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Supplementary note  
 
Genetic variation influencing DNA methylation provides insights into molecular mechanisms 
regulating genomic function. Hawe et al. 
 
 
Supplementary Methods 
 
Participating Cohorts 
A summary of all participating cohorts is provided in Supplementary Table 33. Cohort 
specific analysis details are summarised in Supplementary Table 34. 
 
Cooperative Health Research in the Region of Augsburg (KORA) 

KORA (Cooperative Health Research in the Region of Augsburg) is a research platform 
of independent population-based health surveys and subsequent follow-up examinations of 
individuals of German nationality resident in the region of Augsburg in southern Germany. 
Written informed consent was obtained from all participants and the studies have been 
approved by the ethics committee of the Bavarian Medical Association. Study design, 
sampling method and data collection have been described in detail elsewhere.1 The surveys 
S3 and S4 were conducted in 1994/1995 and 1999-2001, respectively, and comprised 
independent samples of 4856 and 4261 subjects aged 25 to 74 years. Both cohorts were 
reinvestigated in the follow-up examinations F3 and F4 in 2004/2005 and 2006-2008, 
respectively, with 2974 and 3080 participants. The FF4 cohort (N=2279) is a follow-up study 
of the KORA S4 survey (N=4261) and was conducted in 2013-2014. For all baseline survey 
and follow-up surveys, participants completed a lifestyle questionnaire, including details on 
health status and medication use and underwent standardised examinations with blood 
samples taken.   
 The present study is based on a subsample of 1,731 participants of KORA F4 and 485 
participants of KORA F3 with methylation and genotyping data available. The KORA F3 and 
F4 surveys are completely independent with no overlap of individuals. No evidence of 
population stratification was found for multiple published analyses.2,3 DNA methylation for 
KORA F3 and F4 was measured with the Illumina Infinium HumanMethylation450K 
BeadChip® (Illumina, Inc., CA, USA). The cohorts were measured and processed 
separately. Sample preparation and measurement have been described previously.4 KORA 
F4 was used for discovery and subsequent analyses. For KORA F4, in the discovery step 
methylation processing was performed as for F3 (see below). For all subsequent analysis, 
DNA methylation data were processed following the CPACOR pipeline with specific details 
described elsewhere.5,6 Beta-mixture quantile normalization was additionally performed on 
the probes (R package wateRmelon) to correct for the Inf I/Inf II distribution shift. 
 Genotyping and calling were performed using the Affymetrix Axiom platform and 
software. Samples and SNPs were subject to a 97% and 98% call rate threshold, 
respectively. SNPs with minor allele frequency <1% or with Hardy-Weinberg Equilibrium 
P<5x10-6 were also removed. Imputation was performed using IMPUTE v2.3.0, reference 
panel 1000g phase1 integrated haplotypes (produced using SHAPEIT2).  
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 Replication was performed using the KORA F3 data. For methylation data processing, 
details are as described previously.7 Genotyping and quality control were performed as for 
F4, but based on the Illumina Omni 2.5 and Omni Express platforms and Genome Studio 
calling algorithm. 
 Gene expression was measured in KORA samples using the Illumina HumanHT-12 v3 
BeadChip array. Gene transcript expression data were quantile normalised and log2 
transformed using the R package lumi (v2.8.0). A description of the ‘omics processing 
methods for KORA F4 can be found in Supplementary Table 34. 
 
The London Life Sciences Prospective Population Study (LOLIPOP) 
 LOLIPOP is a prospective cohort study of ~28K Indian Asian and European men and 
women, recruited from the lists of 58 General Practitioners in West London, United Kingdom 
between 2003 and 2008.8 At enrolment, all participants completed a structured assessment 
of cardiovascular and metabolic health, including anthropometry, and collection of blood 
samples for measurement of fasting glucose, insulin and lipid profile, HbA1c, and complete 
blood count with differential white cell count. Participants have been followed for incident 
health events, and 13,347 have attended clinical follow-up visits during which further blood 
samples were collected. Aliquots of whole blood from both the enrolment and follow-up visits 
were stored at -80C for molecular assays (genotyping and / or methylation). For the 
discovery phase, we measured DNA methylation in 1,841 South Asians using the blood 
sample collected at baseline; for the replication phase we studied 1,354 South Asians using 
blood samples collected at the follow-up visit. All participants were unrelated. DNA 
methylation was quantified using the Illumina HumanMethlation450K array and pre-
processed as previously described.8 Genotyping was done with a combination of Illumina 
genotyping arrays (HumanHap300, Human-Hap610, OmniExpress and 
OmniExomeExpress). Genotypes were called with Illumina Genome Studio and imputation 
performed using the IMPUTEv2 software package and 1000 Genomes Project cosmopolitan 
reference panel (ALL_1000G_phase1integrated_v3_impute_macGT1). Standard GWAS 
quality control criteria were applied, including filtering for call-rate, minor allele frequency, 
info score and Hardy-Weinberg equilibrium (Supplementary Table 34).  
 Gene expression was measured in peripheral blood from 693 South Asians and 159 
Europeans using the Illumina HT-12 v4 BeadChip according to the manufacturer’s protocol. 
Gene expression data was background corrected, quantile normalised and log2 transformed 
using the R package lumi, version 2.8.0, from Bioconductor in R, version 2.14.2. Probes 
were excluded if there is a known SNP (MAF>1%) under the probe sequence, or if no 
RefSeq annotation is available for the corresponding gene. In addition, to enable meta-
analysis with data from KORA, we limited the analysis to probes present on both the HT12-
v3 (KORA) and HT12-v4 (LOLIPOP) arrays. The LOLIPOP study is approved by the 
National Research Ethics Service (07/H0712/150) and all participants gave written informed 
consent. 
 
Northern Finland Birth Cohorts 
 The Northern Finland Birth Cohort 1966 is a prospective follow-up study of children from 
the two northernmost provinces of Finland born in 1966.9 All individuals still living in northern 
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Finland or the Helsinki area (n = 8,463) were contacted and invited for a clinical examination. 
A total of 6007 participants attended the clinical examination at the participants’ age of 31 
years. DNA was extracted from blood samples given at the clinical examination (5,753 
samples available).10 The subset with DNA is representative of the original cohort in terms 
of major environmental and social factors. Informed consent was obtained from all subjects. 
DNA methylation was measured in genomic DNA from whole blood, using the Illumina 
HumanMethlation450K array, in 807 subjects who completed the study assessments. For 
DNA methylation marker calling we used a detection P-value threshold of <10-16 and a call 
rate filter of 95% for autosomal Illumina probes, yielding 459,378 probes for association 
testing. 67 samples were excluded due to low marker call rate (<95%). 7 samples were 
excluded for gender inconsistency, one sample for globally outlying DNA methylation values 
(1st PC score of the DNA methylation values outside mean +/- 4SD). Genotyping was done 
by Illumina HumanCNV370DUO Analysis BeadChips. Genotypes were called using the 
GenCall algorithm and imputation performed with the IMPUTEv2 software package with 
reference panel from the 1000 Genomes Project 
(ALL_1000G_phase1integrated_v3_impute_macGT1). After imputation and restriction to 
samples with methylation data available, polymorph SNPs were filtered at IMPUTE info 
value of >0.45. 
 The Northern Finland Birth Cohort 1986 consists of children who were born in the 
provinces of Oulu and Lapland in northern Finland between 1 July 1985 and 30 June 1986. 
9,203 live-born individuals entered the study.11 At the age of 16, the subjects living in the 
original target area or in the capital area were invited to participate in a follow-up study 
including a clinical examination. 7344 participants attended the study in the year 2001/2002, 
of which 5654 completed the postal questionnaire, the clinical examination and provided a 
blood sample.12 Genomic DNA was extracted from all 5654 blood samples. DNA methylation 
was quantified on the Illumina HumanMethlation450K array for 566 subjects. 24 technical 
replicates were excluded. 18 samples did not reach a call rate of >95%. We excluded 7 
samples with gender inconsistency. DNA methylation data of 517 samples with 466,290 
autosomal probes were used for this analysis. Genotyping was done on Human Omni 
Express Exome 8v1.2 chips. Genotypes were called with the GenCall algorithm and 
imputation performed with the IMPUTEv2 software package with reference panel from the 
1000 Genomes Project (ALL_1000G_phase1integrated_v3). After imputation and restriction 
to samples with methylation data available, polymorphic SNPs were filtered at an IMPUTE 
info value of >0.45. 
 
The Saguenay Youth Study 
 The Saguenay Youth Study (SYS) is a two-generational study of adolescents and their 
parents (n = 1029 adolescents and 962 parents) aimed at investigating the aetiology, early 
stages and trans-generational trajectories of common cardiometabolic and brain diseases.13 
The ultimate goal of this study is to identify effective means for increasing healthy life 
expectancy. The cohort was recruited from the genetic founder population of the Saguenay 
Lac St Jean region of Quebec, Canada. The participants underwent extensive phenotyping, 
including an hour-long recording of beat-by-beat blood pressure, magnetic resonance 
imaging of the brain and abdomen, and serum lipidomic profiling with LC-ESI-MS. All 
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participants were genome-wide genotyped, and a subset of 337 people genome-wide 
epityped (whole blood DNA, Illumina Infinium HumanMethylation450K BeadChip). These 
assessments are complemented by a detailed evaluation of each participant in a number of 
domains, including cognition, mental health and substance use, diet, physical activity and 
sleep, and family environment. 
 
Identification of genetic variants influencing DNA methylation 
 Prior to analysis we removed methylation markers with cross-hybridising probe-
sequences (n=43,233 in Europeans and South Asians) and markers with SNPs (MAF>1%) 
in the probe-sequence (n=121,932 in Europeans; n=84,295 in South Asians). Data 
normalisation was performed separately within each cohort (Supplementary Table 34) and 
the percentage methylation at each CpG site was calculated. Residuals were then derived 
from a linear regression of the percentage methylation (outcome) with technical and clinical 
predictors: including age, gender, estimates of white-blood cell subpopulations and principal 
components of control-probe intensities (details on all linear regression formulae are listed 
in Supplementary Table 34, section “Statistical Details”). Residuals were used as 
outcomes in the genome-wide and replication analyses and regressed against genotypes, 
i.e. CpGresiduals ~ SNPgenotype. Association testing of methylation residuals with 
genotypes was carried out using Quicktest. Genome wide association was carried out in 
Europeans and South Asians separately.14 Genome-wide  significance was set to P<10-14, 
which corresponds to P<0.05 after Bonferroni correction for the ~4.3 trillion statistical tests 
performed, a choice consistent with other recent publications.15,16 meQTLs reaching 
genome-wide significance were carried forward for ancestry specific replication testing 
(linear regression in R) using the same statistical methods described above for the genome-
wide analysis. Combined analysis of discovery and replication data was performed by 
inverse-variance meta-analysis (R package meta). Associations were considered replicated 
when the association showed consistent direction of effect between discovery and 
replication, a replication P<0.05 and a combined P<10-14. meQTLs identified by ancestry 
specific discovery and replication were then tested across ancestries to generate the final 
set of confirmed meQTLs. Associations were again considered replicated across ancestries 
when the association showed consistent direction of effect between discovery and 
replication, a replication P<0.05, and a combined P<10-14.  
 To provide further support for our choice of a Bonferroni corrected P-value threshold, we 
calculated the pairwise correlation between methylation sites and estimated the number of 
independent tests.17 As expected, due to the sparse nature of the 450K array, the actual 
number of independent tests was calculated to be 467,690, which is almost equivalent to 
the number of markers (99%), suggesting that complete Bonferroni correction for the 
number of CpG markers tested is indeed appropriate. Our approach is also consistent with 
recent evidence that classic P-value thresholds of P<5x10-8 for single phenotype studies are 
too permissive for GWA studies that include low frequency variants from 1000 genomes 
imputation.18,19 
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Cross-platform replication 
 Bell et al report associations between genetic risk SNPs (divided into LD blocks) and 
“haplotype-specific DNA methylation (HSM) peaks” - genomic regions of minimum length 
500 bp - a total of 7184 associations.20 328 of these associations involved at least one 
specific SNP that we tested and an HSM peak containing at least one CpG that we tested. 
For each of the LD block-HSM peak pairs, we extracted from our results the corresponding 
SNP-CpG pairs. We then determined the number of LD block-HSM peak associations we 
replicated at various significance thresholds using the KORA F4 data.   
 To establish whether these numbers were more than expected by chance, we randomly 
selected 100 matched pairs for each SNP-CpG pair (MAF +/- 0.001, CpG standard deviation 
+/- 0.001, genomic distance 10,000 bp, as strict criteria;  MAF +/- 0.001, CpG standard 
deviation +/- 0.01, genomic distance 50,000 bp for more relaxed criteria), thus generating 
100 matched SNP-CpG pair sets. Matching by CpG beta standard deviation is important as 
it reflects to some degree the functional impact of a CpG (see Supplementary Table 39). 
For each of the 100 randomly selected SNP-CpG sets, we counted the number of replicated 
LD block-HSM peak associations; where more than one SNP-CpG pair for a given LD block-
HSM peak association existed, we used the smallest p-value. We then determined an 
empirical p-value (0-1, increments of 0.01) for our true number of replicated LD block-HSM 
peak associations. 
 As Bell et al. use the average p-value of HSM peak-SNP pairs representing the same 
HSM-LD block associations rather than a lowest p-value, we also calculate the results for 
KORA using this criteria. The percent of replicated associations is determined by this 
approach. The background fails to find any significant associations using this approach. 
  
Isolated white blood cell studies 
 We collected isolated white cell subsets from 60 people comprising 30 obese 
(BMI > 35 kg/m2 and 30 normal weight (BMI < 25 kg/m2) individuals. All participants gave 
written informed consent for inclusion in the study (research ethics committee references: 
07/H0712/150, 13/LO/0477 and 09/H0715/65). Obese subjects and normal weight controls 
were matched by age (within 5 years), sex and ancestry. For each participant, we collected 
12 ml whole blood (EDTA). Samples were processed immediately to isolate white blood cell 
subsets (monocytes, neutrophils, CD4 and CD8 lymphocytes) through red blood cell lysis 
according to the manufacturer’s instructions (BioLegend) and staining of unlysed white-
blood-cell subsets (> 20 min in 50 μl) Ca2+-free PBS with 5 mM EDTA and 1% human 
albumin; containing 1 μl anti-CD14 PE-Cy7 (Clone-M5E2, BD), anti-CD16 BV510 (Clone-
3G8, BioLegend), anti-CD45 BV605 (Clone-HI30, BioLegend), anti-CD8 APC (Clone-SK1, 
BioLegend); 2 μl anti-CD3 PE (Clone-Leu-4, BD), anti-CD4 FITC (Clone-RPA-T4, 
BioLegend). Stained samples were filtered to remove clumped cells (30 μm mesh, Miltenyi 
Biotec) and dead cells were stained (1 μl Sytox Blue, Life Technologies).21,22 
 Lysed, stained samples were sorted on a FACSAria II SORP cell sorter at a flow rate of 
6,000–9,000 events per second. Data was collected with FACSDiva 8 and analysed with 
FlowJo v10. Fluorescence minus one negative controls (that is, without the primary labelled 
antibody of interest) were used to determine positive and negative boundaries for each gate 
in the experimental set up. Daily Cytometer Set-up and Tracking quality control beads were 
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run to ensure alignment and parameterization of the cell sorter (Anti-Mouse Igκ and Negative 
Control, BSA; Compensation Plus Particles, BD). The gating strategy and yields are 
summarised in Supplementary Figure 8. Sytox Blue (450/50V nm) negative events were 
considered to be live cells. FCS-A and SSC-A were then used to separate granulocytes from 
monocyte and lymphocyte populations. Neutrophils (CD14−, CD16+) were separated from 
other granulocytes. Monocytes were then separated from lymphocytes in a two-stage 
process as CD14+, CD45+ and CD16− cells. Finally, CD4+ and CD8+ cells were separated 
from other lymphocytes based on the following staining patterns; CD4+ cells: CD3+, CD4+, 
CD8−, CD14−and CD45+; and CD8+ cells: CD3+, CD4−, CD8+, CD14− and CD45+. Sorted cell 
subsets were assessed for purity, then pelleted and snap-frozen for storage at −80 °C. 
Average purities (Supplementary Figure 9) were: neutrophils 98.3% (±1.2% [s.d.]); 
monocytes 99.2% (±0.7%); CD4+ lymphocytes 99.6% (±0.4%); CD8+ lymphocytes 97.9% 
(±2.0%). 
 GWAS data was generated for 57 of the 60 samples. Genomic DNA was isolated (Qiagen 
QIAshredder; Allprep DNA/RNA Micro) and quantified (Qubit double-stranded DNA broad 
range assay). Genome-wide genotyping (Illumina OmniExpress) and quantification of DNA 
methylation (Illumina EPIC array) was done according to manufacturer’s recommended 
protocols. Raw methylation data were preprocessed using R v.2.15. Bead intensity was 
retrieved using the R package minfi v.1.6.0. Marker intensities were quantile normalised for 
analysis. Quality control criteria for both genotyping and methylation array data were as 
described for the discovery analysis in whole blood. All samples passed quality control. 
Imputation of unmeasured genotypes was done using the reference panel from the 1000 
Genomes project Phase 3. We tested the associations between SNPs and CpGs using 
linear regression (additive model), adjusted for age, gender, ancestry and obesity case-
control status. 
 
Isolated adipocyte studies 
 Subcutaneous and visceral adipose tissue samples were obtained intraoperatively in 24 
morbidly obese individuals (BMI > 40 kg/m2) undergoing laparoscopic bariatric surgery and 
24 healthy controls (BMI < 30 kg/m2) undergoing non-bariatric laparoscopic abdominal 
surgery. Participants were unrelated, between 18–60 years of age, from a multi-ethnic 
background, and free from type 2 diabetes. Controls were matched to cases by age, sex 
and ethnic group. All participants gave informed consent (Ethics committee 
reference 13/LO/0477). 
 Adipose samples were processed immediately to isolate populations of primary human 
adipocyte cells using established protocols.23 DS polypropylene plastic ware was used to 
minimise adipocyte cell lysis. Adipose tissue samples were minced into 1–2 mm3 pieces and 
washed in Hank’s buffered salt solution (HBSS), before digestion using type 1 collagenase 
(1 mg/ml) Worthington) in a water bath at 37°C shaking at 100 rpm for approximately 45 min. 
Digested samples were filtered through a 300-μm nylon mesh to remove debris, and the 
filtered solution centrifuged at low speed (500g; 5 min; 4°C), to leave four layers, from top to 
bottom: (1) oil, (2) mature adipocytes, (3) supernatant and (4) stromovascular pellet. After 
removal of the oil layer, the mature adipocyte layer was collected by pipette, washed in 

https://www.nature.com/nature/journal/v541/n7635/full/nature20784.html#ref13
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approximately 5× volume of HBSS and recentrifuged. After 3 washes the adipocyte cell 
suspension was collected for snap-freezing and storage at −80C. 
 GWAS data were generated for 47 of the 48 samples. Genomic DNA and RNA were 
extracted from the isolated adipocytes using the Qiagen AllPrep DNA/RNA/miRNA Universal 
Kit according to manufacturer’s protocol for lipid-rich samples. Genome-wide genotyping 
(Illumina OmniExpress) and quantification of DNA methylation (Illumina EPIC array) was 
done according to manufacturer’s recommended protocols. Raw methylation data were 
preprocessed using R v.2.15. Bead intensity was retrieved using the R package minfi 
v.1.6.0. Marker intensities were quantile normalised for analysis. Quality control criteria for 
both genotyping and methylation array data were as described for the discovery analysis in 
whole blood. All samples passed quality control. Imputation of unmeasured genotypes was 
done using the reference panel from the 1000 Genomes project Phase 3. In total 9,408,762 
of 11,165,559 SNP-CpG pairs were tested (some CpGs and SNPs missing due to QC or 
different genotyping platforms used) using linear regression (additive model), adjusted for 
age, sex, ancestry and obesity case-control status (formula: CpG ~ SNP + age + sex + 
ancestry + obesity_status). There were insufficient samples [degrees of freedom] to 
additionally incorporate control probe PCs. 
 
DNA methylation in adipose tissue 

A total of 603 adipose tissue samples collected in the MuTHER study were included. The 
MuTHER study includes 856 female European-descent individuals recruited from the 
TwinsUK Adult Twin Registry. In brief, 8 mm punch biopsies were taken from a relatively 
photo-protected area adjacent and inferior to the umbilicus. Subcutaneous adipose tissue 
was carefully dissected from each biopsy, weighed and split into multiple pieces, and 
immediately stored in liquid nitrogen until analysis. All the procedures followed were in 
accordance with the ethical standards of the St. Thomas’ Research Ethics Committee (REC 
reference 07/H0802/84) at St. Thomas’ Hospital in London, and all study subjects provided 
written informed consent. 
 Methylation profiling was performed using the Illumina Infinium HumanMethylation450 
BeadChip in DNA extracted from the subcutaneous adipose tissue, as previously 
described.24 Bisulfite conversion was done with 700ng DNA using the EZ-96 DNA 
Methylation Kit (Zymo Research) according to the supplier’s protocol. Arrays were scanned 
with the IlluminaHiScan SQ scanner, and raw data were imported to the GenomeStudio 
v.2010.3 software with the methylation module 1.8.2 for the extraction of the image 
intensities. Genotyping was done with a combination of Illumina arrays (HumanHap300, 
Human- Hap610Q, 1M-Duo, and 1.2MDuo 1M). Genotypes were called with the Illuminus 
calling algorithm and imputation performed with the IMPUTEv2 software package with 
reference panel from the 1000 Genomes Project 
(ALL_1000G_phase1integrated_v3_impute_macGT1). After imputation, SNPs were filtered 
at IMPUTE info value of >0.4. 
 Associations between SNPs and DNA methylation levels were tested in samples of 
related individuals using GEMMA software.25 GEMMA implements the Genome-wide 
Efficient Mixed Model Association algorithm for a standard linear mixed model and some of 
its close relatives for genome-wide association studies. It fits a univariate linear mixed model 
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for marker association tests with a single phenotype to account for population stratification 
and sample structure, and for estimating the proportion of variance in phenotypes explained 
by typed genotypes (i.e. “chip heritability”). The kinship matrix generated using GEMMA and 
age, sex, 20 control probe PCs, and 5 genetic PCs were included in the models (formula: 
CpG ~ SNP + kinship_matrix + age + sex + PC1methylation + PC2methylation +… + 
PC20methylation + PC1genetic + PC2genetic + … + PC5genetic). 
 
Enrichment analysis based on distance between genetic variants and associated CpGs 
 The proportion of SNP-CpG pairs that pass genome-wide significance depends 
substantially on the genomic distance between SNP and CpG. To assess this relationship 
we randomly generated 1,000 sets of 10,000 SNPs each. For each set we determined the 
proportion of significant SNP-CpG pairs (amongst all possible SNP-CpG pairs) within 1Mb 
distance intervals (i.e. CpGs within 1Mb of the SNP, CpGs 1-2 Mb from SNP, CpGs 2-3 Mb 
from SNP, etc.) up to a distance of 10Mb. In addition, we determined the proportion for CpGs 
on the same chromosome but >10Mb from the SNP, CpGs on the same chromosome but 
>1Mb from the SNP, and CpGs on different chromosomes from the SNP. Proportions in the 
latter category were compared to all other intervals using a t-test.  
 
Enrichment of meQTLs within chromatin states 
 We obtained chromatin state annotations (15 state model) defined by chromHMM 
segmentation of histone modification ChIP-seq data, 26 from the Roadmap Epigenomics 
Project for primary blood cells.27 Since we were working with whole blood, we combined 
these primary epigenomes into a weighted epigenome annotation based on estimated cell 
fractions in whole blood as follows. First, we annotated each CpG sites with each of the 15 
epigenetic states e in each of the primary blood cell types c (see Supplementary Table 36 
for a full list of primary cell types). This results in indicator variables As,e,c, which are 1 if a 
site s overlaps with epigenetic state e in cell type c and 0 otherwise. To account for the cell 
type composition of whole blood, we defined a weighted annotation based on these primary 
epigenome annotations and population average cell type composition estimated by the 
Houseman method.28 This method is able to infer relative abundances of groups of blood 
cell types (monocytes, granulocytes, B-cells, CD4 T-cells, CD8 T-cells) from DNA 
methylation data. We applied this method to methylation data from KORA to obtain average 
population level cell type relative abundance estimates wg (Supplementary Table 36). To 
obtain a weighted annotation, we first averaged our initial indicator variables As,e,c over all 
cell types that belong to the same group as defined by Houseman to obtain annotations 
A’s,e,g for groups g of cell types. Then we weighted these cell type group annotations by their 
estimated abundance wg (Supplementary Table 36) to obtain our final weighted 
annotations Ws,e = Σg wg A’s,e,g. This approach was applied analogously to obtain weighted 
annotations of SNPs. To test for enrichment of significantly associated SNPs and CpGs we 
randomly selected 100 sets with 10,000 markers each from the list of SNP-CpG associations 
after pruning. To generate a background distribution, we randomly selected markers that 
are not part of a significantly associated SNP-CpG pair. The latter are matched for standard 
deviation of methylation (±0.2%; for CpGs; see also Supplementary Table 39) or minor 
allele frequency (±2%; for SNPs) and distance to the nearest gene (±10kb). We then 
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calculated weighted annotation counts for sets of associated SNPs/CpGs as well as for 
corresponding background sets. The probability of enrichment is calculated by comparison 
of ‘observed’ sets with background sets using a chi square-test. Statistical significance is 
inferred at P<0.05 (after Bonferroni correction).  
 
Colocalisation of cis-meQTL pairs to same regulatory states 
 For cis-meQTLs, the involved SNPs and CpGs reside close to each other (<1Mbp) on the 
same chromosome. For these, a possible functional explanation could be that the genetic 
variants alter the sequence of a regulatory element, which leads to a change in DNA 
methylation. We investigated this possible explanation by determining whether cis-meQTL 
pairs preferentially colocalise to the same regulatory state, focussing on enhancer and 
promoter associated chromHMM states (see above). We therefore determined whether 
observed cis-meQTL pairs reside more often within the same regulatory state as randomly 
sampled but matched background SNP-CpG pairs.  
 We first assessed for each cis-meQTL CpG in a promoter or enhancer state (15 state 
chromHMM model), whether at least one associated SNP exists, which maps to the same 
state. We obtained a random background CpG locus for each CpG (having N associated 
meQTL SNPs) by sampling a CpG locus where 1) the CpG matches methylation mean and 
standard deviation (± 5%) of the meQTL CpG and 2) where at least N SNPs reside in similar 
proximity (± 1kbp) as the meQTL associated SNPs and where those SNPs match in minor 
allele frequency (MAF ± 5%). We only sampled from the set of CpGs/SNPs, which are not 
part of the cosmopolitan meQTL set. For each sampled background locus, we again 
assessed whether there is at least one SNP located in the same enhancer/promoter state 
as the respective background CpG. We repeated this sampling 100 times. In each iteration, 
1,000 cis-meQTL loci were selected at random from our set of observed meQTL and the 
corresponding 1,000 background loci generated accordingly. Significance of enrichment 
over all iterations was assessed using Wilcoxon’s signed rank test on the two distributions 
(observed/background) of the fractions of pairs residing in the same state. 
 
Association of DNA methylation with gene expression 
 We quantified the associations of DNA methylation with gene expression using our 
KORA-LOLIPOP gene expression dataset (Europeans: N=853; South Asians: N=693). To 
reduce computational requirements, we derived gene expression residuals as described 
above (“Genetic variants influencing gene expression in Europeans and South Asians”) and 
adjusted them additionally for SNPs known to be associated with expression of the 
corresponding gene101 using the formula: Generesiduals ~ ∑ SNPsassociated. To test for and 
exclude CpG-gene pairs that arise due to confounding by underlying genetic background, 
we derived methylation residuals by correcting methylation (beta) values for the sentinel 
SNP(s) associated with the corresponding CpG (formula: CpG ~ ∑ SNPsassociated). Gene 
expression residuals were used as outcome variables in a regression model with 
methylation residuals as the independent variable (formula: Generesiduals ~ CpGresiduals). Data 
analysis was performed using MatrixeQTL29 and results analysed in Europeans and South 
Asians separately. At Bonferroni corrected P-value thresholds, there was a high degree of 
reproducibility for eQTM results between the populations (Supplementary Table 37). We 
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therefore combined results between Europeans and South Asians using inverse-variance 
meta-analysis, using the R-package meta. Statistical significance was inferred at P=8.7x10-

12 (P<0.05 after Bonferroni correction for all possible CpG-expression pairs). We carried out 
association tests with/without adjustment of the methylation residuals for white cell subsets 
(i.e. with/without Houseman white cell subset estimates, formula: CpGresiduals ~ CD8T + 
CD4T + NK + Bcell + Mono), to test for confounding by cell subset composition 
(Supplementary Table 38).  
 In addition, we compared the proportion of putative cis-eQTMs from analyses with and 
without correction for white cell subsets that were supported by Summary-data-based 
Mendelian Randomisation (SMR). SMR tests for association of an exposure with an 
outcome using summary-level data from GWAS and other QTL studies, and using a genetic 
variant as the instrumental variable to avoid non-genetic confounding.30  
 Let x be an exposure variable, y be an outcome variable, and z be an instrumental 
variable. The Mendelian Randomization (MR) estimate of the effect of exposure on outcome 
(𝛃𝛃xy) is the Wald ratio of the estimated effect of instrument on exposure (𝛃𝛃zx) and that on 
outcome (𝛃𝛃zy), with its significance assessed by the Wald test, i.e. (𝛃𝛃xy/SE)2~χ12. What x, y 
and z refers to differs according to the exact test conducted. In this instance, for the purpose 
of identifying cis-eQTMs, x, y and z therefore refers to DNA methylation, gene expression 
and the top-associated meQTL SNP respectively. Specifically, results for cis SNP-
expression associations were obtained from eQTLgen,31 while cis SNP-methylation (cis-
meQTL) and SNP-expression (cis-eQTM) associations were as reported in our current 
study. We used the cis sentinel SNPs from our meQTL analysis as genetic instruments to 
assess the causal effect of cis changes in DNA methylation on nearby gene expression. 
Coloc analysis was subsequently performed for loci with a potentially causal relationship 
between DNA methylation levels and gene expression in cis (PP4>0.6).32 
 
Enrichment of meQTL SNPs for association with phenotypes in GWAS studies 

We performed enrichment analyses of meQTL and iQTL SNPs for association with 
GWAS traits using QTLEnrich.33 We obtained uniformly processed GWAS summary 
statistics of 114 GWAS studies from the GTEx analysis. We followed analysis instructions 
from the QTLEnrich documentation. Briefly, we performed enrichment analyses separately 
for each white cell interaction term. We used the iQTL associations with lowest association 
per CpG. We generated custom background set of SNPs for each of the respective cis iQTL 
analyses. Null variants were defined as variants that are not iQTL in any of the interaction 
analyses. All tested variants were annotated with the following covariates: distance between 
SNP and closest CpG site represented on the 450K array, minor allele frequency and the 
number of LD proxies. The significance of trait enrichment for iQTLs was assessed using an 
adaptive resampling scheme, which compares GWAS hits in iQTL with hits in random null 
sets matched for the covariates. Covariate matching was performed in deciles of each 
covariate. Finally, sampling based empirical P-values were adjusted for multiple testing 
using the method of Benjamini and Hochberg.34 We called the results GWAS enriched when 
FDR was less than 5%.      
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Enrichment of meQTL SNPs and CpGs with other molecular and clinical traits  
 We tested meQTL SNPs for enrichment as protein-QTLs (pQTLs) and metabolite-QTLs 
(mQTLs) using the Phenoscanner database v2.35,36 We sampled 1000 independent sets of 
1000 ‘observed’ sentinel meQTL SNPs, each at random from amongst the cosmopolitan 
meQTL set, and determined the proportion that were pQTLs or mQTLs. We used 
permutation testing to determine expectations under the null hypothesis. We randomly 
selected 1000 sets of 1000 ‘background’ SNPs, that were not part of a significantly 
associated meQTL pair. Background SNPs are matched to observed SNPs based on minor 
allele frequency (±2%) and distance to the nearest gene (±10kb). Enrichment was calculated 
by comparing proportions between observed and background SNPs sets. 
 To evaluate the biological relevance of our sentinel CpGs, we first quantified the 
association of DNA methylation with 49 clinical traits (physical measures, health status, 
lifestyle behaviours and biochemical traits), and with concentration of 228 metabolites 
measured by NMR metabolomics in the LOLIPOP cohort (N=2,866 participants with 
methylation data available [Illumina 450K methylation array). No imputation was performed 
for the missing values. All metabolite concentrations were log10 transformed prior to 
association testing, as were quantitative clinical traits with substantial deviation from 
normality. Pre-processing of methylation data was done as described above. Quantile 
normalised methylation values were scaled prior to association testing. For each trait, we 
used linear regression to quantify the relationship between the trait and all CpGs assayed 
by the 450K array, controlling for age, sex, 6 estimated cell types (CD8T, CD4T, Natural 
Killer cells, B-cells, monocytes and granulocytes) and 30 principal components associated 
with control probes (formula: trait ~ CpG + age + sex + CD8T + CD4T + Natural Killer cells 
+ B-cells + Monocytes + Granulocytes + PC1methylation + PC2methylation + … + 
PC30methylation). We then tested whether the sentinel CpGs are enriched for association 
with phenotypic traits compared to expectations under the null hypothesis based on 
permutation testing. We sampled 1000 sets of Sentinel CG markers (‘observed’) and 1000 
sets of Background CG markers (‘Expected’). Sentinel CG markers are sampled randomly 
from the total Sentinel CG marker set available. For each sampled sentinel CG marker, we 
selected a background CG marker matched to the sentinel CpG based on mean methylation 
level (±0.02) and standard deviation for methylation (sd±0.002), but otherwise at random.  
For each phenotype, we quantified the number of CpGs associated with the respective 
phenotype in each of the 1000 sets of sentinel and background CpGs at P<0.05, and 
compared the number of CG markers with significant association with a trait, between 
sentinel and background sets using a two sample t-test.   
 
Overlap of long-range cis-meQTL with Hi-C chromatin contacts 
 We determined whether long-range cis-meQTL (distance>1Mb) occur within TADs or 
overlap with Hi-C contacts from Hi-C and promoter capture Hi-C (PCHi-C) data from 17 
different human primary blood cell types37 more frequently than expected by chance. We 
performed two distinct but similar analysis, one based on the TAD (topologically associating 
domains) regions determined from classical (non-targeted) Hi-C data and one based on the 
promoter-capture-Hi-C contacts available from the supplementary material of 
(‘PCHiC_peak_matrix_cutoff5.tsv’,37 For the TAD enrichment, we concatenated the TAD 
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regions for all cell types and checked for each of the (pruned) meQTL whether the CpG and 
SNP are within the same TAD or not. Following that, we sampled ‘background-non-meQTL’ 
for each of the meQTL doing the following: 
 
1. Select a random non-meQTL SNP SR matched for allele frequency (0.05 absolute 

tolerance) for the corresponding meQTL SNP 
2. Select a random non-meQTL CpG CpGR with matched distance (meQTL distance with 

10 kb tolerance) and matched beta distribution (mean and sd, tolerance 0.05) 
 
For these randomly sampled pairs, we again determined whether both the SNP and CpG of 
a given pair lie within the same TAD region. The same analysis was performed for the PCHi-
C contacts with the same parameters. Here, an overlap for an SNP-CpG pair is said to occur 
if the SNP is within the ‘bait’ region and the CpG is within the ‘other/captured’ region of the 
PCHi-C contact or vice versa. For the background sampling we set an additional constraint 
to the possible SNP-CpG pairs such that at least one of these entities lies within a bait region 
(promoters: TSS +/- 1kb of all genes of the hg19 gene annotation). We performed 150 
iterations of random sampling to test whether the long-range cis-meQTL SNP-CpG pairs 
were more frequently overlapping with chromosome contacts compared to the sampled 
background. 
 
Overlap of trans-acting meQTLs with Hi-C chromatin contacts 
 To replicate the finding that trans-acting SNP-CpG associations are related to genome 
organization,38 we integrated results for our trans-acting SNP-CpGs with high resolution 
(1kb) Hi-C data from autosomal chromosomes of lymphoblastoid cell lines.39 We started by 
identifying proxy SNPs in linkage disequilibrium (LD R2>0.8) with each sentinel SNP, using 
data from SNiPA,40 and located not further than 250kb from the sentinel SNP. We classified 
our trans-acting sentinel SNP-CpG pairs into two classes: i. pairs overlapping a Hi-C contact 
and ii. pairs not overlapping.38 A sentinel SNP-CpG pair was said to overlap a Hi-C contact 
if a sentinel SNP and the corresponding sentinel CpG (or any of their proxies) fall within 1kb 
of the two ends of a Hi-C contact. The 1kb tolerance is used to avoid threshold effects 
occurring at the border of blocks. To assess the statistical significance of the observed 
number of trans-acting SNP-CpG pairs with Hi-C contacts, we performed permutation 
testing. For each SNP-CpG pair (after pruning), SNPs were fixed and paired with randomly 
sampled CpGs (matched for mean and standard deviation of methylation levels; ±5%; 100 
permutations).  
 Next, we sought to establish whether trans-acting SNP-CpG associations are related to 
genome architecture in Hi-C data obtained from primary immune cells.37 Data were 
downloaded from EGA with accession number EGAD00001003106. Raw FASTQ files were 
processed using HICUP v0.6.141 (bowtie2 mapping, read filtering) and its default 
parameters. The resulting bam files were converted to HOMER ditag format,42 and read 
positions were rounded to 50kb bins for all read pairs. All available samples were 
subsequently merged to a single file and only chromosome contacts which had at least 3 
reads as evidence in any of the available cell types were used for the enrichment. An overlap 
for each meQTL SNP-CpG pair was counted if both the SNP and the CpG were within the 
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two 50kb regions of the chromosome contacts. We tested whether the SNP and CpG 
combinations of the trans-meQTL list were more likely overlapping with Hi-C contacts 
compared to background SNP-CpG pairs, which were sampled (N=150 times) as follows: 
 
1. Select a random non-meQTL SNP SR matched for allele frequency (0.05 absolute 

tolerance) for the corresponding meQTL SNP 
2. Select a random non-meQTL CpG CpGR with matched beta distribution (mean and sd, 

tolerance 0.05) on a different chromosome. 
 
Candidate genes for SNPs influencing CpGs in trans 
     To interpret the biological relevance of 1,847 SNPs associated with DNA methylation in 
trans we identified candidate genes for all SNPs. For each SNP the nearest gene was 
chosen as a candidate. In addition, candidate genes were selected based on association of 
the SNP with gene expression using results from GTEx43 (whole blood; cis only) and the 
current study (whole blood; cis [SNP≤1Mb from expression probe] and trans [SNP>1Mb 
from expression probe]; see above for details). We identified 507 SNP-transcript pairs, of 
which 381 do not involve the nearest gene to the SNP. In total 1,712 unique candidate genes 
were selected. 
 
Identification of cis-eQTLs influencing CpGs in trans 
 We used SMR analysis to assess whether the proximal candidate gene at a trans-acting 
genetic locus shows covariation with the trans-methylation signature (triangulation of cis-
eQTL, trans-meQTL and trans-eQTM data). Results for cis SNP-expression (cis-eQTL) 
associations were obtained from eQTLgen,31 while trans SNP-methylation (trans-meQTL) 
and SNP-expression (trans-eQTM) associations were as reported in the current study. We 
started with trans sentinel meQTL SNPs reported in our current study, and identified 
significant cis eQTL associations at a Bonferroni corrected threshold. For loci whereby SMR 
estimates suggest a potential causal relationship between cis gene expression and trans 
methylation levels (P<0.05 after Bonferroni correction), this was followed up with coloc 
analysis (PP4>0.6). In addition, we also evaluated the complementary model whereby the 
causal inference analysis started with observed trans-eQTMs and assessed the proportion 
that was correctly inferred by SMR. 
 
Relationships between DNA methylation and adiposity 
 We again used SMR techniques to evaluate the potential causal relations between BMI 
and DNA methylation.30 We selected SNPs from a BMI GWAS meta-analysis as 
instrumental variables to assess the causal effect of BMI upon DNA methylation. Results for 
SNP-methylation associations were as reported in the current study, while genome-wide 
results for SNP-BMI associations were as published in a recent large meta-analysis.44 We 
started with SNPs reported to be associated with BMI at P<10-8 in GWAS (defined as ‘BMI 
SNPs’) and identified the most closely associated CpG site. For loci whereby SMR estimates 
suggest a potential causal relationship between BMI and DNA methylation (P<0.05 after 
Bonferroni correction), these were followed up with coloc analysis to assess if sufficient 
evidence for a shared underlying causal variant exist (coloc PP4>0.6). This was 
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supplemented by the alternative model in which the causal inference analysis started with 
sentinel meQTLs as the genetic instruments.  
 
Enrichment for epigenetic regulators, transcription factors and zinc fingers  
 To evaluate whether the regions defined by the SNPs of trans-acting meQTL are enriched 
for epigenetic regulators (ERs), transcription factors or zinc finger genes (ZNFs), we 
compared the genes overlapping our trans sentinel regions (<= 1Mb) with the gene lists 
described previously.45 These comprise: 1) the curated list of ERs in their supplementary 
table 4, 2) a curated list of transcription factors46 (classes ‘a’ and ‘b’) and 3) the subset of 
these transcription factors identified as ZNFs (simple ‘grep’ for ‘ZNF’). For each set, we 
sampled a background set of loci randomly from the set of SNPs considered in the meQTL 
analysis, excluding the SNPs present in the table of all meQTL associations. For each of 
those SNPs, we assigned a region width taken from the width distribution of the sentinels 
and again compared the genes overlapping these regions with the respective list of ERs, 
transcription factors or ZNFs.45 The significance of the enrichment was determined from 
1000 background samples by assessing the fraction of odds ratios (ORs, observed over 
background) less than or equal to 1 (H0: OR<=1) to obtain an empirical p-value. 
 
Enrichment of trans-CpGs in Transcription Factor Binding Sites 
 We obtained transcription factor binding sites (TFBS) for 145 distinct DNA binding 
proteins from 246 ChIP-seq experiments performed on blood related cell lines 
(Supplementary Table 20). Data were uniformly processed by the remap resource.47 We 
defined a CpG site to be bound if a binding site was located within a window of size 100 bp 
(50 bp in each direction).  
 To examine the relationship between the trans-CpG signatures of the sentinel SNPs and 
the TFBS of DNA binding proteins, we first determined the minimum number of trans-CpGs 
associated with a sentinel SNP needed for detection of enrichment in TFBS. This number 
depends on whether the smallest achievable P-value in the Fisher test is less than an 
adjusted significance level padj. The significance level in turn depends on the number of loci 
nloci(minsize) that have to be tested for each minimal size threshold for number of trans-
CpGs (minsize). For the power calculation, the adjusted significance threshold was 
computed using the Bonferroni method as padj(minsize) = 0.05 / (ntf * nloci(minsize)), where 
ntf = 246 is the number of ChIP-seq experiments. We systematically constructed 
contingency tables with varying number of trans-CpGs associated to the same sentinel SNP 
(n1 = [1..20]) and for number of sentinel SNPs with trans-CpGs overlapping TFBS (n2 = 
[0..n1]). The background binding frequency at the CpG sites not associated with the sentinel 
SNP was estimated as the mean binding frequency of all transcription factors across all CpG 
sites (pbg ≈ 0.05) from the data. We assumed that for each enrichment test the background 
set of CpGs not associated with a sentinel SNP consists of all CpGs on the array except for 
maxsize≈250 that were associated with the largest trans cluster (nbg≈486,923). Thus the 
background counts in the contingency table were set to rounded values of pbg nbg and (1 - 
pbg) nbg. For each cluster size n1, we determined the smallest Fisher P-value across all 
values of n2. Finally we determined the minimal cluster size n1 for which there exists an n2 
that yields minimal P-value less than the adjusted significance threshold padj(minsize). The 
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minimal cluster size was n1 = 5 and yields the minimal P-value 3.6 × 10-07, which is smaller 
than the adjusted significance threshold of 1.8×10-06 for minsize = 5. 
 For each of the 115 sentinel SNPs with ≥5 associated trans-CpGs, we systematically 
tested the trans-CpGs for over- or underrepresentation in the TFBS for each of the 246 
ChIP-seq datasets for DNA binding proteins. We used two statistical tests to assess for 
enrichment, and for each SNP conservatively used the highest P-value arising from the two 
results: 1) a Fisher’s exact test where the background was defined as all CpGs on the 
Illumina 450K methylation array; and 2) a Fisher’s exact test where the background was 
based on sampling sets of CpG sites matched to the trans-CpGs at each locus (matched on 
population mean and standard deviation of methylation levels) but selected otherwise at 
random from the array. For each sentinel SNP, we resampled 10,000 sets of CpG sites of 
equal size, to compute empirical P-values for the overlap of the observed trans-CpG sites 
with TFBS. We applied the Benjamini-Hochberg method to the results of both tests to adjust 
for multiple testing.34  Finally, we used a conservative criterion to define enriched or depleted 
transcription factor signatures, requiring FDR less than 5% for both tests.  
 We observed an overlap of trans-CpGs with TFBS for 45 of the 115 sentinel SNPs tested 
(Supplementary Table 23). To determine whether this represents enrichment beyond the 
null hypothesis, we estimated how many sentinel SNPs would have trans-CpGs overlap 
TFBS in a random situation. We are testing nloci = 115 loci. We have ntf = 246 transcription 
factors. We control the false discovery rate at 0.05, which corresponds to a P-value 
threshold of p = 1.0x10-3. This is the probability of getting a false positive in a given test. 
Therefore we can compute the probability of at least one random association (false positive) 
per SNP as P(x > 1) = 1 - P(x = 0) = 1 - (1-p)ntf = 0.22. So the expected number of SNPs 
with at least one association is nloci * P(x > 1) = 25.0. The P-value for observing y = 45 loci 
with associations is P(y>45) ~ Binom(p=P(x>0), nloci) = 7.4x10-6 
 As a sensitivity analysis, we assessed the influence of the window size around CpG sites 
on the detection of significant transcription factor signatures. Supplementary Figure 6 
shows the number of enriched or depleted transcription factor signatures for window sizes 
of 2, 100, 500, 1000, 5000, 10000 bp. We observed an increase of discoveries with larger 
window sizes, which may reflect regional correlation of methylation levels between CpG 
sites. Nevertheless, we chose a window size of 100 bp, as it conservatively underestimates 
the true number of transcription factor signatures. 
 
Replication of TFBS analysis using EPIC methylation array 
  We systematically quantified the extent to which the conclusion of our functional genomic 
analysis of meQTLs depends on the content of the 450K array. To this end, we performed 
additional meQTL analyses using the EPIC array data available as part of the KORA FF4 
cohort (N=1,848). After QC, this array overlapped with our 450K array data by 406,501 CpGs 
and additionally assayed 381,605 CpGs. We performed a global meQTL analysis on the 
EPIC data by regressing methylation betas against genotypes and using age, sex, bmi, 
white blood cell count, houseman white cell subset estimates (CD8T, CD4T, NK, Bcell, 
Mono) and plate ID as covariates. To establish replication across platforms (taking only 
CpGs which are available on both arrays) we set as criteria i. a p-value cutoff of P<0.05 and 
ii. same direction of effect between the 450K discovery and the EPIC array results. We 
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further assessed pairwise correlation between the additional EPIC-specific markers and the 
49,580 sentinel CpGs identified using the 450K array to determine which EPIC-specific 
markers are correlated or independent of the established sentinel CpGs. To this end, we 
determined the closest sentinel CpG for each EPIC-specific CpG (n=381,605) and 
calculated the R2 between the two CpGs. Based on those results and taking the 450K CpG 
marker set as the baseline comparison, we set out to quantify the impact of adding EPIC-
specific markers on our TF enrichment analysis using the following EPIC-specific marker 
sets:  
                
  i. Correlated markers with R2 > 0.2 at distance < 1 Mbp (improving local resolution) 
  ii. Independent markers R2 < 0.2 at distance < 1 Mbp (testing for new TFBS) 
  iii. All EPIC-specific meQTLs (correlated and independent).  
                
We independently executed the TF enrichment using 1) our original set of 450K derived 
CpGs and 2) one of the respective marker sets i., ii. or iii. analogously to our original analysis 
described above (‘Enrichment of trans-CpGs in Transcription Factor Binding Sites’). Results 
show that the addition of EPIC-specific content improves discovery of TFs overlapping trans-
meQTLs, and that this enhanced discovery comes from both correlated and independent 
markers (Supplementary Table 21). Independent markers provide the greatest increment 
in TFs identified. Overall, the number of TFs identified increased by ~14% from the 
~doubling of CpG content on the EPIC array, compared to the 450K array. Importantly we 
note that there was little evidence for false positive identification of overlapping TFs using 
the 450K meQTL set; specifically >99% of the TFs highlighted by the 450K meQTLs were 
also found using the EPIC marker set. The results of this analysis confirm that our TF results 
are robust and reproducible across platforms, but at the same time provide the rationale for 
future studies to extend the observations we report here, using approaches that will further 
increase epigenomic coverage. 
Trans-eQTL analysis in lymphoblastoid cell lines 
 For external replication of our trans-eQTL results for genetic loci influencing DNA 
methylation in trans, we obtained gene expression data from lymphoblastoid cell lines.9 
Candidate trans-eQTLs were defined as pairs between i. the sentinel SNPs at trans-acting 
genetic loci and ii. the genes in proximity (1Mb) to the trans-CpGs associated with each 
respective sentinel SNP. Gene expression quantified by RNA-seq and genotype data for 
samples of European ancestry were downloaded from the Geuvadis project. Gene 
expression data were normalised as previously described: in brief, RNA-seq data were 
obtained as reads per kilobase per million sequenced (RPKM), these values were quantile 
normalised across samples and then transformed to standard normal distributions per 
gene.48 Since analysis of cis and trans-acting eQTLs requires different preprocessing,48 we 
decided not to adjust for hidden confounders with the PEER method,49 as this might remove 
trans effects. eQTLs were tested using linear regression (expr ~ SNP) of normalised gene 
expression data against genotypes.  
 
 
 



17 
 

Colocalisation analysis of trans meQTL 
 Colocalisation analysis of trans meQTL and GWAS was performed using fastenloc,32 a 
Bayesian method to determine the probability of a shared causal variant for a pair of 
molecular (meQTL) and physiological (GWAS) traits. First, we used phenoscanneR35,36 and 
the GWAS catalog,50 to select GWAS traits and studies of interest for each locus. We 
obtained GWAS summary statistics for each trait of interest for the region (+/- 500 kb) around 
the sentinel SNP (Supplementary Table 40). Fastenloc was used to determine SNP level 
posterior colocalisation probabilities for molecular and physiological traits for all CpG site 
associated with the same locus in trans. We summarised the colocalisation probabilities 
across all trans CpG sites using the average SNP level posterior colocalisation probabilities.  
 Colocalisation analysis of trans meQTL and GWAS was performed using fastenloc,32 a 
Bayesian method to determine the probability of a shared causal variant for a pair of 
molecular (meQTL) and physiological (GWAS) traits. First we used phenoscanner35,36 and 
the GWAS catalog,50 to select GWAS traits and studies of interest for each locus. We 
obtained GWAS summary statistics for each trait of interest for the region (+/- 500 kb) around 
the sentinel SNP (Supplementary Table 40). In addition, we obtained pairwise LD 
information for all SNPs in the region from the 1000 genomes project (EUR). Finally, we 
collected meQTL summary statistics for all pairs of SNPs in the region around the sentinel 
and each of the trans associated CpG sites. We only retained SNPs that were assessed in 
all three data sets (GWAS, LD and meQTL) for the colocalisation analysis and matched the 
allele encoding and effect directions (signs) to the 1000 genomes ref/alt encoding. GWAS 
summary statistics were transformed to posterior inclusion probabilities using torus, 31 and 
published LD block information.51 Posteriors for meQTL were determined from summary 
statistics and LD information using the DAP-G algorithm,52 and used as functional SNP 
annotations. Finally, fastenloc was used to determine SNP level posterior colocalisation 
probabilities for molecular and physiological traits. We summarised the colocalisation 
probabilities across all trans CpG sites using the average SNP level posterior colocalisation 
probabilities. 
  
ChIP-seq validation of ZNF333 binding at the identified DNA methylation sites 
 Plasmid transfection. Plasmid overexpressing dual-tagged (Myc and FLAG) human 
ZNF333 transcript (RC216457) was purchased from OriGene Technologies. ZNF333 and 
control GFP plasmid (pmax-GFP, Lonza) were transfected into HCT116 cells with JetPrime 
transfection reagent (Polyplus) according to manufacturer’s instructions in 15-cm tissue 
culture dishes. Culture media was refreshed after 24h and cells maintained for another 24h. 
At 48h cell lysates were used for ChIP. Western blot using Myc and FLAG antibodies was 
also performed to confirm high ZNF333 expression abundance (Source Data Figure 1).  
 Chromatin Immunoprecipitation (ChIP) analysis. Experiments were performed in two 
biological replicates for each tag (FLAG and Myc). In addition one GFP transfection was 
incubated with antibodies against each tag separately as control for IP specificity. Moreover, 
two input control experiments (ZNF333 transfected and GFP transfected) were performed. 
ZNF333 or GFP transfected HCT116 cells were cross-linked with 1% formaldehyde for 10 
min at room temperature and quenched with 0.125 M glycine for 5 mins. Cells were then 
washed in ice-cold PBS, scraped and pelleted down at 800g for 5 min at 4°C. The pellet was 
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resuspended in FA lysis buffer to facilitate cell lysis. Nuclei were pelleted by centrifugation 
at 3,000 rpm for 5 min at 4°C and resuspended in 1% SDS lysis buffer (1% SDS, 1% Triton 
X-100, 2 mM EDTA, 50 mM HEPES-KOH (pH 7.5), 0.1% sodium dodecyl sulfate, Roche 1X 
Complete protease inhibitor) to lyse nuclei. Chromatin was then isolated using 
ultracentrifugation at 20,000 rpm for 30 mins at 4°C, resuspended in 300 µl 0.1% SDS lysis 
buffer and fragmented via sonication to an average size of 200–500 bp (Bioruptor Next gen, 
Diagenode). Solubilised chromatin was immunoprecipitated using anti-Flag antibody 
(Sigma, #F3165) or anti-Myc (Abcam, #ab9106) overnight. Antibody-chromatin complexes 
were pulled-down using Protein G Dynabeads (Invitrogen), washed and eluted with elution 
buffer (1% SDS, 10 mM EDTA, 50 mM Tris-HCl (pH 8)). After cross-link reversal and 
Proteinase K treatment, immunoprecipitated DNA was extracted with phenol-chloroform, 
ethanol precipitated, and treated with RNase. ChIP DNA was quantified using Qubit 
fluorometric quantification (Thermo Fisher Scientific). Library Prep was performed using 
New England Biolabs Ultra II Kit according to the manufacturer’s specifications and 
sequenced on the Illumina NextSeq High platform with 76bp single end reads. Raw 
sequencing from ChIP-seq experiments were mapped using BWA. The mapped sequences 
were PCR-duplicate removed. The peak-calling tool Dfilter was used to identify significant 
peaks with the parameters of ks = 60, bs = 100, lpval = 6. The overlap between ZNF333 
ChIP-seq peaks (union of Myc and FLAG) and rs6511961 target CpGs (in trans) was 
calculated using a window size of 500 bp. Statistical significance was calculated based on 
permutation testing and Fisher’s exact test as described above. Enrichment is robust to 
selection of interval size around the peak: from 100bp (3.0 fold) to 1000bp (3.4 fold). 
 
IP-MS to identify ZNF333 binding partners 
 ZNF333 pull-down assay. Cell culture of HCT-116 cells was done with RPMI + 10% FBS 
medium at 37°C and 5% CO2. A plasmid containing the ORF (Open Reading Frame) of the 
identified rs6511961 sentinel locus ZNF333 (OHu29285, GenScript) was cloned and 
transfected into HCT-116 cells with Lipofectamine 2000 as described by the manufacturer 
in T75 flasks. After 24-48h, nuclear and cytoplasmic extracts were obtained from the 
untransfected and transfected cells using the NE-PER extraction kit (Thermo Scientific) 
according to the manufacturer’s instructions. In order to confirm overexpression, proteomic 
extracts were subjected to Western blotting using an anti-FLAG Ab (anti-DYKDDDDK tag, 
GenScript). Nuclear protein fractions from un-/transfected cells were used for IP with anti-
FLAG mAb (A00187, GenScript) and anti-ZNF333 (HPA054680, Atlas Antibodies), as well 
as IgG2b mAb as isotype control (obtained from the Monoclonal Antibody Core Facility, 
HMGU). The purified protein-protein complexes were subjected to data-dependent label-
free quantitative mass spectrometry (LC-MS/MS) on a QExactive HF mass spectrometer 
(Thermo Scientific) online coupled to an Ultimate 3000 nano-RSLC (Dionex, part of Thermo 
Scientific). Label-free quantitative analysis was performed in Progenesis QI for proteomics 
as described previously.53 MSMS spectra were searched against the Swissprot human 
database (20235 sequences, Release 2017_02) using the Mascot search engine (Matrix 
Science) with an identification cut-off allowing for a maximum false discovery rate of 1%. 
Identifications were reimported into the Progenesis QI Software and matched with the 
individual peptide quantification values. Resulting normalised protein abundances in the 
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individual samples were used for calculation of IP enrichment values in comparison to the 
IgG control. Two lists of proteins were used for further analysis: a full list of proteins identified 
and quantified with at least two unique peptides (set PZNF333_long, Supplementary Table 28) 
and a shortlist of proteins where additionally only proteins were considered with a ratio 
IP/control of at least a value of 2 for both IPs (anti-FLAG mAb and anti-ZNF333, set PZNF333, 
Supplementary Table 26). 
 Overrepresentation analysis in ZNF333 interactome. If ZNF333 is directly binding at 
the targeted trans-CpG sites and forming local chromatin associated protein complexes, we 
expect to observe protein interactions between ZNF333 and the transcription factors which 
were identified in the ChIP-seq based network analysis for the ZNF333 locus or one of their 
direct interactors. We hence evaluated whether the set PChIP of proteins, consisting of all 
transcription factors binding at the trans CpG sites of the ZNF333 locus identified in the 
network analysis, are overrepresented in the proteins identified in the ZNF333 pull-down 
experiment (shortlist of interactors as described above, set PZNF333). We also considered 
tethering of proteins via one intermediate step by including indirect interactions in the 
analysis. For this, we used protein-protein interactions (PPI) from the STRING database (as 
defined under ‘Random walk analysis’). The PPIs were used to augment both sets of 
proteins by including all genes showing a direct PPI to any of the genes in the respective 
set (1-neighbourhood), yielding the sets PChIP_ext1 and PZNF333_ext1.  
 To test for over-representation of PChIP_ext1 proteins in the PZNF333_ext1 set, we applied a 
Fisher test based on a 2x2 contingency table constructed from the overlap of a random 
background with the two lists of proteins. The background set was formed using all ChIP-
seq transcription factors initially used in the network analysis, including their 1-
neighbourhood (set BGChIP_ext1). We intersected the background proteins with the PZNF333_ext1 

and PChIP_ext1 proteins to get the counts for the table (i.e. number of proteins in PZNF333_ext1 

and PChIP_ext1 overlapping and not overlapping BGChIP_ext1). We then applied the Fisher test 
using the fisher.test() method in R with the parameter alternative=’greater’. Further, we 
tested whether proteins in the PChIP_ext1 set predominantly exhibit stronger signals in the 
experiment as compared to the rest of the pulled-down proteins. For this we utilised the fold 
changes between the ZNF333 antibody and the IgG control from the pull-down experiment 
to define a ranking over all identified proteins (i.e. not only the shortlisted proteins, set 
PZNF333_long_ext1). We applied a two-sample Wilcoxon test (Mann-Whitney test) for the fold 
changes extracted for two distinct sets S1 and S2 of proteins, where S1 = PChIP_ext1∩
 PZNF333_long_ext1 and S2 = PZNF333_long_ext1 \ S1. Any zero-valued fold changes were excluded 
from the analysis and a log10-transform was applied before calculating the Wilcoxon-test 
using the wilcoxon.test() method in R with parameter alternative=’greater’. 
 Gene Ontology enrichment of ZNF333 interactome. We aimed to identify gene 
ontology (GO) terms significantly enriched in 1) the pulled-down proteins from the 
experiment and 2) the matched transcription factors from the computational analysis. To this 
end, we performed two distinct GO enrichment analyses to see which terms are enriched in 
the respective protein sets, using for both enrichments all experimentally identified proteins 
(set PZNF333_long) as the background. We enriched the stringent ZNF333 interactome (set 
PZNF333) and the S1 set from the Wilcoxon analysis (see above) individually against all 
available GO terms with the defined background, using the 1-neighbourhood background 



20 
 

set (PZNF333_long_ext1) for the latter. GO enrichment results were filtered for significant terms 
using an FDR cut-off of 5%. 
 Interactome findings. Interacting proteins were enriched for GO terms related to the 
MLL1 complex, an important epigenetic modifier (hypergeometric test, FDR<=0.05, 
Supplementary Table 27). We further investigated whether the transcription factors 
identified in the transcription factor binding analysis are more likely to be present in the 
network neighbourhood of ZNF333 compared to a random background. Both a Fisher test 
on the constructed contingency table (P=2.87x10-11) and a Wilcoxon test on the fold changes 
obtained from the experiment (P=5.4x10-5, Supplementary Table 28) indicated enrichment 
of the computationally identified proteins in the interactome neighbourhood. Our results thus 
provide experimental evidence to support the hypothesis that ZNF333 encodes a DNA 
binding protein that determines, at least in part, the trans-CpG signature of rs6511961. 
 
Interaction analysis of meQTLs with their environmental context 

We ran interaction analyses for the cosmopolitan SNP-CpG pairs using linear regression 
models with the methylation beta value as the dependent variable, and an interaction 
between the SNP and phenotype of interest as the independent variable of interest, 
adjusting for SNP, age, sex, smoking (yes/no), BMI, the Houseman estimated cell-type 
proportion and 20 control probe PCs as technical confounders (formula: CpG ~ 
SNP:phenotype + SNP + phenotype + age + sex + smoking_status + BMI + CD4T + CD8T 
+ NK + Bcell + Mono + PC1methylation + PC2methylation + … + PC20methylation). The 
phenotypes of interest examined were: smoking (yes/no), BMI and estimated proportions of 
CD8T, CD4T and monocytes. Statistical significance for the coefficient of the interaction 
term was based on a per-analysis (ie per variable of interest) Bonferroni-corrected p-value 
of 0.05/number of cosmopolitan hits = 0.05/11165559 = 4.5x10-9. We refer to pairs of SNP 
and CpG sites with significant interaction terms as interaction meQTL or ‘iQTL’. The 
analyses were run in KORA F4 and LOLIPOP separately.  Significant results in one cohort 
were examined for replication (P<0.05, same direction of effect) in the other cohort. Our final 
set of significant triplets (SNP, CpG, interacting variable) were those significant in either 
cohort and replicated in the other. These sets were carried forward to the overrepresentation 
analysis.       

In a second step we repeated the interaction analysis with the covariates age, sex, bmi 
and white blood cell count for all CpG-SNP pairs in cis using tensorQTL (v1.0.3).54 Statistical 
significance for the coefficient of the interaction term was based on a per-analysis (ie per 
variable of interest) Bonferroni-corrected p-value of 0.05/number of tested cis pairs (Lolipop: 
2.4x109 tests, P value threshold 2.0x10-11, KORA: 5.6x108 tests, P value threshold 8.8x10-

11). 
 Increasing values of the interaction term (e.g. estimated cell type abundance) can lead 

to increasing or decreasing correlation between the genotype and the methylation levels.  
We classified the interaction QTL into increasing or decreasing correlation based on data 
from the KORA cohort. To do so, we performed two separate linear regressions of 
methylation on genotype in the group of samples with the value of the interaction term above 
the median (interaction term high) and in the group of samples with the value of the 
interaction term below the median (interaction term low). We called an iQTL “increasing” 
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when the absolute value of the genotype regression coefficient was higher in the group 
interaction term high than in the group interaction term low and had the same sign in both 
groups. Similarly, we called an iQTL “decreasing” when the absolute value of the genotype 
regression coefficient was lower in the group interaction term high than in the group 
interaction term low and had the same sign in both groups. iQTL with opposite signs in the 
two groups are called “ambiguous”. 

To determine whether iQTL were independent of cosmopolitan meQTLs, for each iQTL 
SNP we also assessed whether it was independent of SNPs that were cosmopolitan 
meQTLs (linkage disequilibrium R2<0.2 in the KORA cohort). This analysis is not necessarily 
matching the CpG sites involved in the iQTL or meQTL, therefore the true number of 
independent iQTL might be underestimated. 

 
Enrichment of candidate genes from the iQTL analyses in gene ontologies.  
 For each of the interacting variables and significant SNP-CpG pairs, we ran gene ontology 
enrichment analyses (R package GOstats). We mapped each of the significant SNPs and 
CpGs to their annotated gene symbols, and the gene symbols to Entrez IDs (R package 
org.Hs.eg.db, command org.Hs.egALIAS2EG). Where a gene symbol matched to >1 Entrez 
ID, we used all matching Entrez IDs.  For each interacting variable, two analyses were run 
based on the results from the respective interaction analysis: a) using the genes mapped to 
the significant CpGs; b) using the genes mapped to the significant SNPs. For each of these 
analyses, we tested for overrepresentation of the genes in three GO ontologies: biological 
process [GO:0008150], cellular component [GO:0005575], molecular function 
[GO:0003674]. We tested for overrepresentation, dependent on the GO structure,3 with 
significance cutoff of P=0.01 and a minimum of 5 represented genes (command 
hyperGTest). The statistical background taken was the set of unique genes represented by 
the SNPs or CpGs in the cosmopolitan results.       
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Supplementary Figures 
 
Supplementary Figure 1. Pruning strategy. 
Identification of genetic and methylation loci, and of sentinel SNPs and sentinel CpGs. 
 
Panel 1: Genome-wide association. For each CpG complete genome-wide association to 
identify the complete list of SNP-CpG pairs reaching P<10-14 (solid black lines, compared to 
SNPs not associated identified by dashed lines). 
 
Panel 2: Conditional analysis. For each CpG start with the SNP most closely associated 
with the CpG (the lead SNP). Identify potential secondary SNPs (P<10-14 in the GWA for the 
selected CpG). Carry out association testing of potential secondary SNPs with CpG, 
conditioned on the lead SNP (and any secondary SNP reaching P<10-14) to identify the set 
of SNPs showing independent association with each CpG (linear regression, P<10-14, two-
sided test, no adjustment for multiple testing; solid green lines). 
 
Panel 3: R2 merging. 
3a. Bring together all the independent SNP-CpG associations identified through the 
conditional analyses (ie Panel 2) into one list of SNP-CpG pairs (dashed green lines). 
 
3b. Order the complete list of SNP-CpG pairs based on P-value (lowest P = highest ranking). 
Identify the SNP-CpG pair with the lowest P-value (Pair 1 [P1], identifying sentinel SNP [S1] 
linked to sentinel CpG [C1], blue line). Merge all other SNPs that are within 1Mb and in 
R2>0.2 with sentinel SNP [S1], and use these SNPs to define Genetic locus 1 [G1]. From 
the remaining list of SNP-CpG pairs identify the pair with the lowest P-value and repeat the 
SNP merging process (SNPs within 1Mb and in R2>0.2) until no pairs remain. 
 
3c. Repeat the process for CpGs. Order the complete list of SNP-CpG pairs based on P-
value (lowest P = highest ranking). Identify the SNP-CpG pair with the lowest P-value 
(Pair 1 [P1], identifying sentinel CpG [C1]). Merge all other CpGs that are within 1 Mb and 
in R2>0.2 with sentinel CpG [C1], and use these CpGs to define Methylation locus 1 [M1]. 
From the remaining list of SNP-CpG pairs identify the pair with the lowest P-value and repeat 
the CpG merging process until no pairs remain. Finally, the pairings between sentinel SNP 
and sentinel CpG P1, P2, P3 … Pn (Solid blue lines) are identified based on P<10-14 (linear 
regression, two-sided test, no adjustment for multiple testing) for association between the 
sentinel SNP and sentinel CpG in combined analysis of data from Europeans and South 
Asians.  
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Supplementary Figure 2. Phenotype enrichment for Sentinel SNPs. 
We use eQTLgen and Phenoscanner v2 to determine the proportion of our Sentinel meQTL 
SNPs are cis-eQTLs or trans-eQTLs, or associated with blood levels of proteins (pQTL), 
metabolites (mQTL), or with available clinical phenotypes (clinical-QTL). Association with 
trait was inferred at P<5x10-8. We carried out permutation testing to determine distribution 
for proportion expected under the null hypothesis, and the probability for the result observed.  
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Supplementary Figure 3. Automated diagrams for networks identified by random walks. 
Automated diagrams for the additional loci with pathways identified through random walk 
analyses. Annotations and symbols are as described in Figure 4. The diagrams are 
provided as the Appendix to this Supplementary note.  
 
 
Supplementary Figure 4. Trans-eQTMs at select trans-meQTL loci. 
Gene expression of candidate trans regulators is more often correlated with methylation of 
trans-meQTL CpG sites than with non-candidate genes encoded at trans-acting loci. For 
each trans-acting locus, we determine for each gene encoded at the locus the  percentage 
of CpGs where methylation levels are correlated with the gene’s expression levels (trans-
eQTM) among all trans-meQTL CpG sites associated with the locus.  The plot shows the 
empirical cumulative density function of this percentage (x-axis) separately for genes 
identified as candidate trans regulators (blue) and the remaining genes in the locus (red). 
The y-axis shows the empirical probability that the percentage of CpGs with trans-eQTM for 
a gene is less or equal to the value on the x-axis. For example: ~52% of candidate genes 
have 0% of CpGs with trans-eQTM while this is the case for ~90% of non-candidates. 
Hence, ~48% of candidate genes have at least one CpG with trans-eQTM while this is the 
case for only ~10% of non-candidates. P-value shows result from a 2-sample Wilcoxon test 
comparing the percent of significant CpGs between candidate and non-candidate genes 
(alternative: two-sided). 
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Supplementary Figure 5. Pruning sensitivity analysis. 
Sensitivity analysis for the relation between number of independent associations identified 
and the R2 threshold used for pruning associations. The figure shows on the y-axis the 
number of independent associations (green), number of distinct associated CpG sites 
(yellow) and number of distinct associated SNPs (red) when pruning redundant associations 
with the specific R2 threshold shown on the x-axis. 
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Supplementary Figure 6. TF enrichment sensitivity analysis. 
Across a range of interval sizes (x-axis) around the respective CpGs, we test the 255 
transcription factors for overlap with the trans-CpG signatures of the 115 sentinel SNPs 
associated with multiple (≥5) trans-CpGs. For each x-axis interval size, we present (as the 
y-axis) the total number of significant associations (pairs) between a sentinel SNP and a 
transcription factor, where the transcription factor binding sites overlaps the location of the 
trans-CpGs more often than expected under a random model. Significance of overlap 
between transcription factors and trans-CpG signature was determined using Fisher’s exact 
test with all CpG sites on the array as background (blue) or an approach based on 
resampling of CpG sites matched for mean and standard deviation of the methylation levels 
(green) or both approaches at the same time (red). 
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Supplementary Figure 7. Random walk sensitivity analysis. 
We evaluated the influence of using the full protein-protein interaction network (facet label: 
All genes) to a restricted network that was filtered for genes expressed in whole blood (facet 
label: Expressed genes) on the results of the random walk analysis. In addition, we 
compared the results for the definition of the trans region around the identified sentinel SNPs 
based on the genetic data (see text, facet label: LD region) to the results based on regions 
defined only by distance of 1 Mb from the sentinel SNPs (facet label: 1 Mb region). Panel a) 
shows the percentage of candidate genes identified by the random walk analysis on the 
combined protein-protein and protein-DNA interaction network on the y-axis that are 
annotated to each of the GO terms representing likely trans regulators on the x-axis. Panel 
b) shows the number of candidates identified by the random walk approach that also had 
cis-eQTL in the GTEx whole blood dataset or in our own dataset. 
 
a) 
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b) 
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Supplementary Figure 8. Gating strategy and yields for separation of white cell subsets. 
A. Single cells were identified and cell doublets/couplets removed by gating on FCS-A and 
FCS-W. B. Live cells which were negative for Sytox Blue (450/50V nm) were selected.  C. 
FCS-A and SSC-A were utilised to gate granulocytes and a combined monocyte and 
lymphocyte population.  D. Neutrophils were gated on a CD14 low and CD16 high bi-plot.  
E. Monocytes and lymphocytes were separated on a CD14 and CD45 plot. F. Monocytes 
had an additional CD14 and CD16 cell gate applied to maximise purity. G-H. CD45 high and 
CD3 high T-cells were selected and divided into CD4 high and CD8 high cells. 
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Supplementary Figure 9.  Purity analysis for each of the sorted white blood cell subsets 
from a representative single donor.  A. ~20,000 cell events from the sorted neutrophil sample 
were re-sorted using an identical gating strategy; the percentage of cell events falling within 
the final neutrophil-specific gate was then calculated. Comparable strategies were used to 
assess the purity of B. Monocytes; C. CD4+ lymphocytes; D. CD8+ lymphocytes. 
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Supplementary Table legends 
 
The Supplementary tables are provided in the Excel file “Supplementary Tables”, which 
provides definitions of column headings, and a demonstration comprising an extract from 
data from results files that are too large for Excel. Where indicated the full Supplementary 
tables (up to 2GB file size) can be accessed as described under Data Availability in the main 
text.  
 
Supplementary Table 1. Replication in our study.  
Number of meQTLs i. discovered in ancestry specific genome-wide association, ii. confirmed 
in ancestry specific replication, and then iii. replicated in cross-ancestry combined analysis. 
Results are presented for the primary approach with replication defined as P<0.05 in the 
replication cohort and P<10-14 in combined analysis. As a sensitivity analysis, we also 
present results with replication defined as P<0.05 after complete Bonferroni correction for 
the number of tests performed. We note that 96% of markers identified by the primary 
approach (10,729,148/11,165,559), are also identified by replication with complete 
Bonferroni correction. 
 
Supplementary Table 2. Replication in other studies.  
Replication of known SNP-CpG associations based. The statistical models and thresholds 
for statistical significance vary by study; see the individual studies for details. We note that 
FDR based approaches to meQTL identification, with permissive P values deliver 
substantially lower reproducibility. 
 
Supplementary Table 3. Replication of known pairs.  
Replication of known SNP-CpG associations. The statistical models and thresholds for 
statistical significance vary by study; see the individual studies for details. 
 
Panel A: Novel associations in the cosmopolitan results. 
The novel associations amongst our cosmopolitan results, total and based on distance 
category. Each cell is the total novel associations in our cosmopolitan results (percent of the 
associations in this category in our cosmopolitan results being novel). Results are 
considered novel if they do not appear as statistically significant in any of 7 studies. 
 
Panel B: Replication of known associations, significance level P<10-10.  
Known associations (nominal P<10-10 in any of the 7 studies) replicated by our cosmopolitan 
results, total and by distance category. Each cell is the number (percent) of known 
associations replicated by our cosmopolitan results (ie reaching P<10-14 in our dataset) for 
all associations, regardless of the number of studies a given association appears in; for 
associations appearing in 1 study; for associations appearing in 2 studies; and for 
associations appearing in 3 or more studies. 
 
 

https://hmgubox.helmholtz-muenchen.de/f/1147650337964625ab4d/?dl=1
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Panel C: Replication of known associations, significance level P<10-14.  
Known associations (nominal P<10-14 in any of the 7 studies) replicated by our cosmopolitan 
results, total and by distance category. Each cell is the number (percent) of known 
associations replicated by our cosmopolitan results (ie reaching P<10-14 in our dataset) for 
all associations, regardless of the number of studies a given association appears in; for 
associations appearing in 1 study; for associations appearing in 2 studies; and for 
associations appearing in 3 or more studies. 
 
Panel D: Replication of known associations, divided by study.  
Known associations (statistical significance defined by individual study) replicated by our 
cosmopolitan results (ie reaching P<10-14 in our dataset). Each cell is the percent of 
replicated associations. 
 
Supplementary Table 4. Cross-platform replication.  
Results for replication of current results in MeDIP-seq studies. Presented are the results for 
various significance thresholds in the KORA F4 dataset (N<=1731). Shown are the number 
of replicated results (proportion) from the 328 testable associations at various p-value 
cutoffs, and the p-value determined by the matched SNP-CpG sampling approach described 
in the Methods (one-sided test, no adjustment for multiple testing). A p-value of “<0.01” 
indicates that none of the 100 matched pair sets achieved an equal or greater number of 
associations than the KORA F4 results). Also presented is the median number of replicated 
LD block-HSM peak associations over the 100 randomly selected matched SNP-CpG 
datasets. Enrichment is defined as the actual number of replicated associations divided by 
the median from the matched SNP-CpG datasets. 
 
Supplementary Table 5. Cosmopolitan results.  
Cosmopolitan SNP-CpG associations identified through genome-wide association amongst 
Europeans and South Asians. The table lists all 11,165,559 SNP-CpG pairs that reach 
genome-wide significance (P<10-14) in either European or South Asian discovery analysis, 
and which show cross-ancestry replication (P<0.05, same direction of effect and combined 
P<10-14). Data are provided in the accompanying text file “ST5.txt”. Definitions for column 
headings are provided in tab ST5 of the Excel spreadsheet. “Supplementary Tables”.  
 
Supplementary Table 6. Variance explained for discovery SNP-CpG associations.  
Summary statistics are presented for the explained variance in the discovery European and 
the Asian populations separately, further stratified into cis pairs (< 1Mb distance between 
SNP and CpG), long-distance cis (> 1Mb distance but on the same chromosome), and trans 
(SNP and CpG on different chromosomes). 
 
Supplementary Table 7. Cross-tissue replication.  
Results for further testing of the 11,165,559 cosmopolitan SNP-CpG associations identified 
(by genome-wide association in blood), in 4 isolated white cell subsets (CD4+ lymphocytes, 
CD8+ lymphocytes, monocytes and neutrophils), in adipocytes isolated from subcutaneous 
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adipose tissue or visceral adipose tissue, and in whole adipose tissue. Data are provided in 
the accompanying text file “ST7.txt”. Definitions for column headings are provided in tab ST7 
of the Excel spreadsheet “Supplementary Tables”. 
 
Supplementary Table 8. Conditional analysis.  
Results of conditional analysis to identify SNPs independently associated with each of the 
~360K CpG sites tested. Data are provided in the accompanying text file “ST8.txt”. 
Definitions for column headings are provided in tab ST8 of the Excel spreadsheet 
“Supplementary Tables”. 
 
Supplementary Table 9. Sentinel SNPs and CpGs.  
Results of R2 pruning and locus merging to identify discrete genetic and methylation loci that 
are associated, and their respective sentinel SNPs and sentinel CpG sites. Data are 
provided in the accompanying text file “ST9.txt”. Definitions for column headings are 
provided in tab ST9 of the Excel spreadsheet “Supplementary Tables”. 
 
Supplementary Table 10. SNP to gene expression.  
Association of sentinel SNPs with gene expression in whole blood (cis and trans) in 
participants of the KORA and LOLIPOP studies. Definitions for column headings are 
provided in the adjacent worksheet ‘ST10 legend’ of the Excel spreadsheet “Supplementary 
Tables”. 
 
Supplementary Table 11. Enrichment of trait associations with meQTL CpGs.  
We tested the association of our sentinel CpGs with 49 clinical and 228 metabolomic traits 
(see Methods). The table presents the results for the observed sentinel CpGs, compared 
to expectations under the null hypothesis based on permutation testing. P-values were 
generated based upon 2-sided 1-sample t-tests. 
 
Supplementary Table 12. CpG to gene expression relationships adjusted for confounders.  
Association between sentinel CpGs and gene expression in cis or trans in whole blood 
adjusted for cis-meQTL SNPs, limited to eQTMs supported by SMR (p<0.05/number of tests 
performed). Definitions for column headings are provided in the adjacent worksheet ‘ST12 
legend’ of the Excel spreadsheet “Supplementary Tables” 
 
Supplementary Table 13. Power for SMR analysis of directly observed trans-eQTMs.  
SMR analysis of observed trans-eQTMs was done using trans-meQTL and trans-eQTL data 
from the current study (sample sizes 6,994 and 1,546 respectively). Detectable effect sizes 
in SMR analysis of trans-eQTMs were estimated for study power ranging from 10% through 
to 90%, at P<0.05, based on two-sample Mendelian Randomisation. For each level of study 
power, the number of observed trans-eQTMs with effect sizes above the respective power-
specific threshold is shown, along with the number (%) that are supported by SMR at 
P<0.05. Results show that the proportion of observed trans-eQTMs supported by SMR is 
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consistently greater than above null expectations, supporting the view that many of the 
trans-eQTMs relationships have a shared underlying trans-acting genetic effect.  
 
Supplementary Table 14. Hi-C interaction analysis.  
Results for overlap of SNP-CpG pairs with annotated Hi-C interaction sites. 
 
Supplementary Table 15. Identification of cis-eQTLs underlying trans-meQTLs.  
Results of Summary-data-based Mendelian Randomization (SMR) analysis to assess 
whether the proximal candidate gene at a trans-acting genetic locus shows covariation with 
the trans-methylation signature (triangulation of cis-eQTL, trans-meQTL and trans-eQTM 
data). Results for cis SNP-expression (cis-eQTL) associations were obtained from 
eQTLgen,2 while trans SNP-methylation (trans-meQTL) and trans methylation-expression 
(trans-eQTM) associations were as reported in the current study. Sentinel SNPs from the 
current trans-meQTL analysis were used as instrumental variables to assess the causal 
effect of cis gene expression upon trans DNA methylation. Definitions for column headings 
are provided in the adjacent worksheet ‘ST15 legend’ of the Excel spreadsheet 
“Supplementary Tables” 
 
Supplementary Table 16. Genetic variation underlying BMI and DNA methylation.  
Results of Summary-data-based Mendelian Randomization (SMR) analysis, using SNPs 
from BMI GWAS meta-analysis at P<1E-8 as instrumental variables to assess the causal 
effect of BMI upon DNA methylation. Definitions for column headings are provided in the 
adjacent worksheet ‘ST16 legend’ of the Excel spreadsheet “Supplementary Tables”. 
 
Supplementary Table 17. UBASH3B, adiposity and related traits in blood.  
Results for analysis of UBASH3B expression in blood with all complex traits available at 
Transcriptome-Wide Association Study (TWAS) hub (http://twas-hub.org). The Z-scores and 
corresponding P-values, as reported by the TWAS hub analysis report, provide an estimate 
on the strength of association between the predicted expression of UBASH3B and the 
various complex traits, based upon GWAS summary statistics and leveraging gene 
expression imputation from genetic data. 
 
Supplementary Table 18. Initial trans-meQTL candidate genes.  
Candidate genes for the 1,847 trans-acting sentinel SNPs based on the following criteria: i. 
Nearest gene to SNP; ii. Gene is an eQTL of the SNP in blood. Definitions for column 
headings are provided in the adjacent worksheet ‘ST18 legend’ of the Excel spreadsheet 
“Supplementary Tables”. 
 
Supplementary Table 19. Pathway analysis of trans-meQTL relationships.  
Pathway analysis of candidate genes for the 1,847 trans-acting sentinel SNPs identified in 
Supplementary Table 18. Candidate genes were tested for over- or under-representation of 
specific gene sets defined by gene ontology terms using the hypergeometric test (two-
sided). Columns indicate the GO category (biological process or molecular function), GO 
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identifier, the name of the GO term, the size of the gene set. In addition, the observed size 
and expected size of the overlap of the gene set with the candidate genes, the corresponding 
odds ratio, P-value of the hypergeometric test and the multiple testing adjusted Q-value 
(FDR) are given. 
 
Supplementary Table 20. ChIP-seq data sources.  
The 246 ChIP-seq experiments for 145 DNA binding proteins, used for the analysis of 
overlaps between trans-methylation signatures and transcription factor binding sites. Data 
were uniformly processed by the Remap resource and included the ENCODE cell lines 
GM12787 and K562. The table shows gene symbols of the DNA binding proteins and the 
experimental condition they were measured in according to Remap. We selected only 
conditions that are related to blood derived cells. 
 
Supplementary Table 21. Impact of microarray coverage on TF enrichment analyses.  
This sheet contains two tables. The top table described the categorisation of EPIC array 
markers used for investigating the impact of genomic coverage on the TF enrichment 
analysis. Based on these categories, the bottom table shows the results for the different sets 
of CpG sites: the number of SNPs showing enrichment for TFs, and the number of 
overlapping TFs identified using the 450K array marker set alone, or extended by additional 
sets of markers from the EPIC array. The additional EPIC array markers increase discovery 
of overlapping TFs (by N=15). There is no evidence for false positives amongst the SNPs 
or overlapping TFs identified using the 450K array.  
 
Supplementary Table 22. Candidate transcription factors encoded in cis.  
Transcription factors identified as putative cis-candidate genes mediating the effect of trans-
acting sentinel SNPs; identification as a candidate is based on i. the overlap of the trans-
CpG signatures with the binding sites for the respective transcription factor, and ii. location 
in cis to the sentinel SNP. Statistical significance of the overlap was assessed using Fisher’s 
exact test (two-sided) and P-values were adjusted for multiple testing using the Benjamini-
Hochberg method. Column headings are described in the table footnote.  
 
Supplementary Table 23. Candidate transcription factors encoded in cis or trans. 
Transcription factors overlapping the trans-acting sentinel SNPs. The table lists transcription 
factors whose binding sites overlap the trans-CpG signatures of the sentinel SNPs, 
identifying them as putative candidates involved in mediating the effects of the trans-acting 
SNP. Statistical significance of the overlap was assessed using Fisher’s exact test (two-
sided) and P-values were adjusted for multiple testing using the Benjamini-Hochberg 
method. In contrast to Supplementary Table 22, there is no requirement for the transcription 
factor to be in cis, and for the majority of the relationships identified (279/290), the 
transcription factor is encoded by a gene that is in trans to the sentinel SNP. Column 
headings are as described in the footnote to Supplementary Table 22.  
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Supplementary Table 24. Candidate genes from pathway analyses.  
Candidate genes in cis to the sentinel SNPs influencing DNA methylation in trans. Candidate 
genes were identified by pathway analyses of integrated molecular data (eQTL, Protein-
Protein Interaction, Transcription Factor Binding Sites) using a random walk analysis 
approach. Empirical P-value (one-sided) for achieving a random walk score as high as the 
one observed was determined by resampling (n=100) of matched random trans-meQTL 
CpG sites. If no resampled random walk score was lower than the one observed, we note 
P<0.01. No adjustment for multiple testing was performed. The analysis identified 52 
candidate genes across 48 genetic loci. Column headings are described in the table 
footnote.  
 
Supplementary Table 25. Gene ontology analysis of candidate genes.  
Gene Ontology database enrichment analysis of the 52 genes identified as cis-candidates 
for the trans-acting sentinel SNPs (from Supplementary Table 24). Candidate genes were 
tested for over- or under-representation of specific gene sets defined by gene ontology terms 
using the hypergeometric test (two-sided) and multiple testing was adjusted for using the 
Benjamini-Hochberg method. Column headings are described in the table footnote. 
 
Supplementary Table 26. Shortlist for IP MS experiment for ZNF333.  
The table presents a shortlist of proteins from Supplementary Table 28 with a ratio IP/control 
of at least a value of 2 for both IP experiments (anti-FLAG mAb and anti-ZNF333). In the 
Methods section, we refer to this set of proteins as set P_ZNF333. Headers for both tables 
are identical.  
 
Supplementary Table 27. Gene Ontology analysis of ZNF333 interactors.  
Significant GO terms (FDR < 0.05) for the stringent ZNF333 interactome in Supplementary 
Table 26. FDR was derived from P-values calculated using a hypergeometric distribution to 
determine whether the GO terms annotated the specified gene list at a frequency greater 
than expected by chance.  
 
Supplementary Table 28. IP MS experiment for ZNF333.  
Results of the IP-MS experiment for the full list of proteins quantified with at least two unique 
peptides (referred to as set P-ZNF333-long in the Methods section). For each entry the 
UniProt Accession Number, gene symbol, total peptide count, number of unique peptides 
and enrichment values are provided. The latter were calculated as ratios between 
normalised protein abundances in the individual samples in comparison to its corresponding 
IgG control, and are shown in the table as per cell type (transfected and untransfected) and 
IP experiment (anti-FLAG and anti-ZNF333, with IgG Mouse and IgG Rabbit as their controls 
respectively). 
 
Supplementary Table 29. Enrichment of population iQTLs with GWAS traits.  
Results of a QTLenrich analysis of 114 GWAS traits. The columns indicate: the GWAS trait, 
the interaction term used to detect interacting meQTL, the number of QTL variants, the 
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number of QTL variants found in the in GWAS data, the number of observed QTLs with 
GWAS P<0.05, the number of expected QTLs with GWAS P<0.05, the estimated num trait 
associations with GWAS P<0.05, the fold Enrichment observed / expected, the enrichment 
P value, the corresponding FDR, the phenotype description, an abbreviation for the 
phenotype, the category of the phenotype and the pubmed link to the GWAS paper. 
 
Supplementary Table 30. Phenotypes associated with population iQTLs.  
Results of a QTLenrich analysis of 114 GWAS traits, using meQTLs that show an interaction 
with ancestry (‘Population iQTLs’). Population iQTLs were first identified from within the 
‘cosmopolitan’ set of meQTLs replicated across ancestries. As a secondary analysis we 
repeated the genome-wide analysis of cis-meQTLs (‘Global’) to identify SNPs with 
population-specific effects on DNA methylation. The columns indicate: the GWAS trait, the 
interaction term used to detect interacting meQTL, the number of QTL variants, the number 
of QTL variants found in the in GWAS data, the number of observed QTLs with GWAS 
P<0.05, the number of expected QTLs with GWAS P<0.05, the estimated num trait 
associations with GWAS P<0.05, the fold Enrichment observed / expected, the empirical 
enrichment P value (one-sided for overrepresentation) based on null variants matched for 
potential confounders, the corresponding FDR adjusting for multiple testing, the phenotype 
description, an abbreviation for the phenotype, the category of the phenotype and the 
pubmed link to the GWAS paper. 
 
Supplementary Table 31. Cosmopolitan and genome wide meQTL SNPs with iQTLs.  
We tested whether our 11.2M confirmed cosmopolitan SNP-CpG associations are 
influenced by biological traits known to influence DNA methylation (Panel A: Cosmopolitan 
iQTLs). Results show the number of SNP-CpG pairs showing evidence for an interaction 
with respective phenotype at P<4.5x10-9 (ie P<0.05 after Bonferroni correction for 11.2M 
tests), and the number (%) of those pairs that then show replication (P<0.05 and same 
direction of effect). Discovery and replication are done twice: i. discovery in Europeans then 
replication in South Asians, and ii. discovery in South Asians then replication in Europeans. 
The union of these two analyses comprises SNP-CpG pairs that reach criteria for discovery 
and replication in either analysis. The analysis was then repeated genome-wide for all 
possible cis-meQTLs (Panel B: Genome-wide cis iQTLs). 
 
Supplementary Table 32. Phenotypes associated with WBC iQTLs.  
Results of a QTLenrich analysis of 114 GWAS traits. The columns indicate: the GWAS trait, 
the interaction term used to detect interacting meQTL, the number of QTL variants, the 
number of QTL variants found in the in GWAS data, the number of observed QTLs with 
GWAS P<0.05, the number of expected QTLs with GWAS P<0.05, the estimated num trait 
associations with GWAS P<0.05, the fold Enrichment observed / expected, the empirical 
enrichment P value (one-sided for overrepresentation) based on null variants matched for 
potential confounders, the corresponding FDR adjusting for multiple testing, the phenotype 
description, an abbreviation for the phenotype, the category of the phenotype and the 
pubmed link to the GWAS paper. 
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Supplementary Table 33. Cohort summary statistics.  
Summary of sample sizes and covariates. 
 
Supplementary Table 34. Cohort methods.  
Summary of approaches used for generation of DNA methylation and genotype data, quality 
control and statistical analyses in the contributing cohort studies.  
 
Supplementary Table 35. meQTLs are not enriched for WBC SNPs.  
We argue that if white cell composition is an important confounder of our meQTL results, 
then sequence variants which affect white cell composition will be associated with DNA 
methylation in our dataset. We therefore determined how many of the 1,847 trans-acting 
sentinel SNPs in our meQTL study were ‘Observed’ (Obs) to be associated with a white cell 
phenotype in published GWAS. As a sensitivity analysis we adopted three alternate 
statistical thresholds (P<0.05 [nominal], P<0.05/1,847 [Bonferroni corrected], or P<5x10-8 
[genome-wide]). We used permutation testing to determine whether this Observed number 
was higher than expectations under the null hypothesis (‘Expected’, [Exp]), via a 1-sided 
one-sample t-test. Specifically, we generated 1,000 sets of 1,847 SNPs from the white cell 
subset GWAS, with each set matched to the trans-acting sentinel SNPs in our meQTL study, 
based on MAF and distance to nearest gene (but selected otherwise at random). Results 
show no evidence for enrichment of the meQTL sentinel SNPs for sequence variants known 
to be determinants of white cell phenotypes. These findings provide further strong evidence 
that our meQTL results are not materially influenced by white cell composition. 
 
Supplementary Table 36. Weighted annotations.  
Weighting of epigenetic annotations based on estimated blood cell type composition used 
for analysis of enrichment of SNPs and CpGs in chromatin state annotations. We estimated 
the expected epigenetic annotation across the genome in whole blood by combining 
population level estimates of blood cell composition with epigenome annotations of primary 
blood cells from the Roadmap Epigenomics Project. We annotated each CpG site with the 
epigenetic state across each of the primary blood cell types resulting in indicator variables 
for each state and each primary cell type with values 0 or 1. To account for the cell type 
composition, we first averaged indicator variables for all cell types that belong to the same 
group as defined by Houseman (column ‘Houseman group’: monocytes, granulocytes, B-
cells, CD4 T-cells, CD8 T-cells). Then these averaged primary annotations for cell type 
groups were weighted by the population average cell type abundance estimated by the 
Houseman method indicated in column ‘Houseman population mean’. 
 
Supplementary Table 37. Replication of eQTMs.  
We identified all eQTMs (cis and trans, genome-wide) at either FDR<0.05 and or Bonferroni 
corrected P thresholds in Europeans or South Asians independently, with correction for 
genetic background and white cell subset composition. Findings in one population cohort 
were then submitted for replication testing in the alternate population. We considered eQTM 
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associations to be replicated at P<0.05 and concordant direction of effect. Sample sizes for 
these analyses were N=853 for European and N=693 for South Asians. 
 
Supplementary Table 38. Impact of WBC correction on eQTM results.  
We identified all possible eQTMs (cis and trans CpG-gene expression pairs, genome wide) 
at P<8.7x10-12 (Bonferroni correction) by meta-analysis of results from Europeans (N=853) 
and South Asians (N=693). Analyses were carried out first without, and then with white cell 
subset correction, but in both cases with correction for genetic background. Results show 
that white cell subset composition is an extremely important confounding effect in analysis 
of eQTMs and accounts for >99% of apparent associations observed.  
 
Supplementary Table 39. CpG variability predicts associations with potential predictors. 
Results for site-specific variability in methylation in relationship to underlying genetic 
variation and gene expression. Tertiles are of the distribution for variability (SD) in 
methylation. CpGs from each tertile and different functional groups (i.e. cis/long/trans-SNP 
loci, methQTL loci, cis/trans-eQTM loci) were kept. One-way ANOVA test was applied to 
analyze the statistical difference of methylation variability between the tertile groups. 
 
Supplementary Table 40. GWAS used for colocalization analysis at trans acting loci.  
The table specifies the pubmed identifier of the GWAS study used for each of the trans 
acting sentinel SNP loci and the respective candidate gene at the locus. 
 
Supplementary Table 41. Pathway analysis of the iQTLs.  
Results of the GO enrichment analysis (using the R package GOstats) for each of the 
interacting phenotypes examined: smoking (yes/no), BMI and estimated proportions of 
CD8T, CD4T and monocytes. The table details the type of analysis run (interacting variable, 
whether the analysis is based on the list of significant SNPs or CpGs, and the gene ontology 
examined) and the results of the analyses (conditional hypergeometric test for 
overrepresentation as defined in the R package GOstats): the gene ontology term showing 
statistically significant enrichment (unadjusted one-sided P<=0.01, a minimum of 5 
represented genes), the GO ID of this term, the odds ratio of the enrichment and its p-value, 
the expected number of significant genes annotated to the ontology term (ExpCount), the 
number of significant genes annotated to the ontology term (Count), and the total number of 
genes annotated to the ontology term (size). 
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Appendix 
 
Supplementary Figure 3. Automated diagrams for networks identified by random walks. 
Automated diagrams for the additional loci with pathways identified through random walk 
analyses. Annotations and symbols are as described in Figure 4.  
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Graph for sentinel rs77767885 with candidate TFEC
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Graph for sentinel rs7783715 with candidate MAD1L1
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Graph for sentinel rs79755767 with candidate NFE2
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Graph for sentinel rs8049417 with candidate SOX8
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Graph for sentinel rs8050209 with candidate BANP
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Graph for sentinel rs9859077 with candidate SENP7
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