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Abstract

Soil organic matter (SOM) is composed of fractions with different functions

and reactivity. Among these, particulate organic matter (POM) is the main

educt of new inputs of organic matter in soils and its chemical fate corresponds

to the first stages of the SOM decomposition cascade ultimately leading to the

association of organic and mineral phases. We aimed at investigating the

molecular changes of POM during decomposition at a sub-millimetre scale by

combining direct measurements of POM elemental and molecular composition

with laboratory imaging visible–near-infrared (VNIR) spectroscopy. For this,

we set up an incubation experiment to compare the molecular composition of

straw and composted green manure, materials greatly differing in their C/N

ratio, during their decomposition in reconstituted topsoil or subsoil of a Luvisol,

and recorded hyperspectral images at high spatial and spectral resolutions of

complete soil cores at the start and end of the incubation. Hyperspectral imaging

was successfully combined with machine learning ensembles to produce a pre-

cise mapping of POM alkyl/O-N alkyl ratio and C/N, revealing the spatial het-

erogeneity in the composition of both straw and green manure. We found that

both types of organic amendment were more degraded in the reconstituted top-

soil than in subsoil after the incubation. We also measured consistent trends in

molecular changes undergone by straw, with the alkyl/O-N alkyl ratio slightly

increasing from 0.06 to 0.07, and C/N dropping by about 40 units. The green

manure material was very heterogeneous, with no clear molecular changes

detected as a result of incubation. The imaging VNIR spectroscopy approach

presented here enables high-resolution mapping of the spatial distribution of the

molecular characteristics of organic particles in soil cores, and offers opportuni-

ties to disentangle the roles of POM chemistry and morphology during the first

steps of the decomposition cascade of organic matter in soils.
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Highlights

• VNIR imaging combined with machine learning to map POM molecular

composition.

• Prediction of C/N and alkyl/O-N alkyl ratios of POM at sub-millimetre

scale.

• More advanced decomposition of organic amendments in topsoil than in

subsoil.

• Heterogeneity of POM molecular composition resolved for individual

particles.
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1 | INTRODUCTION

Soils provide many services in terrestrial ecosystems and
adequate management of agricultural soils support food
security, water quality, biodiversity and climate regulation
(Lal, 2016). Soil organic matter (SOM) quantity influences
soil fertility and water holding capacity, and is associated
with more diverse and resilient soil fauna and flora
(Bossuyt et al., 2005; Kravchenko et al., 2019; Verbruggen
et al., 2016). Maintaining and increasing SOM quantity in
agricultural soils is therefore often considered a keystone
for their sustainable use (Chenu et al., 2019).

The addition of organic residues into soil, either by
direct return of crop residues or from exogenous sources,
is a common practice in agricultural management aiming
to enhance SOM quantity (Maillard & Angers, 2014;
Sisouvanh et al., 2021). SOM also controls other impor-
tant soil parameters such as soil structural development
or activity of (micro)organisms (Bai et al., 2018; Pascault
et al., 2013). Organic fertilisation through crop residue
addition mainly results in the accumulation of coarse
organic material at the annual to decadal timescale (van
Wesemael et al., 2019) while changes in the quantity of
mineral-associated organic matter (MAOM) occur gener-
ally on the scale of decades and more (Cambardella &
Elliott, 1992; Cotrufo et al., 2019). The coarse fraction of
SOM, corresponding to particulate organic matter
(POM), is composed of partially decomposed plant frag-
ments, whose association with the soil mineral matrix is
restricted to surface coatings of the organic particles by
minerals or occlusion within aggregates (Golchin
et al., 1994; Wagai et al., 2009). This fraction contrasts
with the MAOM, which is composed of organic com-
pounds with lower molecular weight and strongly

attached to mineral phases (mostly to phyllo silicates and
oxides) or protected within microaggregates (von Lützow
et al., 2008). The accrual of SOM through POM accumu-
lation has been proposed as a possible carbon (C) seques-
tration strategy (Lavallee et al., 2020) having the
advantages, in contrast to MAOM, of not being con-
strained by saturation of mineral surfaces or carbon/
nitrogen (C/N) stoichiometry (Cotrufo et al., 2019).

The composition of POM reflects both its source
material and its degradation processes during decomposi-
tion. Initially, this fraction is primarily composed of two
types of plant tissues, namely, parenchymatic tissues
(e.g., leaves and bark) and woody tissues, the former
being mainly made up of (hemi-)cellulose walls and rich
in proteins while the latter contains more lignin (Kögel-
Knabner, 2002). During decomposition, POM serves as
an energy source for microorganisms which take up C
and other nutrients and respire a considerable fraction of
the processed C. Under oxic conditions, the N used by
microorganisms tends to be recycled, resulting in a
decrease of the POM C-to-N ratio (C/N) during initial
decomposition stages. Other indications of changes in
POM properties during decomposition can be obtained
from 13C nuclear magnetic resonance (NMR) spectros-
copy. Studies conducted on a diverse range of natural
organic materials revealed that O/N alkyl structures are
preferentially taken up by microorganisms, and that the
relative proportion of alkyl C generally increases as
decomposition progresses (Baldock et al., 1997; Gao
et al., 2016; Kögel-Knabner, 1997). The ratio of alkyl C-
to-O/N-alkyl C (hereafter noted alkyl ratio) is thus used
as an indicator of degree of decomposition, with higher
ratios indicating a greater degree of decomposition. These
general dynamics of decomposition are modulated by the
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composition of the original material and soil conditions
(Wilson et al., 1983).

Water and oxygen availability are important for POM
decomposition and can strongly vary with soil depth. In
deeper horizons, decomposition might be restricted by
lower temperature and oxygen availability in comparison
to topsoils, even if there is little direct evidence of these
constraints and that specific microbial taxa have tempera-
ture optima below 10�C (Gao et al., 2016; Rumpel &
Kögel-Knabner, 2011). In addition, the spatial heterogene-
ity of soil components differs between topsoil and subsoil
in agricultural soils, especially in fields where regular
ploughing of the topsoil takes place (Chabbi et al., 2009;
Hobley et al., 2018). SOM spatial distribution is more het-
erogeneous in the subsoil and this patchy distribution
results in hotspots where SOM decomposition, and poten-
tially stabilisation, as well as nutrient cycling is centralised
(Heinze et al., 2018; Heitkötter & Marschner, 2018; Hobley
et al., 2018). This highlights the importance of the location
of organic substrates in niches, that is microdomains with
various dynamics for their decomposition, and of tech-
niques able to resolve such small-scale heterogeneity.

Techniques to analyse the fine-scale spatial heteroge-
neity of SOM distribution and composition can help to elu-
cidate processes of SOM decomposition. Laboratory
visible–near-infrared (VNIR) imaging spectroscopy applied
to Histosols has been shown to enable the identification of
OM with different compositions (Granlund et al., 2021;
Steffens et al., 2014). This method was also successfully
used for the classification of diagnostic soil horizons and
the mapping of several elements (C, N, Fe) at the pedon
scale (Hobley et al., 2018; Sorenson et al., 2020; Steffens &
Buddenbaum, 2013), as well as for the determination of
soil structure arrangement and mapping of soil compo-
nents (POM, Fe oxides, mineral matrix) at a sub-
millimetre scale (Lucas et al., 2020; Mueller et al., 2021).
Combined with modern prediction methods based upon
machine learning and artificial intelligence (e.g., random
forest or artificial neural networks), this high spatial-
resolution analytical technique enables mapping of chemi-
cal composition in soil profiles at a sub-millimetre scale.

In this study, we hypothesised that both soil depth
and quality of organic amendment are strong determi-
nants of the molecular composition of POM and its
decomposition, and aimed at characterising in situ the
small-scale molecular heterogeneity of organic amend-
ments. Decomposition of POM in topsoil will be faster
than in the subsoil, where nutrient and oxygen availabil-
ity is limited, thereby retarding decomposition. Addition-
ally, organic amendments high in N will be preferentially
decomposed by soil microorganisms, whereas decomposi-
tion of organic amendments dominated by C compounds
will be relatively slower due to N limitation during the

decomposition process. To test these hypotheses, we
incubated soil samples from the surface (0–30 cm) and
upper subsoil (30–60 cm) of a Luvisol and added either
green manure with a low C/N or straw amendment with
a high C/N for a period of 180 days. We used VNIR
hyperspectral imaging combined with artificial intelli-
gence modelling with the objective to determine its capa-
bilities for mapping the composition of POM at high
spatial resolution prior to and after incubation.

2 | MATERIALS AND METHODS

2.1 | Soil sample and incubation
experiment

The soil used for the incubation experiment was sampled
from an agricultural trial field at “Campus Klein-
Altendorf” experimental research station (50�3705100N;
6�5903200E), University of Bonn, Germany. The mean
annual air temperature at Bonn-Rohleber (https://www.
dwd.de) is 10.3�C and the mean annual precipitation is
816 mm for the period 1991–2010. The soil is a Haplic
Luvisol (IUSS Working Group WRB, 2015) derived from
quaternary Loess deposits, with a pHwater of 6.5 and a tex-
ture dominated by silt particles, with an enrichment in clay
with depth (clay/silt/sand ⋍ 25%–43%/50%–68%/4%–6%).
The organic C and total N contents are respectively 8.0 and
1.1 mg g�1 in the topsoil and 3.0 and 0.5 mg g�1 in the sub-
soil. Two soil depths (0–30 cm, and 30–60 cm), hereafter
named topsoil and subsoil corresponding to the ploughed
layer and the non-ploughed upper subsoil, were collected
using a backhoe and directly sieved to 5 cm.

Soil cores were prepared in 90-cm high PVC pipes
(⌀ = 7.5 cm) by inserting, from bottom to top, 20 cm of
quartz sand, 30 cm of subsoil, 5 cm of mixed topsoil and
subsoil, and 25 cm of topsoil. Soils were amended with two
types of organic materials, wheat straw and green manure,
added either to the topsoil or to the subsoil. Straw material
corresponds to harvest residues whereas the composted
green manure was a mixture of green waste (trees, bushes
and shrubs) from public green areas and parks.

The organic material was incorporated by mixing it
with the soil (1:4 volume mixing ratio for organic:soil)
before packing the cores. The application rate was chosen
based on an ongoing field experiment at the same site
where the deep placement of organic fertiliser has been
tested as a long-term fertilisation strategy (https://www.
soil3.de/Projektinformationen-en/Versuche%20und%
20Standorte/Zentrale%20Feldversuche). Based on field
measurements, we packed the column at densities of 1.35
and 1.50 g cm�3 for topsoil and subsoil without amend-
ment. For the soil with amendment, we packed the
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columns at densities of 1.20 g cm�3 in the topsoil and
1.35 g cm�3 in the subsoil, based on acquired data in the
field mentioned above. Sixteen soil cores were prepared,
corresponding to duplicates of the two types of organic
material amendments (straw or green manure), admixed
into one of the two soil depths (denoted top- or sub-) for
initial sampling (T0) and after 180 days (T1) of incuba-
tion. Soil cores were maintained at 20�C and 60% of field
capacity determined gravimetrically (Veihmeyer &
Hendrickson, 1949).

2.2 | VNIR hyperspectral imaging

Before recording hyperspectral images, soil cores were
cut lengthwise, from bottom to top, into two equal halves
and then dried at room temperature. For imaging, sam-
ples were illuminated with two 150-W halogen lamps.
Hyperspectral images were recorded using a Hyspex
VNIR-1800 camera (Norsk Elektro Optikk, Norway) after
automatic dark background correction. The sensor was
equipped with a 30-cm lens, giving a final field of view of
approximately 9 cm for the 1800 detectors (53 � 53 μm2

per pixel). For each pixel, light reflectance intensity was
measured for 186 bands in the region 400–990 nm (spec-
tral resolution of 3.17 nm per band).

To account for potential unevenness in illumination
and spectral response at different horizontal locations in
the core, the spectral intensity (I) of the raw images of
the soil cores were normalised to the defined reflectance
(R) of calibration target for each wavelength (λ) and
pixel (x):

RSample,λ,x ¼ ISample,λ,x

ITarget,λ,x
�RTarget,λ,x:

The background, plastic pipe, light overexposure and
shadows were later masked using ENVI version 5.2
(Exelis Visual Information Solutions, Boulder, CO) by
mapping the spectral intensity of the VNIR band at
�980 nm and the ratios of the spectral intensity of
bands at 980 and 420 nm, and of bands at 630 nm and
420 nm. After comparing these with the original images,
thresholds in the spectral response and ratios were iden-
tified and used to mask non-soil components of the
images.

2.3 | POM sampling in soil cores

We selected regions of interest (ROI) with different spec-
tral signatures for sampling and analysis of C and N con-
tents and for analysis of molecular structure information

by solid-state 13C-cross polarization/magic angle spinning
(CPMAS)-NMR spectroscopy. Regions of interest were
sampled based upon score projections of the first three
components of a principal component analysis (PCA) of
the 186 bands in the VNIR spectra, which generally
accounted for more than 95% of spectral variability in the
cores. We sampled two ROI per core that received straw
as a treatment (N = 16). Because of the greater visual het-
erogeneity of the green manure, which could be roughly
identified as wood-like or non-woody particles, we
increased the number of ROI in these samples (N = 31),
sampling one to two ROI of visually identifiable wood-
like material and two ROI of visually identifiable non-
wood material per core (i.e., bark). Wood samples with a
diameter larger than 5 mm were not sampled. In total,
we sampled 47 ROIs, corresponding to straw or green
manure at different stages of decomposition. On average,
the ROIs include 9267 ± 1478 pixels, corresponding to an
area of 26.0 ± 4.2 mm2. All material was milled using an
agate mortar and pestle prior to further analysis.

2.4 | Solid-state 13C CP-MAS-NMR
spectroscopy

Solid-state 13C-CPMAS-NMR spectra of the ROI samples
were obtained at a frequency of 50.3 MHz (Bruker DSX
200). The powdered samples were filled into a zirco-
nium dioxide rotor and spun at a magic angle under a
magnetic field of 6800 Hz with an acquisition time of
0.01024 s. A ramped 1H pulse was applied during 1 ms
contact time to prevent Hartmann-Hahn mismatches.
An average of 5500 scans were accumulated with a delay
time of 1 s according to the amount of sample and the
carbon content.

Tetramethylsilane was equalised at 0 ppm as a refer-
ence for the chemical shifts. Phase and baseline correc-
tion of the acquired spectra were applied after Fourier
transformation. The spectra were then integrated in fol-
lowing chemical shift regions according to (Beudert
et al., 1989) with slight adjustments according to Mueller
and Koegel-Knabner (2009): �10 to 45 ppm (alkyl C),
45 to 110 ppm (O/N-alkyl C), 110 to 160 ppm (aromatic
C) and 160 to 220 ppm (carboxyl C), spinning sidebands
were included. We calculated the ratio of alkyl C-to-O/N-
alkyl C (hereafter noted alkyl ratio) based on these inte-
grated shift regions.

2.5 | C and N measurements

Total carbon and nitrogen contents of the ROI samples
were measured by dry combustion (HEKAtech EuroEA
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3000). Calibration was made against sulphanilamide
(C6H8N2O2S, 41.8% C and 16.3% N) and BBOT
(C26H26N2O2S, 72.5% C and 6.5% N). C/N ratio (hereafter
noted C/N) is expressed as the mass ratio of the two ele-
ments. All measurements were performed with at least
two analytical replicates. An additional replicate was
analysed when the difference between analytical repli-
cates exceeded 2 mg C g�1.

2.6 | Modelling

The alkyl ratio and C/N were modelled using the 186 band
standard normal variate transformed VNIR reflectance
spectra as predictor variables in random forest and artificial
neural networks algorithms. The consistency of the spectra
of a sample in the profile before and after powdering was
checked before modelling. After removing five samples
with a Euclidean distance of >1.5 between the spectra from
the core and the powder, four samples corresponding to fea-
tures with overexposure or shadows leading to low-quality
spectral information, and four samples from a core replicate
with inaccurate spectra, 34 samples were retained as the
training dataset. The VNIR spectral data of each ROI were
extracted and themean spectra calculated, which were then
used as predictors for POM composition.

Predictive modelling was performed using two algo-
rithms implemented with R software version 4.0.3 (R Core
Team, 2021). First, an unconstrained random forest
(RF) algorithm was implemented after optimisation for the
number of trees in the forest using the “party” package
(Hothorn et al., 2006; Strobl et al., 2007, 2008). Second, we
implemented a random ensemble of fully connected artifi-
cial neural networks (ensemble ANN) and optimised for
the number of models in the ensemble. Individual ANN
modelling was performed using the “neuralnet” package

(Fritsch et al., 2019). Finally, we evaluated model averaging
from theRF and ensembleANN results, using bothweighted
and unweighted estimate averaging, with weighting applied
proportional to the goodness-of-fit of the individual model
estimates.

To implement the random ensemble ANN, we indepen-
dently trained an ensemble of neural network models, in
which each model was initialised with random starting
weights and an architecture of two hidden layers with a ran-
dom number of nodes. The number of nodes was randomly
selected between 3 and 185 for the first hidden layer and
2 to one less than the number of nodes in the first layer for
the second hidden layer. The ensemble approach was
applied in order to overcome the instability and high sensi-
tivity of ANN model performance to initialisation which is
to be expected for our small datasets (Kolen & Pollack, 1991).
The random structure of the ANN models was selected to
avoid optimisation and over-fitting issues given the small
dataset used for model fit. The random ensemble was per-
formed using n-out-of-n bootstrapping andwas independently
optimised for the number of models for each of the variables
using the out-of-bag samples in each bootstrap. Optimisation
was performed using theMSE and percent variance explained
by the model and the optimal number of models was selected
according to the stability of model variance with increasing
number of models. In the ANN models, the target variables
were scaled to a range of 0–1 prior to model fitting and esti-
mates rescaled to the original scale after prediction.

Model evaluation was performed using n-out-of-n boot-
strap estimation for both the RF and ANN models, with
evaluation done using the out-of-bag model estimates using
percentage of variance explained by the models as well as
root mean-squared error (RMSE) and mean average error
(MAE) to determine the best models. For the ANN, we
evaluated both the mean and median of the out-of-bag esti-
mates for predictive performance.

TABLE 1 Mean and standard deviation of 13C-CPMAS-NMR functional groups distribution, and of C/N ratio of the ROI for different

amendments (GM: Green manure/S: Straw), soil matrices (topsoil/subsoil) and incubation time (start: T0/end: T1)

Organic
amendment Incubation time n ROI Alkyl ratio Alkyl C O/N- alkyl C Aryl C Carboxyl C C/N

% % % %

Topsoil GM T0 4 0.07 ± 0.03 5.0 ± 2.2 76.8 ± 4.2 15.6 ± 2.8 2.2 ± 1.7 98 ± 50

T1 4 0.10 ± 0.06 6.2 ± 3.1 68.1 ± 8.2 * 21.4 ± 2.3 * 4.1 ± 4.6 69 ± 38

S T0 4 0.06 ± 0.01 4.7 ± 0.4 81.4 ± 0.8 10.9 ± 0.4 3.1 ± 0.5 92 ± 7

T1 4 0.09 ± 0.01 6.4 ± 0.6 68.9 ± 4.3* 18.0 ± 1.9* 6.5 ± 1.8* 50 ± 7

Subsoil GM T0 3 0.07 ± 0.05 5.4 ± 3.0 73.3 ± 4.0 19.1 ± 2.6 2.1 ± 1.2 99 ± 72

T1 4 0.16 ± 0.12* 9.3 ± 6.3* 65.7 ± 10.4* 20.1 ± 2.2 4.8 ± 2.2* 55 ± 38*

S T0 4 0.06 ± 0.01 4.7 ± 0.4 81.2 ± 1.2 10.9 ± 0.8 3.0 ± 0.4 99 ± 9

T1 4 0.09 ± 0.03 6.6 ± 1.4 72.5 ± 4.5* 15.8 ± 1.7* 4.7 ± 1.3 51 ± 11

Note: The asterisks (*) indicate significant difference (p < 0.05) in the measured variable after the 180 days of incubation.
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Before applying the predictive model to the images of
whole soil cores, pixels were classified into two groups
(POM or mineral soil) using a spectral angle mapper classi-
fication algorithm (Mueller et al., 2021) in ENVI version 5.2
(Exelis Visual Information Solutions, Boulder, CO) with a
spectral angle threshold at 0.2 rad. The models were then
used to predict the alkyl ratio as well as the C/N for each
pixel classified as POM. After predicting the distribution of
alkyl ratio or C/N in each core, values were checked for
plausibility against the calibration range as well as against
published literature values for these soil parameters.

2.7 | Statistical testing

Statistical differences in the chemical characteristics of the
organic materials were tested using 3-way ANOVA to

evaluate the effects of incubation, type of added OM and
depth on organic material chemical composition. Orthogo-
nal contrasts were subsequently computed to estimate the
effect of incubation on the different types of OM at the two
depths before and after incubation. For the predictions of
C/N and alkyl ratio based on hyperspectral imaging, the dif-
ferences in the distributions between treatments and times
were tested based upon the data from all pixels classified as
POMusing the Kolmogorov–Smirnov non-parametric test.

3 | RESULTS

3.1 | Composition of POM

The alkyl ratio, alkyl, aryl and carboxyl functional group con-
tributions respectively increased by 0.04–0.06, 1.8%–2.6%,

FIGURE 1 Alkyl ratio (left)

and C/N (right) predicted from

the random forest (top),

ensemble ANN models (middle)

and weighted averaged models

as functions of measured values
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3.3%–6.0% and 2.2%–2.6% as a result of incubation, while
O/N alkyl and C/N decreased by 8.2%–10.7% and 37–46
(Table 1). The changes in alkyl ratio and alkyl contributions
resulting from the incubationwere greater for greenmanure,
while the changes in C/N, O/N alkyl, aryl and carboxyl con-
tributions were greater for straw. For all molecular indica-
tors, we measured a higher variability in the data for green
manure compared to straw, as highlighted by the large stan-
dard deviations presented in Table 1.

The ANOVA of the molecular indicators measured on
ROI indicated significant differences (p < 0.05) between
OM composition at T0 and T1, whereas differences between
green manure and straw were significant only for O/N alkyl
and aryl contributions, with higher O/N alkyl and lower
aryl contributions for straw compared to green manure
(Table 1). No significant differences in POM composition
between depths were found. No significant interactions
between incubation time, depths and type of added OM
were found so 3-way ANOVA models without interactions
were applied for all variables presented in Table 1.

3.2 | Prediction of POM properties from
machine learning using hyperspectral
images

For predicting C/N, the random forest modelling was
optimal with 200 trees, whereas the random ensemble
ANN was optimal with 100 ANNs in the ensemble. For
predicting alkyl ratio, the random forest modelling was
optimal with 400 trees, and the random ensemble ANN was
optimal with 200 neural networks in the ensemble. Both
modelling approaches yielded accurate predictions, with
high to very high coefficients of determination (R2 > 0.7).
The predictions for C/N were better than for alkyl ratio, and
in general, the random ensemble ANN outperformed the
RF models, and the median estimates of the ANN were bet-
ter than the mean estimates (Table S1).

For C/N, model averaging improved the predictions,
with the best estimates obtained using a weighted aver-
age of the RF and median of the random ensemble ANN
(R2 = 0.90, RMSE 14.3, MAE 10.4). For alkyl ratio pre-
dictions, the random ensemble ANN outperformed the
RF and model averaging yielded no improvement as
assessed by the goodness-of-fit parameters. In predicting
the measured values close to the maximum and mini-
mum, the RF models tended to underestimate the
higher and overestimate the lower, while the ensem-
ble ANN models did not show this tendency (Figure 1
and Figure S1).

The ANN models predicted impossible (<0) and highly
implausible C/N ratios (<15) for a large number of pixels in
the cores amendedwith greenmanure (Table 2 and Table S2),T
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with up to 47% of pixels containing predictions outside of the
calibration range and deemed unreliable. For the alkyl
ratio, the number of pixels predicted outside the calibra-
tion range using the ensemble ANN was very similar to
that of C/N and corresponded to largely the same pixels.
We thus considered the ANNs unreliable and used the
weighted averaged models from the RF and the median
predictions from the random ensemble ANNs for predic-
tive purposes of the two types of OM amendment and for
further interpretation. The model averaging resulted in
the reduction in the proportion of pixels predicted out of

the calibration range (20% for green manure and <0.2%
for straw).

3.3 | Predicting chemical properties of
POM in soil cores before and after
incubation

The number of pixels associated with POM varied for
each hyperspectral image due to the differences in
exposed POM area, ranging from 165,390 to 451,221

FIGURE 2 Density plots of predicted alkyl ratio and C/N of macro POM modelled for each amendment (green manure/straw), horizon

(topsoil/subsoil) and incubation time (start: T0/end: T1). The y-axis of each individual plot is the probability density function and is

normalised so that the total area under the curve integrates to one

TABLE 3 Kolmogorov–Smirnov

test statistic (D) for comparison of

distributions of predicted C/N ratios

and alkyl ratios from hyperspectral

imaging

Organic amendment Comparison Alkyl ratio C/N
D D

GM T0 to T1 (Topsoil) 0.287 0.283

T0 to T1 (Subsoil) 0.125 0.083

Topsoil to subsoil (T0) 0.281 0.289

Topsoil to subsoil (T1) 0.153 0.095

Straw T0 to T1 (Topsoil) 0.350 0.622

T0 to T1 (Subsoil) 0.489 0.575

Topsoil to subsoil (T0) 0.341 0.198

Topsoil to subsoil (T1) 0.163 0.211

Note: All differences were estimated to be statistically significant at p < 0.001 significance level.
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FIGURE 3 Chemical maps of green manure particles (GM) before and after 180 days of incubation. The top row shows the distribution

of the alkyl ratio of POM predicted from weighted averaged models. The distribution of C/N in POM predicted from weighted averaged

models is represented on the second row. The bottom row contains RGB colour images (normalised against the reflectance target) of soil

material with POM. The depicted areas correspond to a limited portion of soil cores and are presented as examples. T0: Beginning of the

incubation, T1: End of the 180-day incubation. Top: Topsoil, sub: Subsoil

FIGURE 4 Chemical maps of wheat straw particles (S) before and after 180 days of incubation. The top row shows the distribution of

the alkyl ratio of POM predicted from weighted averaged models. The distribution of C/N in POM predicted from weighted averaged models

is represented on the second row. The bottom row contains RGB colour images (normalised against the reflectance target) of soil material

with POM. The depicted areas correspond to a limited portion of soil cores and are presented as examples. T0: Beginning of the incubation,

T1: End of the 180-day incubation. S: Straw, GM: Green manure. Top: Topsoil, sub: Subsoil
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pixels per image (Table 2). For soil cores amended
with straw, both the distribution of alkyl ratio and C/N
were approximately unimodal, indicating a single peak
centred around 0.05–0.08 for alkyl ratio and 60–110 for
C/N, with a minor shoulder appearing in both after
incubation (Figure 2). Concurring with the measured
values of the ROI samples (Table 1), the predicted alkyl
ratio of straw were significantly different as a result of
the 180-day incubation (Table 3) in both the topsoil and
subsoil, with medians slightly increasing from 0.06 to
0.07 (Table 2). Importantly, although the initial alkyl
ratio of straw material was initially different between the
topsoil and subsoil, the differences in the Kolmogorov–
Smirnov D statistic decreased by over 50% at the end of
the incubation, indicating the greater similarity in alkyl
ratio of straw added to both two depths at the end of the
incubation (Table 3, Figure 2).

For the C/N of straw, the differences in the distribu-
tions remained similar when comparing the soil depths
to which the material was added for the two incubation
times and median C/N signatures were higher by 7 and
13 C/N units in subsoil (Tables 2 and 3). The C/N was
greatly modified by incubation (Table 3) with similar
magnitudes at both depths corresponding to decreases by
about 40 units, as highlighted by the high Kolmogorov–
Smirnov D statistic (Figure 2).

For the cores amended with green manure, there was
no shift in the mean predicted alkyl ratio and C/N after
incubation (Table 2), a result of the very high coefficients
of variance, which range from 55% to 82% for the predicted
alkyl ratio and from 41% to 52% for C/N. Nevertheless, the
distributions of the predicted green manure material statis-
tically differed before and after incubation as well as
between the topsoil and subsoil. The alkyl ratio of green
manure decreased during the incubation at both depths,
and was larger in the topsoil at both sampling times
(Table 2). There were greater differences in the composi-
tion of green manure material admixed to the topsoil and
subsoil before incubation than after incubation, with D
reduced by around 50% for the alkyl ratio and 75% for the
C/N ratio after incubation (Figure 2 and Table 3).

3.4 | Fine-scale mapping of POM
composition

The high resolution of the VNIR imaging allowed us to
identify and characterise organic particles ranging from a
few millimetres down to sub-millimetre scale (Figures 3
and 4). For both green manure and straw, their chemical
composition, that is, alkyl ratio and C/N, could be mapped
at a very fine scale, with the maps revealing the spatial
heterogeneity of both indicators for the two types of

OM. This heterogeneity could be seen in both very small
particles of a few hundreds of μm2, as well as within large
particles of several mm2. Even in the case of straw, which
was a lot more homogeneous than green manure, the
chemical maps highlighted the spatial differences in the
molecular composition. For green manure, the chemical
signatures of low alkyl ratio and large C/N, as well as large
alkyl ratio and low C/N were co-localised (Figure 3). At
the end of the incubation, we were able to map the
decrease in the alkyl ratio of green manure particles and
increase in their C/N signatures (Figures 2 and 3). Chemi-
cal maps for straw confirmed the co-localisation of low
alkyl ratio and large C/N, as well as the opposite. We gen-
erally detected a lower contribution of very small straw
particles and, as observed for greenmanure, the variability
in both alkyl ratio and C/Nwas similar between very small
and within large particles (Figure 4).

4 | DISCUSSION

4.1 | VNIR hyperspectral imaging to
map POM molecular composition

The successful modelling results for both the alkyl ratio and
C/N of POM we achieved by linking VNIR with C/N mea-
surements and 13C-CPMAS-NMR spectroscopic data in
machine learning ensemble models validate this method as
appropriate for studying the decomposition of organic
amendments and plant residues in soils at a sub-millimetre
scale. Steffens et al. (2014) were already able to distinguish
three different classes of OM at different stage of decomposi-
tion based on the composition determined by 13C-CPMAS-
NMR spectroscopy and on their VNIR reflectance spectra,
and Steffens et al. (2021) recently the feasibility of particulate
organicmatter fractionsmapping in soil profiles, but wewent
further by predicting molecular indicators, that is, alkyl ratio
and C/N, of POM at a very fine scale (Figures 3 and 4). Xu
et al. (2020) achieved the mapping of so-called different soil
OM fractions, namely soil organic carbon, salt-extractable
organic carbon and readily oxidisable organic C. These
variables are strongly correlated with total organic carbon
contents in the soil and do not reveal much about the compo-
sition of soil OM. To our knowledge, our work is the first to
focus on POM molecular characterisation by VNIR hyper-
spectral imaging and to predict relevant proxies, C/N and
alkyl/O-N alkyl ratio, for decomposition stage of organic
particles at such a high resolution (Figure 2).

Classical VNIR spectroscopy has been used to esti-
mate the contents of organic C, CaCO3, total N, Fe
oxides, and clays among other soil parameters. (e.g., Ben-
Dor & Banin, 1995; Chang et al., 2001; Viscarra Rossel
et al., 2006), but also the type of soil OM. For example, to

10 of 16 GUIGUE ET AL.



differentiate between POM, mineral-associated organic
matter (MAOM) and pyrogenic organic carbon (Hobley
et al., 2017; Sanderman et al., 2021).

Depending on the wavelength range of sensors, VNIR
imaging methods have the potential to predict the con-
tents of these soil parameters and the detailed mapping
made possible by this technique provides a substantial
advantage for the understanding of soil functioning by
taking into account the spatial arrangement of soil com-
ponents. Our results indicate that VNIR imaging com-
bined with machine learning can be used to differentiate
POM from the mineral soil and to predict molecular com-
position of the identified POM particles, revealing the
heterogeneity in their molecular composition at a sub-
millimetre scale (Table 2 and Figure 2).

However, there are limitations related to modelling
and to the acquisition of calibration data that still require
further consequent developments of this approach. Firstly,
the predictions are dependent on the choice of model. This
has been already shown in many studies before, and the
choice of the most appropriate modelling algorithm, or
combination of algorithms, varies between studies and
modelled parameters (Granlund et al., 2021; Hobley
et al., 2018; Xu et al., 2020). By design, RF does not extrap-
olate the predictions beyond the calibration range. What
initially appears to be an advantage, since extrapolation is
not desirable in the use of most machine learning algo-
rithms, leads to a compression of the number of predic-
tions in the marginal areas of the calibration range
(Figure S1). The ensemble ANN on the other hand has
better goodness-of-fit parameters and tuning of the num-
ber of layers was not needed, only the number of models
was. This reduces the chance of over-fitting a single ANN
by constraining it to a certain architecture. We obtained
excellent predictions inside the calibration range, but
extrapolation was not constrained to plausible results,
indicated by the very large proportion of nonsensical and
impossible predictions outside the calibration range, espe-
cially for the green manure material (Table S2).

A known limitation of multilayer perceptrons like ANN
algorithms is to perform well in generalisation but poorly
with extrapolation. Ensemble ANN and model averaging
overcame these shortfalls to some extent (Hobley et al., 2018)
and delivered the best and most plausible results in our
study, but the values beyond the calibration range must be
interpretedwith great care (Figure 2).

Another limitation is related to the acquisition of calibra-
tion data. The predictions are applied pixelwise (53� 53 μm2

per pixel) while calibration is bound to ROI with larger areas
(up to centimetre scale). The ROI areasmust be large enough
to sample the thinnest layer as possible to obtain the mini-
mum quantities of material (usually a minimum of 100 mg)
needed for C, N and 13C-CPMAS-NMR spectroscopy

measurements of the material measured by VNIR, which is
only based on surface reflectance, resulting in the need for
very shallow sampling. This is a classical limitation we
noticed in other studies on SOM prediction based on hyper-
spectral imaging. Improvement of the calibration procedure
requires methods producing spatially resolved molecular
information at a lower scale, such as the combination of
scanning electron microscope with energy-dispersive X-ray
spectroscopy (SEM–EDX, e.g., Hapca et al., 2015) or scan-
ning transmission X-ray microscopy for example. In the
future, acquisition of such calibration data at a smaller scale,
closer to the spatial resolution of the hyperspectral camera,
may allow to greatly reduce the limitation related to extrapo-
lation we discussed above, as it will be possible to extend the
calibration range for themodels.

4.2 | Molecular composition of straw
and green manure at different stages of
decomposition

The dominance of a single but shifting molecular signature
for the wheat straw particles before and after incubation, for
both alkyl ratio and C/N, is consistent with studies reporting
decreasing proportions of straw carbon as carbohydrate and
increasing proportions of aromatic compounds during straw
decomposition (Cogle et al., 1989; Gao et al., 2016). The alkyl
ratio increase indicates the decomposition of straw com-
pounds, likely by a shift from substituted aliphatic alcohols
and ethers to unsubstituted C in paraffinic structures (Kögel-
Knabner, 2002; Wilson et al., 1983), whereas the decrease in
C/N is consistentwith a loss of C caused bymicrobial respira-
tion (Geissen & Brümmer, 1999) and the preservation of N
by decomposers in their tissues and by-products. However,
the greater heterogeneity of both alkyl ratio and C/N of straw
at the end of the incubation (Table 2) indicates that decom-
position was spatially heterogeneous and that some regions
of the straw amendment decomposed faster than others.
Although this could be explained by preferential decomposi-
tion of specific plant-derived structural compounds bymicro-
organisms during the first stages of decomposition (Golchin
et al., 1997), this spatially heterogeneous degradation of the
chemically homogeneous straw amendment is more likely
attributable to abiotic factors, that is, the microscale condi-
tions of the microbial habitats surrounding POM that regu-
lates soil moisture and microbial accessibility of the OM
(Dungait et al., 2012).

In contrast to the clear shift in POM composition dur-
ing incubation of straw, changes in the composition of
green manure were less clear, a result of the greater het-
erogeneity of green manure before and after incubation.
Indeed, the general increase in C/N and decrease in alkyl
ratio after incubation are contrary to typical changes
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induced by decomposition of organic materials (Baldock
et al., 1997; Golchin et al., 1994; Kögel-Knabner, 2002;
Stone et al., 2001). We attribute this to a shift in the
exposed surface of the material before and after incuba-
tion. The green manure material contained highly differ-
ent types of plant tissues, such as leaves, woody parts and
bark material and was composted before we used
it. While pieces of bark and partially decomposed green
manure were observed at the beginning of the experi-
ment, these particles may have significantly peeled off
and dispersed during the incubation, exposing internal
woody structures of green manure material. To better
explain the changes in green manure chemistry, further
research into the molecular composition of the various
types of organic material present in the mixture and their
decomposition is required.

4.3 | Straw amendments are more
decomposed in topsoils than in subsoils

The lower C/N and larger alkyl ratio of straw particles
(Table 2), and the stronger shifts in the distribution of these
two indicators in the topsoil at the end of the incubation indi-
cate a more advanced degradation than in the subsoil
(Figure 2), which we attribute to the differences in the initial
conditions of the two soil matrices that drive decomposition
processes and rates. Generally, topsoils accommodate more
diverse microbial communities and more microbial biomass
than subsoils (Taylor et al., 2002), and contain more SOC.
The production of dissolved organic matter (DOM) is corre-
lated with high SOC contents and abundance of microorgan-
isms (Guigue et al., 2015) and larger quantities of DOM are
measured in topsoils than in subsoils (Kaiser & Kalbitz, 2012;
Kalbitz et al., 2000). DOM is composed of labile and energy-
rich compounds easily converted either by microbial
resynthesis or respiration (Guggenberger & Kaiser, 2003;
Kaiser & Kalbitz, 2012; Strauss & Lamberti, 2002). This fuels
the production of extracellular hydrolytic enzymes that con-
tribute to POMdecomposition (Berg &McClaugherty., 2014),
and enables the faster decomposition of the added fresh
organicmatter in topsoils than subsoils.

4.4 | C/N spatial distribution and
coupling of C and N cycling

The C/N of above 40 after incubation (Figure 2) are well
above typical lower bounds for SOM in central European
agricultural soils, which rarely exceed C/N of 15 (Matschullat
et al., 2018). This indicates that the decomposition processes
of the POMwere not completed during the period of incuba-
tion and we assume that C/N of POM would continue to

decrease if the incubation was prolonged. The initially lower
C/N of green manure in the topsoil is likely the result of the
prior composting of this material. It may also result from a
greater proportion of N-rich compounds, such as of bark, on
the surface of the composted material when it was intro-
duced to the topsoil for incubation.

The C/N of the POM fraction has been reported as being
greater than 20 in soils under cropland, forest and grassland
(Baldock et al., 2003; Bimüller et al., 2014; Hassink, 1995;
Meijboom et al., 1995;Warren &Whitehead, 1988). In addi-
tion, C/N ranging from 20 to 25 are generally accepted to be
the thresholds for the shift of microbial N immobilisation to
N mineralisation (Nicolardot et al., 2001; Robertson &
Groffman, 2015) that stabilises the C/N by balancing C and
N losses and further leading to a rapid mineralisation of
POM. Straw decomposition is reported to start rapidly
before slowing down during the process (de Willingen
et al., 2008), with decomposition mostly fuelled by hemicel-
lulose while more recalcitrant ligneous materials are
decomposed slower. Thus, the relative contribution of lig-
neous material increases during decomposition (Cogle
et al., 1989; Gao et al., 2016), concurrent with decreases in
the decomposition rate, corresponding to the preservation
of remaining straw residues with a high C/N. Furthermore,
lignin macromolecules' decomposition is promoted when
the macrostructures are firstly shredded by macrofauna
(Scheu, 1992). The absence of such organisms in our experi-
ment likely supported the preservation of large lignin-like
moieties with high C/N.

5 | CONCLUSIONS

The coupling of VNIR spectroscopy imaging with machine
learning modelling was successful for the sub-millimetre
scale mapping of molecular composition of various types
of POM at distinct decomposition stages. Our novel
approach based on model averaging of a random forest
with an ensemble ANN overcomes issues relating to train-
ing of a single ANN and extrapolation of results beyond
calibration ranges, presenting new possibilities for
machine learning applications in soil spectroscopy. With
this technique, we demonstrated the spatially heteroge-
neous changes in alkyl ratio and C/N of POM during
decomposition with an overall increase in alkyl ratio and
decrease in C/N of straw as a result of decomposition. The
changes of the more heterogeneous green manure showed
an opposite trend, likely associated with the preferential
decomposition of N-rich bark tissues together with the
preservation of less decomposable C-rich plant residues
enriched in ligneous material. The decomposition of both
straw and green manure was retarded in the subsoil com-
pared to topsoil, as highlighted by smaller changes in the
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POM in the subsoil after the 6-month incubation in the
subsoil. The visualisation approach presented has a great
potential for applications aiming to investigate the spatial
heterogeneity in molecular changes of organic particles
during decomposition, and can help to disentangle the
concurrent roles of accessibility and recalcitrance during
the first steps of the decomposition cascade of organic mat-
ter in soils. This work conducted under controlled condi-
tions demonstrates the capabilities of VNIR spectroscopy
imaging for studies on POM decomposition and its molec-
ular changes at a fine scale. Future applications of the pro-
posed approach using undisturbed soil cores collected in
the field can allow to study POM decomposition mecha-
nisms under natural conditions and to upscale molecular
information quantified at sub-millimetre scale to the
pedon and field scale.

ACKNOWLEDGEMENTS
This work was financially supported by the German Fed-
eral Ministry for Education and Research, through the
BonaRes initiative (BMBF, grant FKZ 031B0026B, Soil3

project and 031B0511C BonaRes centre). As a part of the
BonaRes initiative, the authors would like to thank all
contributors to the Soil3 project and the BonaRes centre.

Open access funding enabled and organized by
Projekt DEAL.

AUTHOR CONTRIBUTIONS
Julien Guigue: Data curation (equal); formal analysis
(equal); investigation (equal); visualization (lead); writing –
original draft (lead); writing – review and editing (lead).
Christopher Just: Conceptualization (equal); data curation
(equal); formal analysis (equal); methodology (equal); super-
vision (lead); writing – original draft (lead); writing – review
and editing (lead). Siwei Luo: Formal analysis (equal);
investigation (equal); methodology (equal); visualization
(supporting); writing – original draft (supporting); writing –
review and editing (supporting). Marta Fogt: Conceptuali-
zation (equal); formal analysis (equal); methodology (equal);
writing – review and editing (supporting). Michael
Schloter: Conceptualization (supporting); funding acquisi-
tion (equal); resources (equal); writing – review and editing
(supporting). Ingrid Kögel-Knabner: Conceptualization
(supporting); funding acquisition (equal); resources (equal);
supervision (supporting); writing – review and editing
(supporting). Eleanor Hobley: Conceptualization (lead);
formal analysis (supporting); investigation (supporting);
methodology (equal); supervision (supporting); validation
(equal); writing – review and editing (equal).

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available
from the corresponding author upon reasonable request.

ORCID
Julien Guigue https://orcid.org/0000-0001-8140-4450
Christopher Just https://orcid.org/0000-0001-9727-5470
Michael Schloter https://orcid.org/0000-0003-1671-1125
Ingrid Kögel-Knabner https://orcid.org/0000-0002-7216-
8326
Eleanor Hobley https://orcid.org/0000-0001-8887-0534

REFERENCES
Bai, Z., Caspari, T., Gonzalez, M. R., Batjes, N. H., Mäder, P.,

Bünemann, E. K., de Goede, R., Brussaard, L., Xu, M.,
Ferreira, C. S. S., Reintam, E., Fan, H., Mihelič, R.,
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