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ABSTRACT

Background: Single-cell metabolic studies bring new insights into cellular function, which can often not be captured on other omics layers.
Metabolic information has wide applicability, such as for the study of cellular heterogeneity or for the understanding of drug mechanisms and
biomarker development. However, metabolic measurements on single-cell level are limited by insufficient scalability and sensitivity, as well as
resource intensiveness, and are currently not possible in parallel with measuring transcript state, commonly used to identify cell types.
Nevertheless, because omics layers are strongly intertwined, it is possible to make metabolic predictions based on measured data of more easily
measurable omics layers together with prior metabolic network knowledge.

Scope of Review: We summarize the current state of single-cell metabolic measurement and modeling approaches, motivating the use of
computational techniques. We review three main classes of computational methods used for prediction of single-cell metabolism: pathway-level
analysis, constraint-based modeling, and kinetic modeling. We describe the unique challenges arising when transitioning from bulk to single-cell
modeling. Finally, we propose potential model extensions and computational methods that could be leveraged to achieve these goals.

Major Conclusions: Single-cell metabolic modeling is a rising field that provides a new perspective for understanding cellular functions. The
presented modeling approaches vary in terms of input requirements and assumptions, scalability, modeled metabolic layers, and newly gained
insights. We believe that the use of prior metabolic knowledge will lead to more robust predictions and will pave the way for mechanistic and

interpretable machine-learning models.

© 2021 Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Multimodal single-cell analysis enables robust studying of single cells
across different omics levels that characterize specific cellular pro-
cesses: DNA sequencing can reveal lineage structure, chromatin
accessibility measurements are used to study epigenomic events, and
RNA sequencing and protein measurements uncover molecular states
of cells that arise during stimulation and development. All of these
molecular views of cells are directly observable in high throughput by
using specific chemical procedures; therefore, it is not surprising that
much of the recent advances in single-cell biology have been centered
on these omics layers [1,2]. We want to focus on a less studied area,
observing single-cell metabolism. It consists of metabolic reactions
necessary for production and degradation of cellular building compo-
nents and provision of energy [3]. Metabolism lies downstream of other
omics and thus summarizes the effects from upstream layers of epi-
genome, genome, and transcriptome, as well as extracellular effects,
such as nutrient depletion. Thus, it provides a very meaningful readout

of the cellular phenotype [4,5] and has been shown to be closely
related to disease states or used for developing efficient biomarkers in
bulk assays [6—8].

Single-cell metabolic analysis largely consists of the study of metab-
olite concentrations in single cells or compartments thereof (metab-
olome), the study of metabolite fluxes (fluxome), which describe the
rates of change of metabolite concentrations, and fluxes through in-
dividual reactions governed by enzyme activity. All of them are relevant
for modern single-cell biology, which is centered around cell type
diversity [9] and cell state transitions [10]. First, metabolic differences
may identify cell state heterogeneity, which is key for understanding
tissue function and microbial populations [11—16] as metabolic
changes may not be observed in other omics layers. Second, metabolic
measurements can be used to decipher metabolic mechanisms of
individual cell types, refining the currently available organism-wide
metabolic networks. This may be applied to understanding drug
target- and side-effects across cell populations, similarly as was done
before on bulk-tissue level [17,18], or understanding the emergence of
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drug-resistance in individual cells [19]. Third, metabolite exchange is a
key mechanism of cell—cell dependence in tissues [20] and in-
teractions between neighboring cells play a vital role in tissue for-
mation and function [21].

Recent advances in metabolomics techniques have enabled mea-
surements on the single-cell level, as had been recently reviewed
[4,22], also with focus on experimental applications [3], spatial
metabolomics and proteomics [23], and multi-omics analysis [24].
However, single-cell metabolomics techniques are still limited,
requiring further improvements before becoming widely applicable.
Metabolomic measurements are expensive, skill intensive, and need
additional improvements in terms of measurement sensitivity and
throughput of samples and metabolites [4,20,22]. In comparison, the
widely-used single-cell RNA-sequencing (SCRNA-seq) datasets usually
consist of thousands of cells and genes [2], while the metabolomic
datasets usually consist of a couple of dozen to a couple of hundred
metabolites and cells [3,4,22,25,26]. Thus, they cover only a small
proportion of cellular metabolism, may miss rare cell types, and suffer
from lower robustness due to the small number of cells, each of which
provides a noisy view of the metabolism. Lack of established tech-
niques for simultaneous measurement of metabolome and tran-
scriptome may complicate contextualization in terms of previous
transcriptomic studies and thwart cell type annotation, which is usually
done on transcriptomic data. Nevertheless, methodological improve-
ments are forthcoming [3,4,22,25,26].

Because omics layers are strongly intertwined, the knowledge about
omics layers that can be more easily measured in singles cells, such
as mRNA, together with prior knowledge about metabolism, enable the
prediction of cellular fluxome, metabolome, and reaction fluxes,
providing a promising alternative to single-cell metabolomic mea-
surements. This can be used to identify changes in metabolic mech-
anisms that cause different metabolic states. The modeling of
metabolism depends on well-established metabolic network models
that provide prior information on feasible metabolic conversions [27],
described in section “Resources for metabolic modeling”, and wealth
of single-cell sequencing measurements [28—30] used to define
constraints specific for the biological context [31]. Concept-wise,
modeling single-cell metabolism rather than bulk modeling
(Figure 1) poses additional challenges that have led to the development
of new metabolic modeling paradigms. First, models need to scale to a
large number of cells. Second, the joint modeling of multiple similar or
potentially nearby and communicating cells enables sharing of pa-
rameters across cells. This may increase robustness, which is
important when using noisy SCRNA-seq data; however, cells are known
to have different metabolic functionality [3], which must be accounted
for in the modelling assumptions. Third, metabolite exchange plays an
important role within cell populations [32], which results in metabolite

Bulk system

availability dependencies between cells and violates common inde-
pendence assumptions used in other branches of single-cell model-
ling. We review and compare approaches for computational single-cell
modeling of cellular metabolism based predominantly on tran-
scriptomic data.

2. RESOURCES FOR METABOLIC MODELING

Prior knowledge for metabolic modeling includes genome-scale
metabolic models (GEM) and metabolic pathway collections, which
are available in large, curated databases. Metabolic pathway collec-
tions summarize reactions into pathways [33]. Genome-scale meta-
bolic models provide systematic encoding of gene-protein-reaction-
metabolite and gene-protein-transport-metabolite associations that
describes the entire metabolism of an organism [27,34—37]. While
pathway databases are mainly used for interpretation, the GEMs allow
the prediction of metabolism on a system-wide level. However, both
usually encompass the whole spectrum of possible metabolic con-
versions [27,38—40] that do not jointly occur in individual cells.

The most widely used pathway repositories are KEGG [41], Reactome
[42], and MetaCyc [43], as reviewed in [33]. Genome-scale metabolic
models can be obtained from BiGG [44], BioModels, and other re-
positories listed in [27]. The modelling of human metabolism often
relies on GEMs [27,45—47] from Recon [37] and Human Metabolic
Reaction series [48] and the resources are being constantly improved
[49]. GEMs can be also constructed de novo from KEGG or other re-
sources and are often updated with manual curation [20,46,50]. To
enable comparison and knowledge integration across resources,
standardization efforts are needed [44,51]. To leverage the available
resources the metabolic modelling tools should be able to accept as
input different models in standard format, such as MAT (mat) or SBML
(xml) for GEMs.

Measured metabolite concentrations from specific reference tissues
may be used as validation data for computational modeling. Such
datasets can be obtained from specialized databases, including
MetaboLights [52] and Metabolomics Workbench [53]. Because of
potential difficulties of measuring cell level heterogeneity of meta-
bolism, another validation option are also bulk expression or metabolic
datasets from systems with environmental or genetic perturbations
with known effects on metabolism.

3. MODELLING APPROACHES

We identified three main classes of methods used for prediction of
metabolism on the single-cell level (Figure 2): (A) pathway-level
analysis, which derives pathway phenotype-associations or activity
from gene expression information of associated genes and in some

Single-cell system

GO

Cell
(O Observed system

= Metabolic exchange

Figure 1: Bulk versus single-cell analysis. Bulk analysis assumes that cells are identical and can model the exchange between cells and environment. Single-cell analysis
accounts for cellular heterogeneity and can model exchange between different cells and between individual cells and environment.
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Figure 2: Metabolic modelling approaches. (A) Pathway-level analysis assumes that gene expression maps directly to enzyme concentration or reaction activity. It can be used
for defining pathways enriched in differentially expressed genes or for calculating the activity of individual pathways by propagating activity through the pathway (mechanistic
pathway analysis). (B) Constraint-based analysis assumes that metabolite concentrations are constant and based on this defines possible fluxes that would result in such a system,
as further described in the main text. Namely, metabolite fluxes, which are constrained to be zero, are obtained by multiplying reaction fluxes with the stoichiometric matrix that
defines metabolite conversions involved in each reaction. This gives an undetermined system of equations that defines possible reaction flux distributions. Optimal flux
configuration is then selected based on optimization objectives, such as correspondence between gene expression and enzyme activity. (C) Kinetic models predict metabolic
changes based on detailed prior metabolic knowledge and information on metabolite and enzyme availability. Gene expression can be used for the prediction of enzyme

concentration.

cases includes pathway topology, (B) constraint-based modelling that
aims to predict complete cellular metabolome and reaction activities
based on gene expression and reaction stoichiometry information from
GEMs, and (C) kinetic models, which use highly parameterized sys-
tems of differential equations informed with measured data to predict
metabolite concentrations of well characterized systems.

3.1. Pathway-level analysis

Pathway-level analysis (Figure 2A) predicts pathway activity or
phenotype-associations directly from differential expression or occa-
sionally normalized expression information of pathway-associated
metabolic genes, sometimes including pathway topology. It is focused
on individual pathways rather than the whole metabolism, and it does not
account for reaction mechanisms, such as stoichiometry or metabolite
abundance. There are many available tools for pathway analysis, as the
methods designed for bulk can be in most cases directly applied to single-
cell data. To rely on bulk data workflows and to reduce the sparsity the
analysis is often performed on pseudobulk data [54]. In this review we
focus on approaches that were developed for scRNA-seq data.
Currently, differential expression analysis followed by pathway
enrichment is the most commonly used method for metabolic analysis
based on scRNA-seq data [20,55], and uses general purpose enrich-
ment methods [56—58]. Alternatively, pathway activity can be inferred
from gene expression of pathway-associated genes [14,59,60].

Pathway-level analysis, as described above, has a few shortcomings.
First, the curated pathway definitions aim to capture the whole bio-
logical process under different biological contexts, disregarding com-
plex regulatory interplay, and thus contain more genes than are
involved in any specific cellular state or type [39,40]. Predefined
pathways may be composed of genes responding to perturbation in
different directions, leading to false negatives in enrichment analysis,
which could be solved by defining context-specific pathways [45].
Second, pathway enrichment does not account for biological changes
spanning multiple pathways [40] and does not leverage the information
about regulatory and reaction interactions. For example, the activity of
the whole pathway depends on the activity of all enzymes in the chain
with downregulation of intermediate enzymes potentially resulting in
metabolic bottlenecks that lead to lower pathway activity even when
other enzymes are highly active. Methods that incorporate pathway
topology information or enable data-driven pathway discovery had
been developed [61—66]. For example, to pinpoint critical genes and
metabolites scMetNet [39] constructs a metabolic network based on
KEGG and then finds submodules with significant differential expres-
sion across cell populations. Similarly, scPPIN was developed for
identification of differentially active modules in protein—protein inter-
action networks based on scRNA-seq data [67], but may be also
applicable to metabolic networks. Another alternative is reporter
metabolite analysis, such as perturb-Met, which aims to identify
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affected metabolites by analyzing changes in expression of metabolite-
associated genes [40].

3.2. Constraint-based modelling

3.2.1. Background

Steady-state constraint-based methods are the most widely used
group of metabolic modeling approaches for large-scale systems [68—
70]. They assume, due to the separation of omics layers time scales,
that metabolism is in a quasi-steady-state versus expression and other
longer-term processes, and then search across reaction flux config-
urations that all yield this steady-state system, selecting one that
maximizes some objective function based on prior biological knowl-
edge about the system (Figure 2B). The quasi steady-state assumption
is supported by the following reasoning: The traditional view on cellular
metabolic systems is that metabolites are in mass balance, which
means that metabolites are converted into each other such that all
molecular mass is accounted for. To maintain this system, cells require
external sources of energy and starting products and disposition
mechanisms for end products. Because metabolic reactions are very
fast, occurring in milliseconds, compared to enzyme gene expression,
operating on the scale of tens of minutes [71], the reactions reach
equilibrium relatively quickly, leading to metabolic steady-state in most
situations.

Constraint-based methods rely on system-wide information about
stoichiometry, thermodynamics, and gene-associations of reactions,
which are provided by GEMs [27]. Among the most widely used
constraint-based metabolic modeling methods is flux balance analysis
(FBA), in which the metabolic network is encoded by stoichiometric
matrix (S) of metabolites (rows) and reactions (columns). The reaction
fluxes (v) are obtained by assuming a steady-state of the system
where metabolite concentrations (dx/dt) do not change, namely:

Sv = dx/dt = 0

As the system of Sv = 0 contains fewer equations (number of

metabolites, over 8,000 in human [49]) than variables (number of
reaction fluxes, with over 13,000 reactions in human [49]) this
approach results in an underdetermined system with a whole sub-
space of possible flux distributions. In many cases, a single solution
can be recovered with linear programming based on an optimization
objective, which relies on prior knowledge about the system
[68,69,72,73].
The modeling objectives, used for selection of a single reaction flux
configuration, fall into two categories. On the one hand, some objec-
tives are based on general assumptions about cellular purpose, such
as maximal growth rate, ATP production, or combination thereof that
may better correspond to the cell behavior [38,46,68]. On the other
hand, some models rely on system-specific data, such as RNA-
sequencing, partial metabolomics measurements, or information
from literature. Measurement-based objectives are of great use when
theory-based biological objective is unknown or simple objectives,
such as growth maximization, are not applicable due to the complexity
of the system [45,46,69,72,74]. Integration of measured data, such as
from scRNA-seq, enables context-specific predictions, such as for
specific cell type, developmental stage, or patient [27,38]. These
constraints can be accounted for in linear programming in different
ways, including by adjusting GEMs or reaction rate boundaries, by
enforcing fluxes to follow omics measurements, or by redistributing
fluxes from reactions with low to reactions with high omics-activity
support [50,69,72].

3.2.2. Constraint-based modeling applied to scRNA-seq data

There are currently two main approaches for scRNA-seq constraint-based
metabolic modeling, namely FBA and GEM-informed deep neural network
(DNN) models. Multiple methods have been proposed to adapt FBA to
single-cell inference. The simplest approach is the construction of
context-specific GEMs based on scRNA-seq data, followed by classical
FBA on each context-specific GEM, as proposed by [75], using specific
metabolite production as the optimization objective. Another option is
MERGE, which optimizes for reactions with lowly expressed genes car-
rying less flux and vice versa as well as for low overall flux [50]. Moreover,
Compass [45] first computes maximal theoretically possible flux through
each reaction and then selects flux configuration that reduces reaction
penalties inversely proportional to gene expression. scFBA computes
maximal theoretically possible fluxes, uses scRNA-seq data to add an
additional constraint on possible flux distributions, and selects optimal
flux distribution based on maximal biomass production [46].

A complementary approach was implemented in scFEA [20], which
models the metabolic map with a graph neural network. The GEM is
encoded into a directed factor graph with reaction modules as vari-
ables (unknown quantity or random variable), intermediate metabolites
as factors (function of variables), and directed edges indicating sub-
strate and product relationships. scFEA trains the network to learn
reaction fluxes from scRNA-seq input so that the metabolite flux
imbalance is minimized. Additional loss components are added to
discourage negative reaction fluxes and to promote correspondence
between reaction fluxes and gene expression in order to evade the
trivial solution of zero-reaction-fluxes. The interpretable DNN structure
and predictions can be directly used for reasoning about cellular
metabolism. Higher weights of a gene indicate stronger impact of gene
expression variation onto predicted reaction flux, corresponding to rate
limiting reactions. Furthermore, pathways with high metabolite flux
imbalance may indicate metabolic stress.

The presented models make different assumptions about cellular
metabolism. For example, some methods use RNA-seq data as a
constraint and optimize for maximization of cellular growth, while
others optimize solely based on the agreement with scRNA-seq data.
In FBA-based methods the metabolic steady-state assumption is
enforced., while in scFEA it is used as a component of the optimization
objective. Furthermore, scFEA and scFBA assume that cells exchange
metabolites, sitting in a well-mixed environment, and thus solve the
metabolic model jointly for all cells [20,46].

One of the key challenges is the mapping from gene expression to
enzyme activity, which is handled differently across the methods. First,
the mapping should ideally be gene-specific due to different gene
translation and enzyme kinetic rates [46] and cell state-specific due to
the influence of the intracellular environment on enzyme kinetics [20].
Both these challenges may be resolved by DNN models that can learn
reaction-specific mapping, as done in scFEA, and by integrating
additional cell state specific prior knowledge [20]. Second, the map-
ping should be modeled as a nonlinear function in accordance with
Michaelis—Menten kinetics, which was approximated with multiple
neural networks layers in scFEA [20]. The mapping is complicated by
enzyme isoforms (OR relationship) and complexes (AND relationship)
[45,46]. Third, gene expression and enzyme activity may not corre-
spond both due to technical artefacts and differences in half-lives
across omics-layers [76]. Thus, the minimization of the flux through
reactions with lowly-expressed genes is less prone to false negatives
than pruning of the GEM based on a fixed expression threshold. One
should not penalize highly expressed genes if they have low flux in
reactions with low substrate availability [50].
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An important aspect of single-cell metabolic modeling in contrast to
bulk is to overcome noise and sparsity of the SCRNA-seq input, which
can be achieved in multiple ways. The most common approach is to
share information across cells, either by using pseudobulk, by
sharing flux distribution information across similar cells, or by jointly
modelling metabolism of all cells [20,45,75]. Data can be also pooled
across genes by modeling pooled reaction modules rather than in-
dividual reactions or by assuming that neighboring genes affect each
other and thus share information on expression variation among
them. The definition of unexpressed genes used for GEM pruning is
affected by false positives due to dropout in sScRNA-seq data. This can
be mitigated using statistical methods or matched bulk expression
data [20,46].

Due to the growing dataset sizes [28—30], the methods must be
compute-efficient. Two core paradigms of computational efficiency
appear. First, the number of metabolic states may be reduced from
the full number of metabolites and compartments to a more coarse
metabolic network by reaction pooling, removing reactions predicted
to be inactive based on expression data, or modelling only a reaction
subset, such as core metabolism [20,45,46]. Second, inference
procedures have to scale to many observations as there are often
thousands or millions of cells, which lies many orders of magnitude
above what is typically considered in bulk. A common sped-up
technique is the pooling and per-group-modelling of similar cells
[20,46,50,75].

Overall, the field of single-cell constraint-based modeling is quickly
expanding and systematic benchmarks will be needed to recommend
the best modelling choices. Among the FBA-based methods, Compass
stands out due to its modelling choices and user friendliness. DNN
methods promise greater model flexibility and desirable scaling
properties, therefore, sCFEA represents an interesting alternative.

3.3. Kinetic models

Kinetic models have different applications. First, kinetic models can be
used for quantitative instead of relative predictions of the effects of
environmental and parameter value perturbations. They solve a set of
differential equations with detailed kinetic and regulatory information
starting from a predefined initial metabolic state, characterized by
defined enzyme and metabolite concentrations (Figure 2C). This stands
in contrast to FBA for example, which does not require any metabolite
concentration input. However, concentration and kinetic parameter
information is scarce, which makes kinetic models largely inapplicable
for modeling of larger systems [68,74,77,78]. This is further compli-
cated in single-cell systems as kinetic parameters can differ between
cells due to different intracellular environments, such as pH and
cofactor availability [79,80]. Second, model selection and covariate
modelling on top of kinetic models can be used to understand meta-
bolic mechanisms that lead to a certain metabolic state [68]. For
example, genetic variations that cause subtle changes in enzyme
activity can be accounted for in such kinetic models but go undetected
in constraint-based models [81]. Third, the modeled time-resolved
metabolite concentrations in response to stimuli are of interest in
many cases. In contrast to temporal insight that can be obtained from
single-cell time-series measurements, that are usually spaced hours
or days, kinetic modeling enables prediction on a much quicker time-
scale of metabolism, starting from an initial measured metabolic state.
Furthermore, kinetic models solve differential equation systems in time
and therefore do not rely on the steady-state assumption. Thus, they
present an alternative to constraint-based modeling when steady-state
assumption does not hold [68,82], as described in [83].
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A Kinetic model that can leverage scRNA-seq data for estimation of
enzyme concentrations was proposed by [78]. Their method enables
efficient prediction of metabolic changes based on changes in kinetic
parameters. They model the product concentration using gaussian
mixture models. The model consists of reaction catalysis terms, which
are conditioned on enzyme concentration that can be informed with
single-cell measurements. The combination of kinetic models and
measured data can also be used for inference of sample-specific ki-
netic parameters that determine reaction dynamics [81]. Such sample-
specific kinetic parameters can be used to understand kinetic het-
erogeneity across tissues, thus extending efforts to characterize tissue
heterogeneity through single-cell phenotypes in cellular atlases. An
example for such a tissue-level phenotype is the exchange of me-
tabolites between cells that mitigates the diseased phenotype of
affected cells in X-inactivation-linked enzyme heterozygosity in fe-
males [84]. A kinetic model of RNA splicing has recently been directly
fit on RNA-seq data in the context of RNA velocities [85]. This RNA
velocity model infers the kinetic parameters of transcription, splicing,
and degradation from measured un-spliced and spliced read abun-
dances of single cells in different gene expression states.

3.4. Discussion

3.4.1. Method comparison

The three classes of metabolic modeling approaches aim to answer
different questions and thus use different techniques (Table 1). Their
predictions range in size, from a single reaction to the whole meta-
bolism, and in coarseness, from direct mapping between measured
gene expression and predicted enzyme activity to detailed metabolic
characterization of the whole system. Kinetic modelling is focused on
robust characterization of small systems, enabling mechanistic,
quantitative and often dynamic predictions. In contrast, pathway-level
analysis compares activities of multiple pathways across conditions. It
does not account for reaction mechanisms, such as stoichiometry or
metabolite abundance, and is thus often regarded as less robust. The
analysis of reaction networks can also serve as an interpretation
method for results from other metabolic modeling methods, such as
constraint-based models. Constraint-based models provide charac-
terization of complete cellular metabolism based on GEMs.

The methods also differ in the resource requirements (Figure 3) and
assumptions. In terms of increasing complexity, the approaches are
usually viewed in the following order: pathway-level analysis, followed
by constraint-based, and lastly kinetic modelling. First, pathway level
analysis relies on curated pathway-gene association sets or networks.
Thus, it is often applicable to less characterized organisms, where
complete GEMs or kinetic parameters are not available, and might also
require less compute-resources. Pathway-analysis methods developed
for bulk level can be often applied to single-cell data, resulting in a
large set of available methods. Second, constraint-based modelling
requires GEMs, whose number is however growing [27]. We expect
that constraint-based deep learning models will, in the future, enable
scaling to large datasets, integration of additional metabolic and multi-
omics constraints, and extension to dynamic or tissue-level models.
Constraint-based models rely on the steady-state assumption, making
them inappropriate when this assumption does not hold. Third, kinetic-
modeling requires detailed kinetic information, making them inap-
propriate for large systems. Methods for constraint-based and Kinetic
modeling can usually not be directly transferred from bulk to single-cell
level, requiring the development of new approaches or adaptation of
existing ones.
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3.4.2. Pros and cons of metabolic modeling
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Figure 3: Inputs across modelling approaches. Modelling approaches require different information about gene—reaction associations, reaction mechanisms, and measured
data. This figure shows only the most commonly used inputs, although different input information may be also incorporated in the models.

4. PERSPECTIVES

While a range of approaches for modeling cellular metabolic state have
been proposed, a set of limitations restricts larger applicability. Here,
we outline a series of potential extensions to address these.

4.1. Multi-omics integration

Currently, single-cell metabolic models are based mainly on mRNA
concentration. The measurement and modeling of molecular entities
that are chemically more directly related to metabolite concentrations
could improve current models. For example, this information could be
used to make RNA to enzyme activity mapping more reliable or to
inform reaction activity constraints and kinetics [27,31,46]. Single-cell
proteomics measurements could be used instead of transcriptomic
data as they are more informative for prediction of enzyme activity.
They directly correspond to enzyme availability and enable detection of
posttranslational modifications that are key in determining enzyme
function [95—97]. However, despite recent advances in single-cell
proteomics there are still limitations in terms of availability,
throughput, and sensitivity [95,98—100], which largely prohibit the use
of single-cell proteomics in single-cell metabolic modeling. The used
input data modality types dictate suitability of different modeling ap-
proaches. Namely, constraint-based systems are relevant if one can
quantify reaction rates via enzyme concentration, for example from
gene expression data. On the other hand, direct observations of
metabolite species may result in models that are more akin to data
imputation algorithms. More complex prior knowledge may require
strong algorithmic changes of the models. Flux balance analysis, for
example, centrally rests on a linear program. Deviations from math-
ematical assumptions inherent in this linear program would require a
shift to a completely different parametric system and optimizer.
Similarly, inclusion of regulatory mechanisms would result in more
reliable predictions [31,69,72,101]. This is of especial interest due to
increasing availability of paired multi-omics datasets [1], such as joint
scRNA-seq and scATAC-seq. To integrate regulatory information the

models may need to account for complex interactions between entities,
such as feedback loops [46]. As long as GEMs containing additional
regulatory information are not yet available, one could try to leverage
machine-learning to identify interactions between genes that may
approximate the complex regulatory patterns in a data-driven manner.

4.2. Extensions of metabolic models across scales

Another direction for development of novel constraint-based models is
adaptation to different systems. For example, eukaryotic cells are
partitioned into metabolically different compartments with distinct
metabolite exchange pathways between them, which could be
included in the models. The necessary information on compartment-
specific and exchange reactions is already included in some GEMs
[37,102]. Furthermore, proteomic measurements with subcellular
resolution [23,98] could further aid in improving predictions on sub-
cellular level. Similarly, cells are not independent and exchange me-
tabolites within tissues or microbial communities. Thus, the models
could be extended to tissue-level, microbial-community-wide, and
environment-aware systems [27,31]. Some currently available
methods have already tried to go into this direction by modeling the
availability of extracellular metabolites or assuming metabolite-sharing
across cells [20,46,50,102]. In this respect, attention-DNNSs, or in case
of spatial data graph-DNNs, could be used for passing information
across cells [103]. However, most deep learning frameworks devel-
oped for other single-cell data modalities treat cells independently
because the models’ scalability often crucially depends on this inde-
pendence assumption. Many common deep learning approaches are
limited in their ability to reflect dependencies between cells.
Changes of cellular metabolism through time are of great interest as
they are involved, among others, in development, disease progression,
environmental responses, and cyclic behavior. In terms of metabolic
changes, these phenotypes are realized on vastly different time scales.
First, development and disease progression occur over hours or
months, resulting in changes in cell state or cell type composition.
While these processes match the temporal resolution of common
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single-cell experiments, time-series modelling in single-cell data
poses a challenge since individual cells are not measured through
time. Instead, data is generated by obtaining separate population
snapshots across time-points, which are usually used to infer a typical
trajectory of cellular progression and matched pseudotime. However,
this trajectory does not reveal dynamic behavior of individual cells
[10,104,105]. This static characteristic of the time-trajectory data
corresponds well to dynamic FBA modelling, which solves a steady-
state system for each time point based on time point-specific mea-
surements [68,82,106], thus generating a transcriptome-matched
metabolic snapshot. In contrast, kinetic models may be used for
prediction of cell fate of individual cells, similarly as is done in the
dynamic RNA-velocity model [85]. Finally, DNN architectures, such as
recurrent-DNNs, could be used for time-dependent models [107].
Second, response to stimuli on metabolic level can occur almost
instantaneously, which is not captured by commonly used single-cell
methods such as scRNA-seq. In this respect, kinetic models may be
used for prediction of short-term metabolic changes of individual cells
starting from an initial measured state [68,82].

4.3. Deep-learning based models

Metabolic concentrations and fluxes can be thought of as latent states
of a multi-omics molecular system of a cell (Figure 4). In terms of latent
variable modelling, DNNs have recently emerged as a set of models
that can flexibly deal with constraints, integration of different data
modalities, and quantitative predictions, making them a promising
candidate for development of new metabolic modelling tools. First,
DNNs can scale to large datasets currently generated in the single-cell
field [88,108,109]. Moreover, the use of large datasets will contribute
to model regularization and thus more reliable predictions [30]. Sec-
ond, the flexibility of the DNN structures enables the integration of
diverse biological prior knowledge [108,109], which is necessary for
the above-described extensions of metabolic modelling approaches.
Third, DNNs are capable of learning patterns from data [109,110],
which may lead to improved models even when biological mechanisms
that could be used for constraining the model are not completely
defined. Lastly, deep learning frameworks provide a convenient way
for construction of new DNN models by abstracting mathematical and
technical details [109], significantly improving over currently used
linear programming libraries used in FBA for example.

4.4. Interpretation of metabolic data

The advent of single-cell metabolomic measuring techniques and
computational prediction methods will require development of down-
stream analysis and interpretation approaches for metabolomic and
fluxomic data. Many analysis ideas could be transferred from current
single-cell omics analysis workflows, such as the ones developed for

scRNA-seq [55,90,111—113]. However, prior knowledge of metabolic
networks - a unique characteristic of metabolic data compared to other
omics - should be leveraged for interpretation, leading to development
of new analysis approaches [31,65]. Currently the cross-study con-
textualization of metabolic activity by tissue-domain specialists is often
challenging due to the lack of metabolic characterization of tissues in
single-cell resolved studies. Thus, shifting focus from genes to re-
actions would aid in metabolic interpretation.

5. CONCLUSION

In many signaling cascades, metabolism is the last omics layer that
pools effects from higher omics layers and thus directly defines the
cellular phenotype. Metabolic analysis has a large set of applications in
all fields of biology, from medicine to bioprocess engineering. Because
metabolic measurements are not yet widely available other ap-
proaches for understanding cellular metabolism are required. Here,
metabolic modeling infers latent molecular states from widely available
information about reaction networks and scRNA-seq data to predict
reaction activities and metabolic concentrations.

Since single-cell data have different characteristics than bulk and
provide additional insights into context-specific behaviors, new ap-
proaches for single-cell metabolomic modelling are to be anticipated. A
diverse set of metabolic modelling approaches, as reviewed here, has
been applied to single-cell data. We believe that new computational
approaches, such as deep learning, may enable efficient modelling at
single-cell and multi-omics level.

Single-cell metabolomic modeling will lead to new insights from existing
single-cell sequencing data. First, the metabolic network information
that is already integrated in the modelling approaches enables inter-
pretation of results in terms of metabolic pathways or molecular func-
tion. Second, the use of prior knowledge about molecular networks
increases robustness of predictions, which may be thus used to
generate more reliable single-cell embeddings. Third, Kinetic models
could be used for prediction of swift perturbation responses that cannot
be directly captured with single-cell sequencing techniques.
Computational methods used for metabolic analysis are informed by
extensive and high-fidelity prior knowledge of metabolic networks,
which is a unique feature of the metabolic modality. Machine-learning
models developed for the analysis of single-cell metabolism could lay
the foundation for the development of further interpretable machine-
learning methods for molecular data.
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