the x axis,
and SNP position and background SNP density are annotated on the y axis. SNP–CpG pairs are color coded according to proximity of the
SNP and the CpG site: cis, within 1 Mb (n = 10,346,172, green markers appearing as a diagonal line); long-range cis, distance >1 Mb but on
the same chromosome (n = 351,472, purple markers); trans, SNP and CpG sites are on different chromosomes (n = 467,915, black markers).
b, Manhattan plot of trans acting SNP–CpG associations. Each marker represents the number of CpG sites associated in trans with the
identified trans acting SNPs. Results are for the cosmopolitan set of SNP–CpG pairs showing both ancestry-specific and cross-ancestry
replication. SNPs with the highest number of CpG sites in trans (top 1%) are highlighted in dark blue, and the gene nearest the sentinel SNP
is displayed.

The	identified	meQTL	operate	across	diverse	cell	types
We show that 80–87% of the 11.2 million meQTL have a consistent direction of effect and 26–37% replicate at P < 0.05 in isolated white
cell subsets (n = 57 samples; Fig. 2  and Supplementary Table 7 ). We also show that 72–86% of our meQTL have a consistent direction
of effect in isolated adipocytes (subcutaneous and visceral, n = 47 samples) and in adipose tissue (n = 603 samples; P < 1 × 10  for each
comparison, binomial test). A further 19.2% replicate in isolated visceral adipocytes, 19.4% replicate in subcutaneous adipocytes, and
44.2% replicate in subcutaneous adipose tissue (P < 0.05 and same direction of effect; Fig. 2  and Supplementary Table 7 ). These
proportions are consistent with expectations based on sample size. Our results demonstrate that many of the meQTL operate across
diverse cell lineages and are thus likely to be relevant to tissues and biological systems other than blood.

Fig. 2

Replication in isolated white cells, isolated adipocytes and adipose tissue.

Density plots summarizing replication of the SNP–CpG pairs identified by genome-wide association. a–d, Four isolated white cell subsets
(CD4  lymphocytes, CD8  lymphocytes, neutrophils and monocytes). e,f, Isolated visceral and subcutaneous adipocytes (VA and SA). g,
Whole adipose tissue. Results are presented as the effect size (change in AQ11  methylation on a scale of 0–1 in which 1 represents 100%
methylation) per allele copy of the identified SNP in whole blood (x axis) and in the respective isolated cell type (y axis), stratified by SNP–
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CpG proximity (cis, long-range cis and trans associations). Plotting area is limited to effect sizes between −0.5 and 0.5. Results show highly
concordant effect sizes between whole blood and each cell type. The inset in each panel shows replication rates in the respective cell type
(rep, P < 0.05 and same direction of effect) as well as the percent of directional consistency between effect sizes (dir).

Annotation	of	the	meQTL	identified
SNPs are enriched for association with DNA methylation on their cis chromosome, even beyond the conventional 1-Mb interval
(Extended Data Fig. 4  and Methods ). As underlying genomic mechanisms may differ according to proximity, we separated our findings
into (1) cis meQTL (SNP–CpG distance <1 Mb, n = 10,346,172 pairs; 2,650,691 SNPs and 67,694 CpG sites), (2) long-range cis meQTL
(>1 Mb apart but on the same chromosome, n = 351,472 pairs; 120,593 SNPs and 1,846 CpG sites) and (3) trans meQTL (associations
between SNPs and CpG sites on different chromosomes, n = 467,915 pairs; 200,761 SNPs and 3,592 CpG sites). We used conditional
analyses, correlation structure and genomic distance to estimate the total number of independent loci in our cosmopolitan SNP–CpG
associations (Supplementary Fig. 1  and Methods ). This identified 34,001 independent genetic loci associated with 46,664 independent
methylation loci in cis, 467 independent genetic loci associated with 499 independent methylation loci in long-range cis and 1,847
independent genetic loci associated with 3,020 independent methylation loci in trans. For each of these, we selected a single sentinel SNP
and a single CpG site (lowest P value in any pairwise association, Supplementary Tables 8  and 9  and Methods ) to represent the
individual loci in downstream analyses.

Functional	genomic	evaluation	of	the	meQTL	SNPs	and	CpG	sites
Sentinel meQTL SNPs are enriched for location in multiple active chromatin regions, supporting a role in genome regulation (Extended
Data Fig. 5 )[ 14 ]. Expression array data for our cohort participants (Europeans, n = 853; South Asians, n = 693; Methods ) identified
2,696 sentinel SNPs to be expression quantitative trait loci (eQTL; total eQTL pairs, 3,131; cis, 3,018; long-range cis, 50; trans, 63) at P 
< 7.98 × 10  (P < 0.05 after Bonferroni correction for all possible SNP–transcript tests, Supplementary Table 10 ) and showed that
sentinel SNPs were enriched for eQTL both in cis and in trans (range, 4.1–22.1-fold compared to expectations under the null hypothesis,
P = 8.10 × 10 –2.45 × 10 ; Extended Data Fig. 6 ). We separately showed that sentinel meQTL SNPs were strongly enriched for
protein quantitative trait loci (QTL) (1.6–2.1-fold; P < 0.001) and metabolite QTL in cis (1.4-fold, P < 0.001) and for association with
phenotypic traits and diseases (1.9–3.4-fold, P < 0.001). Results are summarized in Extended Data Fig. 7  and Supplementary Fig. 2 .

Sentinel CpG sites influenced by genetic variants in cis are enriched in flanking regions of active transcription start sites and enhancers
and depleted in heterochromatin regions, while SNP–CpG pairs in trans are additionally enriched at active transcription start sites
(Extended Data Fig. 5 )[ 14 ]. Using the extensive baseline phenotypic data for our participants, we show that meQTL CpG sites are
enriched for association with metabolic, physiologic and clinical traits (252 of 277 available traits at P < 1.8 × 10  (Bonferroni correction
for 277 tests) compared to expectations under the null hypothesis (median enrichment, 1.10; interquartile range, 1.06–1.15; Extended
Data Fig. 7  and Supplementary Table 11 ). These findings support a potential role for the identified CpG sites (or their correlated
markers) in determining phenotypic traits.
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Next, we defined both the cis and trans relationships between DNA methylation and gene expression (expression quantitative trait
methylation loci, eQTM) in our participants. Using similar analytic approaches as those in published studies initially suggested 90,666
putative cis eQTM in our dataset at P = 8.7 × 10  (P < 0.05 after Bonferroni correction for the number of possible CpG–expression
pairs)[ 14 ]. However, this result appeared strongly confounded by variation in white cell composition, and adjustment for estimated cell
type proportions reduced the number of cis eQTM identified to 769, of which 155 overlapped with our sentinel CpG sites. AQ12 We used
summary data-based Mendelian randomization (SMR)[ 26 ] to further confirm this interpretation; putative cis eQTM identified with
correction for white cell subsets were strongly replicated by SMR, while uncorrected eQTM were not (SMR P < 0.05 ÷ n tests: 73%
versus 17%, respectively, P = 2.0 × 10 ; Supplementary Table 12 ). In parallel, we identified 97,281 trans eQTM, of which 11,562

overlap one of our sentinel CpG sites; 627 of these trans eQTM are supported by SMR (Supplementary Table 12 ), a proportion

consistent with the statistical power of our analysis (Supplementary Table 13 ). Finally, we show that sentinel CpG sites that are part of

cis meQTL pairs are strongly enriched for being cis eQTM (that is, associated with gene expression in cis, Extended Data Fig. 6 ). Our
results confirm the potential for white cell subset composition to confound analyses of gene expression in whole blood and provide
experimental approaches for resolving potential biases.

Physical	and	regulatory	interactions	between	meQTL	SNPs	and	CpG	sites
We tested whether cis meQTL might represent a direct effect of the sequence variant on the interaction between chromatin-associated
factors and cis regulatory elements harboring the CpG site[ 27, 28 ]. Using data from the Roadmap Epigenomics Consortium, we showed
that 88% of CpG sites with cis acting meQTL were associated with SNPs localizing to the same chromatin state (empirical P = 9.9 × 10 ;
Extended Data Fig. 5 ). We similarly hypothesized that long-range cis meQTL might reflect physical interactions between distal

enhancers and promoters[ 14, 29, 30 ]. In support of this, we showed that long-range cis associations occurred more frequently within

topologically associated domains (15.5-fold, empirical P < 0.01; Extended Data Fig. 5 ) and more frequently had a Hi-C contact between

SNP and CpG sites at promoter regions in 17 primary blood cell types characterized in the BLUEPRINT project[ 31 ] (2.5-fold, empirical

P < 0.01; Extended Data Fig. 5 ). Annotating these associated pairs with chromHMM epigenetic states revealed 145 promoter–promoter,
178 enhancer–promoter and 49 enhancer–enhancer interactions. We demonstrated that the trans acting SNP–CpG pairs were also enriched
for location in regions of chromosomal interaction in primary blood cells (3.7-fold, empirical P = 6.6 × 10 ; Extended Data Fig. 5 ) and

in lymphoblastoid cell lines (1.8-fold, empirical P < 0.01; Supplementary Table 14 )[ 31, 32 ]. In sum, these results indicate that genetic
variants associate with methylation levels of CpG sites localized in the same or in physically interacting regulatory elements, consistent
with a coordinated role in genomic regulation.

Intersection	of	DNA	methylation	and	gene	expression	at	meQTL
Few studies have explored trans acting relationships between DNA methylation and gene expression. Trans meQTL, in particular, provide
new opportunities to understand the coordination of genomic function, including identification of the proximal candidate gene(s)
underlying the trans acting effect of meQTL SNPs[ 23 ]. To address this systematically, we first used data from the eQTLGen Consortium
(n = 31,684 samples) to identify 4,811 cis eQTL associated with the 1,847 trans acting sentinel meQTL SNPs (P < 1 × 10 , Bonferroni
correction for 48,237 eQTL tests). AQ13 We then tested the 4,811 eQTL genes for association with DNA methylation in our participants
and found 1,607 trans eQTM at P < 0.05. SMR supported 929 of these trans eQTM (SMR P < 3.1 × 10 ; Bonferroni correction for 1,607
tests), while 34 trans eQTM were likely regulated by a common genetic mechanism (coloc PP4 > 0.6)[ 33 ] The 34 cis eQTL identified as
likely to be mediating trans methylation signatures identified include ZFP57 (associated with the trans meQTL SNP rs2747429), which
encodes a DNA-binding protein critical for maintenance of epigenetic memory[ 33, 34 ], as well as other ZNF or ZFP genes anticipated to

be involved in genome regulation (Supplementary Table 15 ).

Intersection	of	DNA	methylation	with	clinical	phenotypes	at	meQTL
We used our meQTL as genetic instruments to examine the potential causal relationships between DNA methylation and body mass index
(BMI) as a model phenotype of global public health AQ14 importance. Our sentinel meQTL SNPs and CpG sites were both strongly
enriched for association with BMI (Extended Data Fig. 7  and Supplementary Table 11 , respectively), consistent with a role in the

etiology of adiposity. Using the 941 SNPs independently associated with BMI at P < 10  in the GWAS as genetic instruments[ 35 ], SMR
suggested a potential causal relationship between DNA methylation and BMI at 374 loci (P < 0.05 after Bonferroni correction,
Supplementary Table 16 ), of which 239 showed evidence for a shared underlying causal variant (coloc PP4 > 0.6). At the UBASH3B
locus, we identified SNP rs7115089 as influencing both DNA methylation and BMI (SMR P = 2.5 × 10 , coloc PP4 = 1.0). UBASH3B
encodes a protein with tyrosine phosphatase activity, which has been previously linked to advanced neoplasia[ 36 ]. SNP rs7115089 is
strongly associated with BMI[ 35 ] and is in linkage disequilibrium (LD) (R  > 0.8) with genetic variants linked to other cardiovascular
and metabolic traits in GWASs[ 37, 38, 39, 40 ]. SNP rs7115089 was associated with differential methylation at our sentinel CpG site
(cg26684673), which we previously showed to be associated with BMI in adults[ 8 ]. SNP rs7115089 was associated with expression of
UBASH3B (P = 1.7 × 10 ). Animal models show that expression of Ubash3b is an early transcriptomic-based biomarker of gestational
calorie restriction that may drive programmed susceptibility to obesity and other chronic diseases in later life[ 41 ], and expression of

UBASH3B in peripheral blood is also strongly associated with BMI and other measures of adiposity in humans (Supplementary Table 17 )

[ 42 ]. Our results thus identify UBASH3B as a potential mediator of both genetic and environmental exposures underlying adiposity and
cardiometabolic disease.

Integrating	molecular	information	at	trans	acting	loci
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We identified 467,915 trans acting SNP–CpG pairs, comprising pairwise relationships between 200,761 unique SNPs and 3,592 unique
CpG sites. Based on conditional analysis, these represent 1,847 distinct loci with genetic variants that influence DNA methylation in trans
(range, 1–298 trans CpG sites per genetic locus, Fig. 1 ). The genes in cis to the sentinel trans acting SNPs were enriched for genes with
known regulatory function (mean enrichment, 1.64-fold, empirical P = 5.99 × 10 ; gene list and pathway analysis in Supplementary
Tables 18  and 19 , respectively), including documented transcription factors such as those encoded by CTCF, NFKB1, REST and TBX6.
Our results support the view that the trans meQTL identify genetic loci encoding factors with key roles as master regulators of genome
structure and function and that the effects of these trans acting loci may be mediated through their remote effects on DNA methylation.

To generate new knowledge of the nuclear proteins involved in mediating trans SNP–CpG relationships, we next identified known
transcription factors with binding sites that overlap the trans CpG signatures of the trans acting genetic loci. Based on power calculations,
we limited the analysis to the 115 sentinel trans meQTL with n ≥ 5 associated CpG sites ( Methods ). At 45 genetic loci (39%), the trans

CpG sites of the respective sentinel SNPs overlapped binding sites of one or more known transcription factors (Fig. 3 , Extended Data

Fig. 8  and Supplementary Table 20 ; false discovery rate (FDR) < 0.05). This represents a 1.8-fold enrichment compared to expectation

under the null hypothesis (P = 7.4 × 10 , binomial test, Methods ). As a sensitivity analysis, we repeated the experiment using data
generated on a MethylationEPIC array to test the impact of increased coverage of methylation markers on identification of overlapping
transcription factors ( Methods  and Supplementary Table 21 ). There was no evidence for false positive findings, but the higher-density

marker set of the EPIC array did increase the number of overlapping transcription factors identified by 14% (Supplementary Table 21 ).

Fig. 3

Candidate genes for sentinel SNPs that are associated with trans CpG sites that overlap transcription factor-binding sites.

a, Evidence for each candidate. Genes that are transcription factors (TFs) in cis and that overlap the trans CpG signatures (‘enriched cis TF’,
purple); genes selected by the random walk analysis including PPIs (blue); and genes that are cis eQTL for the sentinel SNPs (green). The
heatmap in b shows the percentage of associated CpG sites with trans eQTM at each locus (x axis). The heatmap in c shows the enrichment
or depletion of binding of transcription factors (y axis) at the associated CpG sites of each locus (x axis). Odds ratios comparing the
frequency of state annotations at associated CpG sites with background CpG sites are color coded. Odds ratios greater than 10 or less than 0.1
have been set to 10 or 0.1 for improved readability of the color scale. Odds ratios greater than 1 indicate enrichment, while odds ratios less
than 1 indicate depletion.

At four of the 45 genetic loci with trans CpG AQ15  signatures overlapping a transaction factor, the genes in cis to the sentinel SNP
encoded the respective nuclear transcription factor (REST, NFE2, CTCF and NFKB1; FET P = 1.7 × 10 –3.4 × 10 ; Extended Data Fig. 
9  and Supplementary Table 22 ). For this subset of loci, the identified cis-encoded transcription factor is likely to be directly responsible
for the respective trans methylation signature. By contrast, at the remaining 41 loci, the genes in cis to the sentinel SNP did not encode
the transcription factor overlapping the trans CpG sites (Supplementary Table 23 ). We hypothesized that the causal gene in cis at these
trans acting genetic loci may either encode a previously unreported transcription factor, cofactor or interacting protein influencing nuclear
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regulatory pathways. To identify the most likely candidate gene and accompanying molecular pathway for these loci, we integrated the
comprehensive SNP–methylation (meQTL), SNP–expression (eQTL) and methylation–expression (eQTM) data generated in our study
with publicly available protein–protein interaction (PPI) networks and transcription factor-binding maps using an approach based on
random walks ( Methods ). Our approach identified strong candidate genes and their corresponding molecular networks at 19 loci (Fig. 3 ,

Supplementary Tables 24  and 25 , Extended Data Fig. 9  and Supplementary Fig. 3 ). In addition, we prioritized six candidate genes for

the remaining loci, which were unambiguous cis eQTL for only a single gene ( Methods ). To corroborate the candidate genes identified in
cis at these 25 genetic loci, we quantified the number of trans eQTM associated with expression for each of the candidate genes. We
observed significantly more trans eQTM compared to the remaining genes encoded at the trans acting loci (P = 4.5 × 10 , Wilcoxon test;
Supplementary Fig. 4 ).

The	NFKBIE	locus
To illustrate the results of our approach, we highlight SNP rs730775, which is associated with 49 CpG sites in trans (Fig. 4 ). NFKBIE

(empirical P < 0.01; Supplementary Table 24 ) is the most likely trans acting gene for this locus. The SNP is located in the first intron of
NFKBIE and is a cis eQTL for NFKBIE in whole blood (eQTLGen, P = 1.2 × 10 ). Nuclear factor (NF)-κB inhibitor ε (NFKBIE)
directly inhibits NF-κB1 activity and is significantly coexpressed (P = 2.2 × 10 ) with NF-κB1, which directly binds at 31 of the 49
trans-associated CpG sites (odds ratio = 7.8, P = 9.1 × 10 ; Supplementary Table 23 ). AQ16 The trans CpG sites localize to genes of the
NF-κB pathway such as IKBE and TRAF6 and are enriched for the gene ontology (GO) term ‘regulation of interleukin (IL)-6 biosynthetic
process’ (GO:0045408; P = 3.75 × 10 ; hypergeometric test). The NFKBIE locus is associated with rheumatoid arthritis[ 43 ], which is
characterized by IL-6-mediated autoimmunity and can be treated with IL-6-targeting drugs[ 44, 45 ]. We performed a colocalization
analysis of molecular QTL and genome-wide associations using enloc[ 46 ]. On average, the posterior colocalization probability was 70%

at the sentinel SNP rs730775 (Fig. 4a ), supporting a shared causal variant for the majority of the CpG sites. Our results suggest that
genetic variation at the NFKBIE locus is linked to rheumatoid arthritis through trans acting regulation of DNA methylation by NF-κB.

Fig. 4

Regulatory networks and locus colocalization analyses.

a–d, Identified random walk networks and results for the individual colocalization analyses for the NFKBIE, MGA, COMMD7 and SENP7
loci, respectively. The networks illustrate connections between the genotype at SNPs (yellow rectangles), the identified candidate genes
(yellow ellipses), which AQ17 are connected through a network of protein–protein and protein–DNA interactions to methylation at the trans-
associated CpG sites (beige squares) and the expression of genes encoded at CpG sites. Ellipses represent genes (1) encoded at the genetic
locus identified by the sentinel and prioritized by the random walk (yellow filled symbol), (2) encoded at CpG loci (beige border) or (3) part
of the PPI network (black border). For genes in the PPI network, the filled color of ellipses represents the random walk score as indicated in
the colored bar legend. Edges connecting genes, SNPs and CpG sites represent (1) PPIs, (2) protein–DNA interactions identified by
transcription factor-binding site (TFBS) overlap and (3) genomic proximity (<1 Mb). Bold edges indicate significant correlation with gene
expression. Other plots show (1) the genome-wide association signal AQ18  (−log  (P)) and (2) the colocalization signal (mean per-SNP
colocalization probability (mean SCP) over all trans CpG sites) on the y axis for available SNPs in the genomic region around the respective
genetic loci (x axis). Coloring of individual SNPs indicates LD (R ) with the lead SNP in the locus.
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The	MGA,	COMMD7	and	SENP7	loci
The trans CpG sites linked to rs17677199 overlap the binding sites of three transcription factors encoded at other loci: MYC-associated
factor X (MAX), E2F transcription factor 6 (E2F6) and nuclear transcription factor Y subunit β (NFYβ) (Fig. 4b ). SNP rs17677199 lies
in cis to MGA, encoding a known interacting protein for MAX, and MGA, MAX and E2F6 expression shows strong covariation. MGA is
thus a strong candidate linking rs17677199 with disturbances in MAX and E2F6 binding. SNP rs17677199 is associated with heightened
blood pressure, aortic aneurysms and subarachnoid hemorrhage. Both MAX and E2F6 are compelling candidates for mediating the effects
of rs17677199 on DNA methylation and vascular disease. Mutations in MAX are associated with abnormalities of blood pressure
regulation, including development of pheochomocytoma, a catecholamine-secreting tumor[ 47 ]. In addition, the E2F family of
transcription factors is implicated in vascular function and blood pressure regulation[ 48 ]. E2F transcription factors regulate synthesis of
dihydrofolate reductase (DHFR), the rate-limiting salvage enzyme for tetrahydrobiopterin, an essential cofactor for endothelial nitric
oxide synthase. Colocalization analysis with fastenloc supports a shared causal variant underlying DNA methylation of trans meQTL
CpG sites and diastolic blood pressure (Fig. 4b ).

SNP rs6141779 is associated with ten trans CpG sites. The only gene at this locus is COMMD7 (COMM domain-containing 7), which is
also an eQTL for the sentinel SNP and thus a highly plausible cis candidate gene. Our pathway analysis linked COMMD7 to NFKB1
through covariation in expression (Fig. 4c ). COMMD7 interacts with the NF-κB complex and suppresses its transcriptional activity[ 49 ].

Sentinel SNP rs6141779 is strongly associated with white cell subset composition[ 50 ]. Colocalization analysis supports multiple shared
causal variants for basophil counts and DNA methylation with average posterior probabilities over CpG sites ranging from 7% to 66%
(Fig. 4c ).

We also replicated and extended results for the known trans acting locus SENP7 (refs. [ 18, 23 ]) identified by SNP rs9859077 (Fig. 4d ).
Our pathway and colocalization analyses provide new insights into the molecular mechanism linking SENP7 with trans regulation of both
DNA methylation and gene expression on chromosome 19 and into the body composition, leukocyte traits and inflammatory diseases
linked to this locus[ 51 ].

Experimental	validation	at	the	ZNF333	locus
At the genetic locus identified by rs6511961, the putative candidate gene is ZNF333 (Supplementary Table 24 )[ 52 ]. Expression of
ZNF333 in our participants is associated with rs6511961 and covaries with expression of TAL1 and CDK9, genes known to encode nuclear
transcription factors (Extended Data Fig. 10 ). SMR supports a causal relationship between cis expression of ZNF333 and trans
methylation, with colocalization analyses providing some evidence for rs6511961 as a common underlying genetic driver (coloc PP4,
0.27).

To further test the hypothesis that ZNF333 AQ19  contributes to the relationship of rs6511961 with its trans CpG signature, we carried out
ChIP–seq using FLAG- and/or Myc-tagged ZNF333 constructs. ChIP–seq confirmed site-specific DNA binding (Fig. 5  and Extended

Data Fig. 10 ). The putative binding motif for ZNF333 is TG(AG)*TCA. The binding sites for ZNF333 were enriched for motifs of
known transcription factors (P < 10 ), supporting the view that ZNF333 binds sites involved in genome regulation. Furthermore, we
found that 35% of the CpG sites associated with rs6511961 in trans were in or near (<500 bp) ZNF333 DNA-binding sites (FET P < 0.05,
Fig. 5 ). Immunoprecipitation mass spectrometry (IP–MS; Supplementary Note  and Supplementary Tables 26 – 28 ) experiments
provided further experimental evidence to support the hypothesis that ZNF333 encodes a DNA-binding protein that determines, at least in
part, the trans CpG signature of rs6511961.

Fig. 5

Experimental evaluation of ZNF333 by ChIP–seq.

a, Regional plot illustrating the overlap of the trans CpG signature for SNP rs6511961, with the ChIP–seq signature for ZNF333. Top,
−log  (P values) (y axis) of the association of each CpG site in the region (genomic position on the x axis) with the trans acting SNP
rs6511961. The lead CpG associated with rs6511961 is identified by a diamond; color coding of other CpG sites at loci (circles) describes
their correlation (r) with the lead CpG site. Middle, genomic coordinates of binding sites of ZNF333 identified by ChIP–seq are shown as
purple boxes. Bottom, gene annotation (exons, blue boxes; introns, blue lines). b, Venn diagram showing the overlap between binding sites
from biological replicates (rep) of ZNF333 ChIP–seq using either anti-FLAG or anti-Myc antibodies. c, Circos plot summarizing (1) the
genomic distribution of CpG sites associated in trans (inner connections) with rs6511961 at the ZNF333 locus and (2) the DNA-binding sites
of ZNF333 identified by ChIP–seq studies (green bars). d, The observed and expected proportions of CpG sites that overlap ZNF333 DNA-
binding sites (interval size around the peak of 500 bp) compared to the background frequency of all tested CpG sites. Significant enrichment
is shown by permutation testing with matched background ( Methods ). Enrichment is robust to selection of interval size around the peak,
from 100 bp (2.7-fold) to 1,000 bp (4.5-fold).
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Population-specific	effects	at	meQTL
Among our 11.2 million meQTL, 1,354,623 (12%) showed evidence for an interaction with ancestry at P < 4.5 × 10  (that is, P < 0.05
after Bonferroni correction for 11.2 million tests). Identified SNPs were enriched for blood composition and immune and cardiometabolic
traits compared to background expectations (Supplementary Tables 29  and 30  and Extended Data Fig. 7 ). Our results are in line with
findings that genetic loci associated with blood cell counts display substantial heterogeneity between populations and that gene regulatory
programs in immune cells are subject to recent population-specific adaptation[ 53, 54 ].

Interaction	analysis	of	meQTL	with	environmental	context
As a final experiment, we re-examined the relationship of SNPs with CpG sites in the cosmopolitan set of meQTL, seeking evidence for
an interaction with white blood cell composition, BMI or cigarette smoking ( Methods ) as examples of biological traits that are

anticipated or previously reported to have a strong relationship with DNA methylation[ 8, 55, 56, 57, 58, 59 ]. We found that 130,016
(~1.1%) of our 11.2 million meQTL showed evidence for an interaction with one or more of the phenotypes tested (at a Bonferroni-
corrected threshold of P < 4.5 × 10 ; Supplementary Table 31 ). White cell subsets generated the highest number of interaction meQTL

(‘iQTL’), and these showed evidence for replication between Europeans and South Asians (Fig. 6a ). By contrast, there was little evidence
for an effect of BMI or smoking on the genetic regulation of methylation in blood cells.

Fig. 6

White cell iQTL.

a, AQ20 Plot shows replication of effect sizes of significant iQTL (CD8  T cells) between KORA and LOLIPOP cohorts. Axes indicate
genotype–cell type interaction effect sizes; points show individual associations. b, Bar plot indicates replication of iQTL in isolated cells.
The y axis shows the total number of associations, and the x axis shows the respective cell types. Dark blue areas indicate the proportion of
replicating associations; light blue areas indicate the proportion of non-replicating associations. CD4T, CD4  T cells; CD8T, CD8  T cells;
mono, monocytes. c, Volcano plots highlighting the enrichment of iQTL SNPs with genome-wide association information in diverse traits.
The y axis shows −log  values of QTLEnrich P values; the x axis shows the log  fold enrichment of observed GWAS SNPs among iQTL
compared to expected values. Plots are split by analyzed cell types. Points reflect individual genome-wide associations; their colors represent
the respective phenotype category. d, An example association plot for the rs174548–cg21709803 iQTL in KORA data, separated into
individuals with ‘high’ and ‘low’ abundance (above and below the median, respectively) of CD8  T cells. The y axis indicates methylation
residuals; the x axis shows genotypes. Box plots indicate medians (center lines) and first and third quartiles (lower and upper box limits,
respectively; whisker extents, 1.5-fold of interquartile ranges). Points indicate outliers. e, The same association plot as in d but using data
from isolated cells (indicated by different shades of gray). f, Manhattan plot of meQTL, asthma GWAS and iQTL results for the selected
AQ21 iQTL example show colocalization of association signals. The x axis indicates the genomic region around the rs174548 SNP; the y

axis indicates the −log  of association P values. Individual points represent SNPs in the locus. Coloc prob., colocalization probability.
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Significant interactions with blood cell proportions can be indicative of meQTL with stronger or weaker effects in specific cell types[ 60

]. Cell type specificity of iQTL is supported by the high replication rates of iQTL in isolated CD4  and CD8  T cells (Fig. 6b ). We
expanded our iQTL analysis from cosmopolitan meQTL to a genome-wide cis iQTL analysis and discovered a total of 16,135 iQTL (P < 
8.8 × 10 ; Supplementary Table 31 ), of which 64% were independent of cosmopolitan meQTL (LD R  < 0.2). The presence of an iQTL
indicates that the relationship between methylation levels and genotype varies depending on the abundance of a specific cell type. SNPs
that are part of white cell iQTL were enriched for association with phenotypic variation in GWASs (number of phenotypes enriched at
FDR < 0.05 in the QTLEnrich analysis: CD4  T cells, n = 18; CD4  T cells, n = 11; monocytes, n = 23; Supplementary Table 32 ),

including blood cell traits, immune traits and allergies (Fig. 6c ). We showed that rs174548 in the FADS1 gene shows increased

correlation with DNA methylation in participants with high abundance of CD8  T cells (Fig. 6d,e ). Fatty acid desaturase 1 (FADS1) is a
key enzyme in the metabolism of fatty acids. SNP rs174548 is strongly associated with concentrations of arachidonic acid and other
metabolites in fatty acid metabolism[ 61, 62 ], blood eosinophil counts[ 50 ] and inflammatory diseases such as asthma (GWAS, P = 2.5 × 

10 )[ 63 ]. Colocalization analysis indicated a shared causal variant for rs174548 and asthma (coloc PP4 = 0.63, Fig. 6f ), providing a
pathway linking fatty acid metabolism in CD8  T cells with immune phenotypes. This SNP is not detected as a cosmopolitan meQTL,
highlighting the potential for iQTL analysis to improve annotation of functional genetic variants and to generate hypotheses about the
cellular specificity of traits.

Discussion
We identify 11.2 million unique SNP–CpG associations in peripheral blood, including 467,915 meQTL associations that operate in trans
and that comprise pairwise relationships between 1,847 genetic loci and 3,020 methylation loci. Key strengths of our study design include
use of stringent statistical thresholds and replication testing across population groups and tissues to enable identification of high-confidence
generalizable meQTL. Both the SNPs and CpG sites that form meQTL pairs are enriched for multiple functionally relevant characteristics,
including shared chromatin state, Hi-C interaction, association with cis and trans gene expression and links to multiple metabolic and
clinical traits. Candidate genes at trans acting genetic loci are enriched for nuclear transcription factors and their interacting proteins.
Molecular interaction data, supported by colocalization analyses, identify multiple nuclear regulatory pathways, linking sequence variation
to disturbances in DNA methylation and molecular and phenotypic variation. This includes the UBASH3B (BMI), NFKBIE (rheumatoid
arthritis), MGA (blood pressure) and COMMD7 (white cell counts) loci. As proof of principle, we use ChIP–seq to provide experimental
support for ZNF333 as a AQ22 new trans acting genomic regulator. Finally, we use interaction analyses to identify both population- and
cell lineage-specific meQTL effects that are biologically relevant. This includes meQTL SNP rs174548 in FADS1, with the strongest effect
in CD8  T cells, linking fatty acid metabolism with immune dysregulation and asthma. Our study thus advances understanding of the
relationships between DNA sequence variation and DNA methylation, thereby providing new insights into the molecular networks involved
in nuclear regulation and the potential pathways linking genetic variation with human phenotype.

To move beyond investigation of cosmopolitan regulatory effects in mixed cellular populations, we extended our analyses to identify cell
lineage- and population-specific processes. White cell subset interaction analyses revealed meQTL with stronger or weaker effects in
specific cell types. We identified many thousands of white cell-specific iQTL, which were strongly supported by high replication rates in
isolated CD4  and CD8  T cells. SNPs that are part of white cell iQTL are enriched for association with phenotypic variation in GWASs,
notably blood cell traits, immune traits and allergies. We highlight the iQTL SNP rs174548 in the FADS1 gene, which shows increased
correlation with methylation in CD8  T cells. FADS1 plays a key role in fatty acid metabolism, and genetic variation at this locus is well
known to be a determinant of concentrations of arachidonic acid, eicosanoids and blood lipid levels[ 61, 62 ]. Our iQTL analysis suggests
that genetic variation at FADS1 has a specific impact on regulation of FADS1 in CD8  T cells and may help explain the relationship of this
locus with inflammatory diseases such as asthma[ 63 ]. CD8  T cells contribute to the development of asthma, including recruitment to
pulmonary sites and secretion of the pro-inflammatory cytokines IL-13 and IL-4 (ref. [ 64 ]). People with asthma have increased cytokine
release by CD8  T cells, and cytokine activity is related to asthma severity[ 65 ]. Our interaction analyses of meQTL data thus shed new
light on the mechanisms impacting DNA methylation in white blood cells, an approach that may enable identification of cell-specific
patterns of DNA regulation in other studies of tissue samples with mixed cellular composition[ 60 ].

Our study provides new insights into the genetic regulation of DNA methylation and reveals multiple new nuclear regulatory networks. Our
findings advance understanding of the biological pathways underpinning phenotypic variation and will inform hypothesis-driven
experimental studies to define the specific molecular mechanisms involved.

Methods
Further details of experimental methods and data analyses are provided in the Supplementary Note .

Discovery	and	replication	of	genetic	variants	influencing	DNA	methylation
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A summary of the participating population cohorts is provided in Supplementary Tables 33  and 34 . Genome-wide association was

carried out in Europeans and South Asians separately[ 24 ]. First, methylation residuals were derived from a linear regression of the
percentage methylation (outcome) with technical and clinical predictors: age, sex, estimates of white blood cell subpopulations and
principal components of control probe intensities (Supplementary Table 34 ). Association testing of methylation residuals with genotypes
was carried out using Quicktest. Genome-wide significance was set to P < 10 , which corresponds to P < 0.05 after Bonferroni
correction for the ~4.3 trillion statistical tests performed, a choice consistent with other recent publications[ 19, 20 ]. Replication testing
was performed using linear regression in R, and combined analysis of discovery and replication data was performed with inverse-variance
meta-analysis (R package meta). Associations were considered replicated when the association showed consistent direction of effect
between discovery and replication, replication P < 0.05 and combined P < 10 . We assessed our meQTL for enrichment with SNPs
known to influence white blood cell count to test for confounding by variation in white cell subsets (Supplementary Table 35 ).

Replication	across	platforms	and	cell	types
We used DNA methylome data to carry out cross-platform replication of meQTL, with permutation testing to establish whether the
overlaps observed were more than those expected by chance[ 25 ]. Replication across tissues was initially tested using genomic DNA
from (1) isolated white cell subsets (n = 60 individuals), (2) isolated visceral adipocytes (n = 48 individuals) and (3) isolated subcutaneous
adipocytes (n = 48 individuals). Genome-wide genotyping (Illumina OmniExpress) and quantification of DNA methylation (Illumina
EPIC array) was performed according to the manufacturer’s recommended protocols. Imputation of unmeasured genotypes was performed
using the reference panel from the 1000 Genomes project phase 3. We tested associations between SNPs and CpG sites using linear
regression. We additionally carried out replication testing in 603 subcutaneous adipose tissue samples collected in the MuTHER study.
Methylation profiling was performed using the Illumina Infinium HumanMethylation450 BeadChip. Genotyping was performed with a
combination of Illumina arrays (HumanHap300, Human Hap610Q, 1M-Duo and 1.2MDuo 1M). Associations between SNPs and DNA
methylation levels were tested in samples of related individuals using GEMMA software[ 66 ].

Conditional	analysis	and	linkage	disequilibrium	pruning
Local correlations between SNPs (LD) and between neighboring CpG sites lead to redundant pairs of SNPs and CpG sites representing
the same meQTL. We used a two-stage approach to identify independent associations among all identified SNP–CpG pairs
(Supplementary Fig. 1 ). We first performed iterative conditional analysis using individual-level data from the European and South Asian
discovery datasets. For each CpG, the most strongly associated SNP (lowest P value) was selected. Association testing was then repeated
for all SNPs that had previously been associated at P < 10  with that CpG but including the most strongly associated SNP as a predictor
in the regression model. Analysis was carried out in Europeans and South Asians separately, followed by meta-analysis. From the SNPs
that remained significantly associated (P < 10 ), the most strongly associated SNP was selected, and the process was repeated until no
SNPs remained. Independently associated SNPs for the respective CpG were then carried forward. This yielded a parsimonious set of
84,456 SNPs independently associated with one or more CpG sites (Supplementary Table 8 ).

While this step reduces redundancy introduced by LD between SNPs, it creates a scenario in which the same genetic locus can be
represented by different SNPs. This is caused by the fact that the most strongly associated SNP for each genetic locus (that is, the SNP
conditioned on) will vary from one CpG to another. To further reduce the impact of local correlation (Supplementary Fig. 1 ), we
combined highly correlated SNPs into SNP loci and highly correlated CpG sites into methylation loci. To achieve this, the most strongly
associated marker (lowest P value) was selected, and all markers with R  > 0.2 and distance <1 Mb were then assigned to a corresponding
locus. Of the remaining markers, the most strongly associated marker was again chosen, and the process was repeated until no markers
remained. This approach was applied to SNPs and CpG sites within each category (cis, long-range cis and trans) separately.
Supplementary Fig. 5  shows a sensitivity analysis on the number of independent loci for varying R  thresholds.

Enrichment	of	meQTL	within	chromatin	states
We obtained chromatin state annotations (15-state model) defined by chromHMM segmentation of histone modification ChIP–seq data[
67 ] from the Roadmap Epigenomics Project for primary blood cells[ 68 ]. As we were working with whole blood, we combined these

primary epigenomes into a weighted epigenome annotation based on estimated cell fractions in whole blood ( Supplementary Note  and

Supplementary Table 36 ). We used permutation testing to assess for enrichment compared to expectations under the null hypothesis.

Genetic	variants	influencing	gene	expression	in	Europeans	and	South	Asians
Transcriptome-wide measurements of gene expression in blood along with measurements of DNA methylation from the same blood
sample are available for European (n = 853) and South Asian (n = 693) participants of the KORA and LOLIPOP studies (Illumina
HumanHT-12 version 3 and 450K methylation arrays, respectively). These data enable evaluation of relationships between SNPs,
methylation and gene expression using individual-level data in relevant populations and with a range of statistical models to allow for
sensitivity analyses and investigation of potential confounding effects. Expression values were summarized to gene-level estimates by
averaging the log  transformed expression levels of probes mapping to the same gene. To quantify the relationship between genetic
variation and gene expression, we first derived residuals for gene expression using linear regression of gene expression levels against sex,
age, RNA integrity number (RIN), RNA-amplification plate (KORA), RNA-conversion batch (LOLIPOP), sample storage time (KORA)
and RNA-extraction batch (LOLIPOP). Expression residuals were then used as outcome variables in a linear regression model with SNP
dosage as the independent variable, corresponding to the following linear model formulae: (1) gene ≈ SNP + sex + age + RIN + RNA-
amplification plate + storage time (KORA) and (2) gene ≈ SNP + sex + age + RIN + RNA-conversion batch + RNA-extraction batch
(LOLIPOP). Data analysis was performed using Matrix eQTL[ 69 ], and results were analyzed separately for Europeans and South Asians.
We then combined results between Europeans and South Asians using inverse-variance meta-analysis. Statistical significance was inferred
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at P = 7.98 × 10  (P < 0.05 after Bonferroni correction for the number of SNP–expression pairs tested). We supplemented results from
our participants (‘KORA–LOLIPOP eQTL dataset’) with eQTL results from publicly available resources (GTEx and eQTLGen)[ 70, 71 ].
The specific datasets used for each experiment are documented.

SNPs	influencing	DNA	methylation	are	enriched	for	association	with	gene
expression
To confirm that SNPs influencing methylation are more likely to affect gene expression, we randomly selected 100 sets comprising 1,000
SNPs ‘observed’ to be associated with DNA methylation from the list of SNP–CpG associations after pruning. For each ‘observed’ set,
we generated a ‘background’ set of SNPs to quantify expectations under the null hypothesis. Each set of ‘background’ SNPs comprised
1,000 SNPs that were (1) not part of a significantly associated SNP–CpG pair and (2) matched with the ‘observed’ SNPs for minor allele
frequency (±2%) and distance to the nearest gene (±10 kb) but were selected otherwise at random. We then determined the proportion of
SNPs associated with gene expression in 100 ‘observed’ sets and 100 ‘background’ sets. Association of observed and background SNPs
with gene expression was tested in our KORA–LOLIPOP eQTL dataset (statistical significance was inferred at P = 5.06 × 10  as above).
The probability of enrichment was calculated by comparison of ‘observed’ sets with ‘background’ sets using a t-test.

Association	of	DNA	methylation	with	gene	expression
We quantified associations of DNA methylation with gene expression using our KORA–LOLIPOP gene expression dataset (Europeans, n 
= 853; South Asians, n = 693). To test for and exclude CpG–gene pairs that arose due to confounding by the underlying genetic
background, we derived methylation residuals by correcting methylation (β) values for the sentinel SNP(s) associated with the
corresponding CpG (formula, CpG ≈ ΣSNP ). Gene expression residuals were used as outcome variables in a regression model
with methylation residuals as the independent variable (formula, gene  ≈ CpG ). Data analysis was performed using Matrix
eQTL[ 69 ], and results were analyzed in Europeans and South Asians separately. At Bonferroni-corrected P-value thresholds, there was a

high degree of reproducibility for eQTM results between the populations (Supplementary Table 37 ). We therefore combined results
between Europeans and South Asians using inverse-variance meta-analysis (R package meta). Statistical significance was inferred at P = 
8.7 × 10  (P < 0.05 after Bonferroni correction for all possible CpG–expression pairs). We carried out association tests with or without
adjustment of the methylation residuals for white cell subsets (that is, with or without Houseman white cell subset estimates using the
formula CpG  ≈ CD8  T cells + CD4  T cells + NK cells + B cells + monocytes) to test for confounding by cell subset composition
(Supplementary Table 38 ).

In addition, we compared the proportion of putative cis eQTM from analyses with and without correction for white cell subsets that were
supported by SMR. SMR tests for association of an exposure with an outcome using summary-level data from GWAS and other QTL
studies and using a genetic variant as the instrumental variable to avoid non-genetic confounding[ 26 ]. Colocalization analysis was
subsequently performed for loci with a potentially causal relationship between DNA-methylation levels and gene expression in cis (PP4 > 
0.6)[ 46 ].

Enrichment	of	meQTL	SNPs	and	CpG	sites	for	association	with	phenotypes
We performed enrichment analyses of meQTL and iQTL SNPs for association with clinical traits using QTLEnrich[ 72 ], which includes
uniformly processed summary statistics of 114 genome-wide associations. We tested meQTL SNPs for enrichment as protein QTL and
metabolite QTL using the PhenoScanner version 2 database[ 63, 73 ]. To evaluate the biological relevance of our sentinel CpG sites, we
first quantified the association of DNA methylation with 49 clinical traits (physical measures, health status, lifestyle behaviors and
biochemical traits) and with the concentration of 228 metabolites measured by NMR metabolomics in the LOLIPOP cohort (n = 2,866
participants with DNA-methylation data available). We used permutation testing to determine expectations under the null hypothesis (
Supplementary Note  and Supplementary Table 39 ).

Identification	of	cis	eQTL	influencing	CpG	sites	in	trans
We used SMR analysis to assess whether the proximal candidate gene at a trans acting genetic locus showed covariation with the trans
methylation signature (triangulation of cis eQTL, trans meQTL and trans eQTM data). Results for cis SNP–expression (cis eQTL)
associations were obtained from eQTLGen[ 71 ], while trans SNP–methylation (trans meQTL) and SNP–expression (trans eQTM)
associations were as reported in the current study. We started with trans sentinel meQTL SNPs reported in our current study and identified
significant cis eQTL associations at a Bonferroni-corrected threshold. For loci for which SMR estimates suggested a potential causal
relationship between cis gene expression and trans methylation levels (P < 0.05 after Bonferroni correction), this was followed up with a
coloc analysis (PP4 > 0.6). In addition, we also evaluated the complementary model in which the causal inference analysis started with
observed trans eQTM and assessed the proportion that was correctly inferred by SMR.

Enrichment	of	trans	CpG	sites	in	transcription	factor-binding	sites
We obtained TFBSs for 145 distinct DNA-binding proteins from 246 ChIP–seq experiments performed on blood-related cell lines
(Supplementary Table 20 ). Data were uniformly processed by the ReMap resource[ 74 ]. We defined a CpG site to be bound if a binding

site was located within a window of 100 bp (50 bp in each direction; Supplementary Fig. 6 ). To examine the relationship between the
trans CpG signatures of the sentinel SNPs and the TFBS of DNA-binding proteins, we first determined the minimum number of trans
CpG sites associated with a sentinel SNP needed for detection of enrichment in the TFBS. This number depends on whether the smallest
achievable P value in the Fisher test is less than an adjusted significance level, P  ( Supplementary Note ). Based on this analysis, we
tested each of the 115 sentinel SNPs with ≥5 associated trans CpG sites for over-representation or under-representation in the TFBS for
each of the 246 ChIP–seq datasets for DNA-binding proteins. For each sentinel SNP, we resampled 10,000 sets of CpG sites of equal size
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to compute empirical P values for the overlap of the observed trans CpG sites with the TFBS. AQ23 We carried out similar analyses using
the MethylationEPIC array to validate our findings.

Random	walk	analysis
We set out to identify the most likely trans acting gene for each locus with at least five trans acting SNP–CpG pairs overlapping a TFBS
by linking the genes in the locus to the associated CpG sites through a sequence of PPIs and protein–DNA interactions. We used PPIs that
had experimental evidence or database information available in the STRING database[ 75 ]. The initial network comprised 12,769
proteins and 186,674 interactions. In addition, we restricted the network to 8,880 proteins that were expressed (median reads per kilobase
per million sequenced (RPKM) > 0.1) in whole blood in the GTEx dataset[ 70 ] and further to the largest connected component of the
network comprising 8,668 proteins and 99,143 interactions used for the analysis. Formally, we defined the PPI network P = (V , E ),
where V  is the set of nodes (or vertices) corresponding to proteins and E  is the set of undirected edges corresponding to interactions
between proteins. Similarly, we represent protein–DNA interactions as graph D = (V , E ), where V  is the union of 145 proteins for
which ChIP–seq data were available (see above) and the CpG sites that were within 50 bp of sites bound by these proteins.

For each locus, we identified the set of candidate genes C as all genes encoded at the SNP locus that are part of the PPI network. Locus
regions were defined based on the results of the pruning analysis that identified sentinel SNPs. Specifically, we identified all trans-
associated CpG sites that were assigned to the same sentinel SNP. For these trans CpG sites, we obtained all SNPs that were (1)
associated with the CpG in the complete, cosmopolitan pairwise analysis of SNP–CpG associations and (2) located in cis (within 1 Mb)
with the sentinel SNP. In this way, the trans acting loci are refined by patterns of LD and observed associations with methylation levels
but are not larger than 1 Mb.

Next, we identified the set of CpG sites S that were associated with the respective sentinel SNP at the trans acting genetic locus. We
added the CpG sites S and their protein–DNA interactions E (S) to the PPI graph P to form the locus graph G = (V  + S, E  + E (S)).
AQ24 Finally, we used the topology of the locus graph G to rank candidate genes C. The ranking is based on random walks and is

conceptually similar to published studies . We represent graphs (V, E) by their adjacency matrix A = (a ) with entries a  = 1 if (i, j) in
E and 0 otherwise. AQ25 We defined the symmetric transition matrix T = (t ) with t  = a  × (d d ) , where d  is the degree of node i,
specifying the probability to move from node i to node j in one step of the random walk[ 76 ]. Consequently, transition probability
matrices for paths with t steps can be computed as T . We initiated random walks at the CpG sites S and computed the transition
probability T  to start at CpG site s in S and reach candidate gene c in C in t steps. As the lengths of the paths t are not known a priori,
we sum the transition probabilities over all possible path lengths t = (0,…, ∞). The random walk has a stationary state with a distribution
that is defined by the degree distribution of the nodes, which corresponds to the first eigenvector ψ  of the transition matrix T with
eigenvalue λ  = 1 (ref. [ 76 ]). We were not interested in this stationary state, so we removed the contribution of the first eigenvector from
the transition matrix and computed the aggregated transition probability matrix M = Σ  (T − ψ ψ ) . This infinite sum has a closed-
form solution[ 77 ]; however, the resulting matrix M is not sparse, and therefore the computation is very memory intensive. Alternatively,
the solution can be approximated using spectral decomposition of the transition matrix[ 77 ]:

To compute the ranking of candidate genes while saving memory, we approximated the aggregated transition matrix M using the first n = 
500 eigenvectors and stored only the submatrix of M that holds the transitions from CpG sites s in S and candidate genes c in C. AQ26
The final ranking of candidate gene c was computed as the average aggregated transition probability over all CpG sites p  = 1 × (|S|Σ M )

. To assess whether the score p  of a candidate gene was significantly higher than that expected by chance, we performed the same
analysis on B > 100 randomized graphs and computed scores p  for all genes in C to determine the empirical P values for the maximum
score at each locus P(p ) = 1 × (BΣ δ(p  > max p )) . Randomized graphs were constructed by randomly sampling the same number of
|S| CpG sites S  with matched mean and standard deviation of methylation levels (TFBS analysis). The random CpG sites S  were then
added to the PPI graph P to form the background locus graph G  = (V  + S , E  + E (S )). In this manner, we empirically assessed the
probability of ranking scores as extreme as the one observed by transitioning from a random set of CpG sites through the original PPI and
ChIP–seq graph to each of the candidate genes. For each locus, the set of significant candidate genes was defined as C* = (c | P(p ) < 
0.05).

To visualize the results of the random walk analysis, we first defined weights w  for each node i of the locus graph G by the sum of the
random walk score to transition from the CpG sites in S to node i and of the random walk score for transitioning from i to the selected
candidate genes in C* in the trans locus. These weights were normalized and inverted to w*  = max (w ) − w , such that the highest scoring
nodes receive the lowest weights. These weights w* were then used to determine the minimal weight paths from each of the CpG sites in
S to the candidate genes in C* in the trans locus, thus representing paths through nodes with high random walk scores. Nodes on these
minimal weight paths were recorded in the set Q. For each locus, we defined the candidate pathway G  as the subgraph of the locus graph
G with the nodes defined by the union of C*, Q and S and all edges of G between this subset of nodes.

Identification	of	candidate	genes	for	sentinel	SNPs	at	trans	acting	genetic	loci
We combined all available information from transcription factor signatures, PPI random walks and eQTL results (nominal P < 0.01 in our
data or in GTEx whole-blood data) to select candidate gene(s) responsible for the effect of the sentinel SNPs on DNA methylation in
trans. We evaluated random walk-based candidate predictions using GO enrichment analysis and overlap with eQTL results
(Supplementary Fig. 7 ). We observed that a definition of SNP locus based on the association results (LD regions) yielded a higher
proportion of candidates annotated to GO terms for regulators such as ‘regulation of biological process’, ‘DNA binding’ and ‘regulation
of transcription, DNA templated’. We separately noted that the number of candidates with cis eQTL was higher for the analysis in which
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only PPIs between genes expressed in whole blood were considered. Therefore, we used PPIs of genes expressed in whole blood and the
LD-based definition of trans loci to identify candidates by random walk analysis. We established the following order of evidence for
prioritization: (1) transcription factors encoded at the trans acting genetic locus that are enriched for binding at the associated CpG sites
and that are a cis eQTL for the sentinel SNP, (2) transcription factors encoded at the trans acting locus that are enriched for binding at the
associated CpG sites but that do not have an eQTL with the sentinel SNP, (3) candidates that were identified through the random walk
analysis (empirical P < 0.05) and have a cis eQTL, (4) random walk candidates without a cis eQTL and (5) singular cis eQTL at the trans
acting genetic locus without other evidence.

Integrated	network	analysis
To set the results of the random walk analysis into context, we integrated the candidate pathways defined above for each trans acting
genetic locus with genotype, gene expression and methylation data for Europeans (KORA) and South Asians (LOLIPOP). Hence, we
collected for both cohorts (1) genotype data for the sentinel SNP (2) methylation β residuals (methylation data) for all CpG sites
associated in trans and (3) gene transcript expression residuals (gene expression data) for all genes within a 1-Mb window of the
respective SNP and CpG sites as well as the genes used in the random walk analysis. Genetic variation in cis could also influence
expression and methylation measurements. AQ27 To avoid confounding by cis effects, we therefore adjusted expression and methylation
data for previously reported cis eQTL[ 78 ] and for cis acting SNPs identified in our study using a linear regression model (that is, getting
residuals (1) for genes using gene  ≈ gene  + eQTL  + eQTL  + … + eQTL ) and (2) for CpG sites using CpG  ≈ CpG  + 
meQTL  + meQTL  + … + meQTL ). The residuals were used to test for association individually in each cohort and
subsequently combined using fixed effects meta-analysis. Resulting P values were adjusted for multiple testing using the Benjamini–
Hochberg method[ 79 ]. In the resulting network, vertices represent variables (genotype, gene expression and methylation), and edges
represent significant correlation between these variables (FDR < 0.05). Correlation edges found between a CpG and a CpG gene (that is, a
gene found within the 1-Mb window around the CpG) were added to the candidate pathway graph ( Random walk analysis ) for each
locus.

Colocalization	analysis	of	trans	meQTL
Colocalization analysis of trans meQTL and GWAS was performed using fastenloc[ 46 ], a Bayesian method to determine the probability
of a shared causal variant for a pair of molecular (meQTL) and physiological (genome-wide associated) traits. First, we used
PhenoScanner version 2 (refs. [ 63, 73 ]) and the GWAS catalog[ 80 ] to select genome-wide associated traits and studies of interest for
each locus. We obtained GWAS summary statistics for each trait of interest for the region (±500 kb) around the sentinel SNP
(Supplementary Table 40 ). fastenloc was used to determine SNP-level posterior colocalization probabilities for molecular and
physiological traits for all CpG sites associated with the same locus in trans. We summarized the colocalization probabilities across all
trans CpG sites using the average SNP-level posterior colocalization probabilities.

ChIP–seq	validation	of	ZNF333	binding	at	the	identified	DNA-methylation	sites
The plasmid used to overexpress dual-tagged (Myc and FLAG) human ZNF333 (RC216457) was purchased from OriGene Technologies.
The ZNF333 plasmid and the control GFP plasmid (pmax-GFP, Lonza) were transfected into HCT116 cells with jetPRIME transfection
reagent (Polyplus) according to the manufacturer’s instructions in 15-cm tissue culture dishes. Culture medium was refreshed after 24 h,
and cells were maintained for another 24 h. At 48 h, cell lysates were used for ChIP–seq. Western blotting using anti-Myc and anti-FLAG
antibodies was also performed to confirm high ZNF333 expression. Raw sequencing from ChIP–seq experiments was mapped using
BWA. The overlap between ZNF333 ChIP–seq peaks (union of Myc and FLAG) and rs6511961 target CpG sites (in trans) was calculated
using a window size of 500 bp. Statistical significance was calculated based on permutation testing.

Interaction	analysis	of	meQTL	with	their	environmental	context
We ran interaction analyses for the cosmopolitan SNP–CpG pairs using linear regression models with the methylation β value as the
dependent variable and an interaction between the SNP and phenotype of interest as the independent variable of interest. The phenotypes
of interest examined were smoking (yes or no), BMI (kg m ) and estimated proportions of CD8  T cells, CD4  T cells and monocytes.
The analyses were run for KORA F4 and LOLIPOP separately. Significant results in one cohort were examined for replication (P < 0.05,
same direction of effect) in the other cohort. In a second step, we repeated the interaction analysis with the covariates age, sex, BMI and
white blood cell count for all CpG–SNP pairs in cis using tensorQTL (version 1.0.3)[ 81 ]. Statistical significance was inferred at a
Bonferroni-corrected P value of 0.05 per number of tested pairs. We used GOstats for pathway analysis of the iQTL (Supplementary
Table 41 ).

Reporting	Summary
Further information on research design is available in the Nature Research Reporting Summary  linked to this article.
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Extended	data
Extended Data Fig. 1

Study design.

Overview of study design.

Extended Data Fig. 2

Replication testing of meQTLs within and across ancestries.

a: Ancestry-specific replication of SNP-CpG pairs identified by genome-wide association. Effect size: change in methylation (0-1 scale) per
allele copy of the SNP. Axes set to [-0.5,0.5]. b: Ancestry-specific replication, by pair proximity and MAF. Bars: no. of pairs identified in
discovery in given category. Blue: replicated; yellow: not replicated. c: Cross-ancestry replication, by pair proximity and MAF. Top: discovery
in EU, replication in SA; bottom: discovery in SA, replication in EU. Bars: no. of pairs identified in discovery in given category. Blue:
replicated; yellow: not replicated. d: Cross-platform: replication in KORA F4 (N<=1731) of published MeDIP-seq meQTLs, by significance
threshold. Blue lines: no. of replicated results (of 328); histograms: no. of replicated results over 100 randomly selected matched datasets. P-
values: one-sided, no adjustment for multiple testing. See Methods for test description. EU: European; SA: South Asian; MAF: Minor allele
frequency.
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Extended Data Fig. 3

Variance in DNA methylation explained by meQTL SNPs.

Histograms showing the proportions of variance of DNA methylation explained by genetic variants in both populations when variants are
located in cis (left), long-range cis (middle) or trans (right) of the associated CpG site. EU: European; SA: South Asian.

Extended Data Fig. 4

Analysis of proximity between meQTL SNPs and CpGs.© Springer Nature
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Panel a: Histogram showing for each CpG site the genomic distance between CpG and the closest associated SNP from the cosmopolitan set
of 10,346,172 SNP-CpG pairs identified in cis (association confirmed in both Europeans and South Asians). Panel b: Boxplots showing the
proportion of SNP-CpG pairs that reach genome-wide significance for different distance categories (x-axis), compared to SNP-CpG pairs on
different chromosomes (trans).1,000 random samples of 10,000 SNPs were taken. P-values above each box are based on a comparison (one-
sided t-test) between the proportion of SNP-CpG pairs in trans that reach significance, and the proportion that reach significance in the
respective same-chromosome distance window. Boxplots show medians (center lines), first and third quartiles (lower and upper box limits,
respectively), 1.5-fold interquartile ranges (whisker extents) and outliers (black circles).

Extended Data Fig. 5

Functional genomic context of meQTL SNPs and CpGs.

Panel a: Genomic overlap between chromatin state annotations (15- state model; Roadmap Epigenomics Project and SNPs/CpGs identified by
genome-wide association and cross-ancestry replication testing. Results are presented as a heatmap showing the P-values for enrichment (blue)
or depletion (yellow) in the respective chromatin state (two-sided t-test). P-values have been Bonferroni-adjusted for the total number of tests
(see Methods for details). Panel b: Colocalisation of SNPs and CpG sites in promoter and enhancer chromatin states. The histograms show the
frequency at which CpG sites that localise in promoter or enhancer chromatin states have at least one cis-meQTL SNP that localises to the
same chromatin state. Observed (turquoise) cis-meQTL pairs colocalise to the same chromatin state more frequently than matched background
SNP-CpG pairs (grey). Panel c: Distance distributions for cis SNP-CpG pairs 1) localising to the same state (left), 2) where one entity
localises to a promoter/enhancer state and the other to neither promoter nor enhancer state (center) and 3) one entity localises to a promoter
and the other to an enhancer state. Panel d: Overlap of SNP-CpG associations with chromatin contacts in primary cells. The x-axis shows the
fraction of SNP-CpG pairs that localise within the same topologically associated domain (TAD, left panel) or that overlap with Hi-C contacts
(center and right panels). The left panel shows localisation of long-range cis-meQTLs within the same TAD. The center panel shows the
overlap of long range cis-meQTLs (same chromosome, distance SNP - CpG > 1Mb) with contacts from promoter capture Hi-C (PCHi-C). The
right panel shows overlap of trans-meQTL with Hi-C contacts. The blue vertical arrows indicate the overlap observed in the data. The grey
histograms show the distribution of the fraction of randomly sampled SNP-CpG pairs overlapping contact regions for each category.
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Extended Data Fig. 6

Enrichment of meQTL SNPs and CPGs for association with gene expression.

Sentinel meQTL SNPs and CpGs are enriched for association with gene expression in cis and trans (SNPs) and only in cis (CpGs). Panel a:
Results are presented as the proportion of SNPs that are observed to be associated with gene expression in cis (top row) or in trans (bottom
row), stratified by proximity between SNP and CpG for the respective SNP-CpG pair (cis, long-range cis and trans from left to right). Panel
b: Similarly, results are presented as the proportion of CpGs that are observed to be associated with gene expression in cis (top row) or in trans
(bottom row), stratified by proximity between SNP and CpG for the respective SNP-CpG pair (cis, long-range cis and trans from left to right).
Both panels: In each plot, the observed proportion (yellow boxplots) is compared to the proportion expected under the null hypothesis based
on permutation testing (blue boxplots, see Methods). Inset in each figure is the P-value for comparison between observed and expected
proportions (t-test). Boxplots show medians (center lines), first and third quartiles (lower and upper box limits, respectively), 1.5-fold
interquartile ranges (whisker extents) and outliers (black circles). Proportions were calculated based on 100 sets of permutations with 1,000
SNPs (Panel A) or 1,000 CpGs (Panel B) in each permutation.
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Extended Data Fig. 7

Enrichment of meQTL SNPs and CpGs for associations with phenotypic traits.

(A) SNPs influencing DNA methylation (left panel) and SNPs identified to be population interacting meQTL based on our cosmopolitan
discovery analysis (right panel) are both enriched for association with phenotypic traits, Analysis carried out using using QTLEnrich and 114
uniformly processed GWAS summary statistics. The volcano plot shows the log2 fold enrichment of significant GWAS hits among iQTL on
the x-axis and the -log10 of the P-value of the enrichment test on the y-axis. Each point represents one of 114 GWAS studies. The transparency
of the fill colour indicates the false discovery rate (FDR < 5%: no transparency). (B) Sentinel CpGs are enriched for clinical and metabolic
traits. We tested the Sentinel CpGs for association with 277 available clinical and metabolic traits (NMR metabolomics). We used permutation
testing to generate expectations under the null hypothesis, and to determine both the magnitude and probability for enrichment. Results show
strong evidence that our genetically regulated Sentinel CpGs are enriched for association with traits (enriched at P<0.05/277 for 252
phenotypes) with median enrichment 1.10 (IQR: 1.06-1.15).
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Extended Data Fig. 8

CpG sites associated with trans-acting sentinel SNPs are enriched for location in transcription factor binding sites.

Heatmap showing the enrichment (or depletion) of CpG sites for trans-acting sentinel SNPs (x-axis) with the DNA binding sites of known
transcription factors (y-axis). Log2 odds ratios compare the frequency of overlap for the CpGs associated with the respective SNP, compared
to the background frequency of overlap for all tested CpG sites. Results are shown for the 45 sentinel SNPs that show evidence for overlap
with known transcription factor binding sites (out of the 115 tested trans-acting sentinel SNPs with at least five associated CpG sites).
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Extended Data Fig. 9

Trans-acting regulatory networks at the CTCF, NFKB1, REST, NFE2, MAD1L1 and ENRICH1 loci.

(a) Circos plots summarising i. genomic distribution of CpGs associated in trans [inner connections], and ii. known DNA binding sites of
transcription factor encoded in cis [outer ring], for sentinel SNPs at CTCF, NFKB1, REST and NFE2 loci. Inset are observed and expected
proportions of CpG sites that overlap respective DNA binding sites as available for different cell lines (see Methods). FDR < 1.17 × 10  for
all cell lines and transcription factors. (b) Regulatory network of ERICH1 locus illustrating the connection between SNP rs10103269 (yellow
rectangle) and expression of identified candidate gene ERICH1 (yellow ellipse), which is connected through protein-protein and protein-DNA
interactions to methylation at trans-associated CpG sites (beige rectangles). Ellipses represent genes encoded at the genetic locus identified by
the sentinel or that are part of the protein-protein interaction network. Genes marked with an asterisk (*) show co-expression with the
candidate gene. Bold gene names indicate a strong genetic effect of the sentinel on the expression of that gene (eQTL). Fill colour of ellipses
represent the random walk score (colour bar legend). The colour of edges connecting genes and CpG sites represent: i. protein-protein
interactions (purple), ii. protein-DNA interactions identified by TFBS overlap (green), and iii. proximity (distance < 1 Mb) between genes and
SNPs or CpG sites (blue). The thickness of edges represents correlation with gene expression (thick) or no correlation of/with gene expression
(thin). Boxplot shows the effect of sentinel SNP (rs10103269) in cis on expression of ERICH1 with the p-value from linear regression of
expression ~ genotype (n=1,546 biologically independent samples combined from both cohorts). Center line indicates median, lower and upper
box limits correspond to the first and third quartiles, respectively; whisker extent indicates 1.5-fold interquartile range; outliers not shown. (c)
MAD1L1 locus pathway analysis. Annotations and symbols are as described in (b).

Source data
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Extended Data Fig. 10

Experimental validation at the ZNF333 locus.

Panel a. Regulatory network of the ZNF333 locus. Annotations and symbols are as described in Extended Figure 9. The boxplot shows the
effect of sentinel SNP (rs6511961) in cis on expression of the candidate gene ZNF333 with the p-value from the linear regression of expression
~ genotype (n=1,546 biologically independent samples combined from both cohorts). Panels b-d. HCT116 cells were transfected with
ZNF333-FLAG/Myc tagged or GFP-control plasmids in biological replicates. Panel b. Protein lysates were Western blotted for ZNF333
expression using FLAG or MYC antibodies as validations. GAPDH was used as loading control (n=2). Source data: Membranes were cut into
three pieces for optimisation of exposure. Top left panel: Original uncropped and unprocessed scans. Top right panel: Scan exposure optimized
for molecular ladder. Bottom left panel: Scan exposure optimized for GAPDH. Bottom right panel: Final overlay figure. Panel c. Heatmap
showing the Pearson correlation between ChIP-seq performed for ZNF333 using either FLAG or MYC antibodies. Panel d. Motifs of known
TFs enriched in ZNF333 binding sites showing perfect overlap between ChIP with FLAG and MYC antibodies.
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Source Data Extended Data Fig. 9

Unprocessed data for ZNF333 ChIP–seq experiment.
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