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Abstract

Molecular patterns and pathways in idiopathic pulmonary fibrosis
(IPF) have been extensively investigated, but few studies have
assimilated multiomic platforms to provide an integrative
understanding of molecular patterns that are relevant in IPF.
Herein, we combine the coding and noncoding transcriptomes,
DNAmethylomes, and proteomes from IPF and healthy lung tissue
to identify molecules and pathways associated with this disease.
RNA sequencing, Illumina MethylationEPIC array, and liquid
chromatography–mass spectrometry proteomic data were collected
on lung tissue from 24 subjects with IPF and 14 control subjects.
Significant differential features were identified by using linear
models adjusting for age and sex, inflation, and bias when
appropriate. Data Integration Analysis for Biomarker Discovery
Using a Latent Component Method for Omics Studies was used for
integrative multiomic analysis. We identified 4,643 differentially
expressed transcripts aligning to 3,439 genes, 998 differentially

abundant proteins, 2,500 differentially methylated regions, and
1,269 differentially expressed long noncoding RNAs (lncRNAs)
that were significant after correcting for multiple tests (false
discovery rate , 0.05). Unsupervised hierarchical clustering using
20 coding mRNA, protein, methylation, and lncRNA features with
the highest loadings on the top latent variable from the four data
sets demonstrates perfect separation of IPF and control lungs. Our
analysis confirmed previously validated molecules and pathways
known to be dysregulated in disease and implicated novel
molecular features as potential drivers and modifiers of disease. For
example, 4 proteins, 18 differentially methylated regions, and 10
lncRNAs were found to have strong correlations (|r| . 0.8) with
MMP7 (matrix metalloproteinase 7). Therefore, by using a system
biology approach, we have identified novel molecular relationships
in IPF.

Keywords: systems biology; transcriptome; methylome; proteome;
multiomics

Idiopathic pulmonary fibrosis (IPF) is a
progressive and fatal disease of the aging lung
(1, 2). Its prevalence is increasing (3), and it is
likely underdiagnosed (4, 5). Although

cigarette smoke remains the most significant
environmental risk factor for this complex
disease (6), the gain-of-functionMUC5B
promoter variant is the strongest risk factor,

genetic or otherwise, for the development of
IPF. However, 13 other common variants and
several rare variants including telomerase
pathway genes also contribute to the risk of
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developing IPF (7–9). Although pirfenidone
(10)andnintedanib(11)slowIPFprogression,
no treatment short of lung transplantation
impacts survival. IPF is characterized by
dysplastic bronchiolar metaplasia, alveolar
epithelial injury and repair, proliferation of
resident fibroblasts, formation of
myofibroblastic foci, accumulation of
extracellular matrix (ECM), and lung
remodeling (12).

Genomic approaches have been used to
characterize the molecular landscape of IPF.
Geneexpressionstudieshaveidentifiedseveral
thousand genes that are differentially
regulated in the IPF lung (13–20), consistently
reportingcommongenesandpathways (ECM
organizationandregulation,TGF-b signaling,
endoplasmic reticulum stress,
epithelial–mesenchymal transition,
mitochondrial homeostasis, bronchial
epithelial genes, fibroblast genes, smooth
muscle markers, cytokines and chemokines,
growth factors, and receptors) that are
differentially expressed in fibrotic lungs. A
recent deep proteome profiling study has
confirmed that many of these genomic
differences result in differential protein
abundanceintheIPFlung,withkeygenessuch
as MMP7 (matrix metalloproteinase 7) and
MUC5B showing increased abundance (21).
At the regulatory level, DNAmethylation
changeshavebeenassociatedwithmanyof the
key transcriptional changes in IPF lung tissue
(22–24), and hypermethylation of genes such
asCXCL10 (25),PTGER2 (26), andTHY1 (27)
has been shown to contribute to IPF
pathogenesis. Genomic microRNA (miRNA)
profiles have revealed severalmiRNAs that are
known to affect fibroproliferation,
epithelial–mesenchymal transition, and the
TGF-b1 signalingpathway (28–32).Although
studiesof longnoncodingRNAs(lncRNAs) in
pulmonary fibrosis are limited, there appears
tobeanantifibrotic role forFENDRR(33) and
a profibrotic role for DNM3OS (34). In
addition, studies in peripheral blood have
identified biomarkers of disease (35) and
disease outcomes (36, 37).

Despite the successful application of
multiple single platform “omic” technologies
to characterize themolecular landscapeof IPF,
integrative approaches using system biology
have not yet been applied to the IPF lung.
Stimulated by a recent application of
multiomics to a small-sample, big-data study
in newborns (38), we obtained DNA
methylome, coding and noncoding
transcriptome, and proteome results from 24
IPF lungs and 14 control lungs. Leveraging

supervised (39) and unsupervised (40)
machine learning methods allowed us to
identify integrated molecules and pathways
across the multiple omic platforms to more
comprehensively characterize the complex
molecular features of IPF.

Methods

Ethics Statement
Human tissue was collected after appropriate
ethical review for the protection of human
subjects through the National Heart, Lung,
and Blood Institute–sponsored LTRC (Lung
Tissue ResearchConsortium) and lung donor
program at the University of Pittsburgh.
Deidentified data and samples were approved
for use in this study by the University of
Colorado (ColoradoMultiple Institutional
Review Board number 15-1147).

Study Population
We selected 24 subjects with IPF from the
LTRC and 14 control subjects from the
University of Pittsburgh Lung Core, all of
whom were non-Hispanic white individuals.
Details of the studypopulationareprovided in
theMETHODS of the data supplement.

Sample Processing
DNA and RNAwere isolated from the same
sample of lung tissue using the AllPrep kit
(Qiagen). Samples with an RNA integrity
number and DNA integrity number.5 were
used. Genotyping for theMUC5B rs35705950
variant was performed by using a TaqMan
assay (Thermo Fisher Scientific). Sample
preparation for proteomic analysis is
described in theMETHODS of the data
supplement.

Omic Data Collection
mRNA librarieswere prepared from500ng of
total RNA by using TruSeq strandedmRNA
library preparation kits (Illumina) and were
sequenced at the average depth of 80 million
readson the IlluminaNovaSeq6000 system.A
total of 4,011uniqueproteinsweredetectedby
using published mass spectrometry methods
(41) and are described in theMETHODS of the
datasupplement.OnemicrogramofDNAwas
bisulfite treated by using the Zymo EZ DNA
Methylation Kit and was labeled and
hybridized to an Illumina InfiniumHuman
MethylationEPIC BeadChip by using
standardprotocols.RibosomalRNA–depleted
libraries were prepared from 1mg of RNA by
using the Epidemiology Ribo-Zero Gold

rRNA Removal Kit (Illumina) and were
sequenced at the average depth of 80 million
reads on the Illumina NovaSeq 6000 system.
RNA sequencing (RNA-seq) count-level data
and InfiniumHumanMethylationEPIC
BeadChip methylation data have been
deposited to the Gene Expression Omnibus
under accession number GSE173357.

General Statistical Methods
All analyses were performed in R (version
3.6.2, R Foundation for Statistical
Computing). Principal component
analysis was used for quality control, and
no samples had to be excluded on the
basis of this criterion. Principal
component regression analysis was used
to identify variables associated with top
principal components, and strong batch
effects were regressed out by using
ComBat software (42). Differentially
abundant features in each data set were
identified by using linear models that
adjusted for age and sex. In the mRNA
sequencing, lncRNA sequencing, and
DNA methylation data sets, P values were
adjusted for inflation and bias by using
Bacon software (43). To control for
multiple comparisons, P values were
adjusted to a 5% false discovery rate
(FDR) by using the Benjamini-Hochberg
procedure (44) in all data sets. Detailed
methods for data processing and
statistical analysis of individual data sets
are provided in the METHODS of the data
supplement.

Data Integration Analysis for
Biomarker Discovery Using Latent
Variable Approaches for
Omics Studies
The Data Integration Analysis for Biomarker
DiscoveryUsingaLatentComponentMethod
for Omics Studies (DIABLO) framework (39)
was used to determine correlated omic
features associatedwith diagnosis. DIABLO is
a supervised learning approach that builds on
Regularized and Sparse Generalized
Canonical Correlation Analysis, maximizing
correlations amongmultiple data sets
containingthesameindividualsandaclassifier
(diagnosis). DIABLO seeks common
information across different data types
through the selection of a subset of molecular
featureswhilediscriminatingbetweenIPFand
control lung tissue. By using simulations in
DIABLO, we determined that a single latent
variable sufficiently captures most of the
variation associated with diagnosis. For input
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into DIABLO, we used the four lists of
differential features at an FDR,0.05, with the
mRNA set limited to 1,109 transcripts with a
|fold change|.4 to have a number of features
similar to those of the remaining three data
sets.

Results

We selected subjects with IPF and control
subjects to have similar demographic (age and
sex) characteristics, the same race and
ethnicity (non-Hispanic white), and similar
smoking histories (all ever-smokers or former
smokers) (Table 1). All control subjects have
the GGMUC5B genotype, and among the
subjects with IPF, 50% have the GGMUC5B
genotype and 50% have the GTMUC5B
genotype.

Coding RNA
A total of 116,503 transcripts were detected
through polyA-enriched RNA-seq, 75,382 of
which are annotated as protein-coding or
retained-intron transcripts (alternatively
spliced transcripts).A total of 4,643 transcripts
(protein-coding and retained-intron
transcripts) aligning to 3,439 genes are
differentially expressed in IPF lung tissue
compared with normal control lung tissue at
an FDR,0.05 after stringent adjustment for
inflation and bias (see Figure E1A in the data
supplement). As an alternative to adjustment
for inflation and bias, we performed cell
deconvolution analysis by using the xCell
software (45)andadjustedforcellproportions
inthestatisticalmodel,but thismethoddidnot
perform as well (Figure E2). Of the 4,634
differentially expressed transcripts, 1,425
transcripts are upregulated in IPF lung
tissue, whereas 3,218 RNAs are more
abundant in control lung tissue (TableE1A).

The majority of differentially expressed
transcripts are protein-coding transcripts
(74%; Figure 1A), and the remaining 26%
(Figure 1B) are alternatively spliced
transcripts. Upregulated mRNAs are
strongly enriched for protein products
localizing to the mitochondria as well as
transcripts involved in oxidation.
Downregulated mRNAs are enriched for
focal adhesion and immune signaling
pathways. Differentially expressed genes
previously reported to be associated with
IPF include MMP7, a gene that is the most
established biomarker for IPF (17, 46, 47),
and EGF (epidermal growth factor). Our
recent analysis of transcriptional profiles of
airwayepithelial cells grownat theair–liquid
interface at different time points identified
an interaction of the receptor EGFR (EGF
receptor) and the inducible transcriptional
coactivator (YAP) as being critical to the
migratory phenotype of IPF cells (48). In
addition, we observed genes involved in
other fibrotic lung diseases, such as CUX1, a
transcription factor that regulates COL1
expression and is upregulated in systemic
sclerosis (49). CUX1 isoforms are localized
within ACTA21 cells in systemic sclerosis
skin sections and IPF lung tissue sections,
suggesting an important role for CUX1 in
regulation of COL1 expression in fibrosis in
multiple organs (50).

Protein
The liquid chromatography–mass
spectrometry platform we used detected
22,198 peptides associated with 4,011 unique
proteins/genes. A total of 1,040 proteins were
differentially abundant in IPF tissuecompared
with control tissue at an FDR,0.05 (Figure
1C; Table E1B). A total of 522 proteins
(including 27 core matrisome–associated
proteins and 19 matrisome-associated

proteins) are increased in IPF, and 518
(including 24 core matrisome–associated
proteins and 22 matrisome-associated
proteins) are decreased. Differentially
abundant proteins are significantly enriched
for corematrisome andmatrisome-associated
proteins (Fisher’sP=0.001).We also detected
multiple upregulated thioredoxin-related
genes (P4HB, QSOX1, TXN2, TXNDC5,
TXNL1) in IPF tissue. Thioredoxins are
upregulated by reactive oxygen species and
reduce oxidative stress. TMEM231 shows the
greatest increase in IPF. TMEM231 is a
transmembrane protein present in the
transition zone of cilia that prevents protein
mislocalization by blocking protein diffusion
across the ciliary membrane and is necessary
for proper ciliogenesis. Our group has
previously implicated ciliary dysfunction in
IPFpathogenesis throughpatient clusteringof
gene expression microarray data (19).

Methylation
After stringent control for bias and inflation
(FigureE1C),we identified2,500differentially
methylated regions (DMRs) overlapping or
within 10 kb of 1,840 genes (Figure 1D; Table
E1C). As an alternative to adjustment for
inflation and bias, we performed cell
deconvolution analysis by using the
RefFreeEWASpackage in R (51) and adjusted
for cell confounding, but this method did not
perform as well (Figure E3). Of the 2,568
DMR–gene relationships for the DMRs, 31%
of theDMRsare intronic togenes,24%overlap
an exonic region, and 11% are in promoters
(defined as within 2 kb upstream of the
transcriptionstartsite).Onaverage,significant
DMRs contained four Illumina probes and
spanned 335 bp. The absolute average
difference in the percentage of methylation of
CpGs within significant DMRs in IPF lung
tissue versus control lung tissue is 9.6%. The
greatest hypomethylated DMR shows a 30%
decrease in methylation relative to control
tissue. This 709-bp region contains six probes
and overlaps the 3’ untranslated region of
VMP1aswellasmostof the transcribedregion
of miR-21, a microRNA shown to promote
fibrogenesis through upregulation of TGF-b
signaling, for which differential methylation
has not been previously reported (29).
Additional DMRs overlap genes shown to be
involved in lungdevelopmentandfibrosis.We
observe hypomethylation in FOXP1, a
transcription factor involved in secretory
epithelial cell fate determination in the lung
(52),aswellasdifferentialmethylationofgenes

Table 1. Clinical Characteristics of the Subjects Included in the Multiomic Profiling

Subjects with IPF (n=24) Control Subjects (n=14) P

Age, yr, mean6SD 6265.9 6465.7 0.323*
Sex, M, n (%) 20 (83.3) 10 (71.4) 0.433†

Race, W, n (%) 24 (100) 14 (100) 1†

Ethnicity, NH, n (%) 24 (100) 14 (100) 1†

Smoking status, ever 17 (70.1) 9 (64.3) 0.521†

MUC5B genotype, GG 13 (50) 14 (100) N/A‡

Definition of abbreviations: IPF= idiopathic pulmonary fibrosis; M=male; N/A=not applicable;
NH=non-Hispanic; W=white.
*Assessed by using a Student’s t test.
†Assessed by using a Fisher’s exact Test.
‡By design.
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Figure 1. Volcano plots depicting features that are statistically significant in idiopathic pulmonary fibrosis (IPF) lung tissue compared with control
lung tissue at a false discovery rate ,0.05 (blue dots). (A) Protein-coding and (B) alternatively spliced RNA were captured by using polyA or mRNA
sequencing, whereas (E) long noncoding RNAs (lncRNAs) were captured by using ribosomal RNA–depleted sequencing. Alternative splicing
includes retained exon annotations from GENCODE. Noncoding RNA includes long intergenic noncoding RNA, antisense RNA, miscellaneous RNA,
sense intronic RNA, small nuclear RNA, microRNA, small nucleolar RNA, sense overlapping RNA, bidirectional promoter lncRNA, 39 overlapping
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previouslyshowntobeinvolvedinIPF,suchas
CCL2 (53).

lncRNA
We identified 1,269 differentially expressed
transcripts associatedwith 1,067 unique genes
(FDR, 0.05) (Figure 1E; Table E1D) after
controlling forbiasandinflation(FigureE1D).
The majority of differentially expressed
noncoding RNAs are lncRNAs (39%) and
antisense RNAs (43%). As expected, most of
the lncRNAs are those of unknown function.
Among most differentially expressed
lncRNAs with known function that are
upregulated in IPF are MUC5B-AS1, a
noncoding RNA antisense toMUC5B, and
LINP2,whichhasmultiple roles incancer (54).
lncRNAsofknownfunctiondownregulatedin
IPF include LINC-PINT (long intergenic
non–protein-coding RNA p53–induced
transcript), which reduces lung cancer
progressionviaspongingofmiR-543toinduce
the tumorsuppressorPTEN(phosphataseand
tensin homolog) (55).

Integrative Analyses
Protein-coding transcriptome and

proteome interactions. To begin to integrate
data sets, we first performed pairwise
comparisons of coding mRNA and protein
data, initially focusing on transcripts and
proteins with significant changes in both data
sets. Comparing the fold change of protein to
mRNA, we demonstrated that most changes
with large effect sizes (fourfold change in IPF
vs. control)areconsistentdirectionally (Figure
2A).PRKRA(proteinactivatorof IFNinduced
protein kinase EIF2AK2) is especially highly
upregulated at the mRNA and protein level.
This protein kinase is activated by double-
strandedRNAandmediates the effects of IFN
in response to viral infections, which are
known risk factors of disease (56, 57). PRKRA
promoter hypomethylation has been
previouslyreportedinIPFlungtissue(23),and
our novel observation of mRNA and protein
upregulation further suggests a role for this
gene in disease.

Kyoto Encyclopedia of Genes and
Genomes pathway enrichment analysis
revealed common pathways, specifically focal
adhesion and adherens junctions, in the
mRNAandproteindatasets (Figure2B).Focal

adhesion, adhesive contact between the cell
and ECM through the interaction of integrin
transmembrane proteins with their
extracellular ligand, is strongly enriched in
both the mRNA and the protein data sets.
Although the majority of transcripts in the
focal adhesion pathway are downregulated in
IPF, protein-level data demonstrate a mix of
upregulation and downregulation,
highlighting the importance of studying
disease-relatedgenesacrossomicdatasets.We
observed downregulation of integrin a1 and
b5 subunits at the RNA level (ITGA1A and
ITGA5B) and integrin a1 and b1 subunits at
the protein level (ITGA1A and ITGA1B).
Published findings have established a
profibrotic role ofavb1 andavb6 integrins at
the protein level by activation of TGF-b (58);
morework isneededtounderstandtherolesof
integrins we identified in lung fibrosis.

Effect of DNA methylation on gene
expression. We next assessed the effect of
DNAmethylationonexpressionof thenearest
protein-codingRNA(Figure3A),alternatively
spliced RNA (Figure 3B), and protein (Figure
3C). We observed only a few relationships
within 10 kb among significantly differentially
expressed genes, acknowledging that
methylation marks do not always regulate the
nearest gene (59). Inversely correlated
methylation and expressionwere observed for
genes of interest in IPF, such as AGER (60), a
catenin2(61),KRT17(62),andCASZ1(agene
we previously reported as regulated by
methylation in IPF [24]). Increasing the
distance of overlap to 100 kb reveals many
morepotential cis relationships betweenDNA
methylation and gene expression. A
potentially interesting novel finding in these
data is regulationbymethylationofCOL17A1,
a transmembrane protein that is a structural
componentofhemidesmosomesandhasbeen
reported to be regulated by promoter
methylation in epithelial cancers (63). Even
with the limitation of only focusing on
relationships with the nearest genes, DNA
methylation appears to be an important
feature of gene regulation in IPF.

Multiomic modeling. To fully integrate
all four data sets (protein-coding RNA,
protein, DNAmethylation, and noncoding
RNA), we used the DIABLOmultiomics
integrative method. The DIABLOmodel

differentiates IPF and control lungs by using
one latentvariable (FigureE4A),demonstrates
strong correlations of individual features with
the top latent variable (Figure E4B), and
demonstrates strong correlations across
features from different data sets (Figure E4C).
Contributions of individual data set features
on the top latent variable are shown in Figure
E4D and in Tables E2A–E2D. Unsupervised
hierarchical clustering using 20 coding
mRNA, protein, methylation, and lncRNA
featureswithhighest loadingson the top latent
variable from the four data sets (80 features
total; Figure 4A) demonstrates perfect
separation of IPF and control lungs (Figure
4B). Among the top protein-coding mRNA
features are MMP7, a key biomarker of
pulmonary fibrosis (13, 47); PROM2, a gene
expressed in basal cells that differentiates
airway from the alveolar transcriptional
subtype of IPF (19); COL17A1, discussed
above; and LAMC3, a focal adhesion gene.
Amongthe topprotein featuresareperiostin, a
protein that promotes myofibroblast
differentiation and type 1 collagen production
(64); palladin, a protein involved in cell
adhesion; AGER, a gene polymorphic protein
in IPF that encodes soluble RAGE decoy
receptor (60); focal adhesionproteins LAMC2
and ITGA3; and PECAM1, a protein involved
in leukocyte migration, angiogenesis, and
integrin activation. Among the top DNA
methylation features (all hypomethylated) are
DMRs 5’ tomiR-21, a key profibrotic miRNA
upregulated in IPF (29); the promoter of
CCL2, a T cell–recruiting chemokine with an
established role in IPF (65); the promoter of
TNXB, a gene that has been reported to be
hypomethylated and upregulated in IPF
fibroblasts (66); and an intron of the LTBP1
gene that is upregulated in IPF, especially in
honeycomb cysts, and regulates the effects of
TGF-b1 (67). lncRNA data are more difficult
to dissect because of currently unknown
functions of many of the lncRNAs. Of the top
20 lncRNAs, RARA-AS1 is promising as a
potential regulator of RARA, a gene that has
been shown to be downregulated in IPF
fibroblasts (68). LINC01565orGR6 is another
potential candidate on the basis of its
expression patterns (highest in lung and bone
marrow), but no studies have shown its role in
fibrosis at this time. MIR34AHG is the host

Figure 1. (Continued). noncoding RNA, small Cajal body–specific RNA, ribozymes, noncoding macro lncRNA, small conditional RNA,
and vault RNA GENCODE annotations. All data other than the proteome data set were adjusted for bias and inflation (43). (C) Protein data
were not adjusted for bias and inflation because of an inherent bias in the proteomic assay focusing on proteins/peptides known to be
involved in IPF; therefore, inflation is expected in this data set. (D) DNA methylome data were collected and analyzed using standard
methods for Illumina Infinium Human MethylationEPIC BeadChip. EGF=epidermal growth factor; LINC-PINT= long intergenic non–protein-coding RNA
p53–induced transcript; MMP7=matrix metalloproteinase; PRKRA=protein activator of IFN induced protein kinase EIF2AK2.
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gene for miR-34, which has been shown to
regulate cellular senescence in IPF type II
alveolar epithelial cells (69). FENDRR, a
lncRNApreviously associated with IPF (33) is
28th on the extended list of features ranked by
the strength of association with the top latent
variable (Table E2D), and we observed
hypermethylation of a FENDRR enhancer
predicted by GeneHancer.

In general, we observed strong
correlations among features from different
omic platforms that were prioritized by the
DIABLOmodel, as would be expected. Many
of the DNAmethylation marks are negatively

correlated with protein-coding RNAs as well
as lncRNAs (Figure 4C). This led us to
constructanetworkof the top20 features from
each of the individual data sets (Figure 4D).
MMP7 RNA, for example, has strong
correlations (|r|. 0.8) with four proteins
(ASH1L, BRAP, RHAG; all negative) and 18
DMRs (all negative), negative correlations
with three lncRNAs (AP001189.3, GATA2-
AS1, and RARA-AS1), and positive
correlations with seven lncRNAs
(AC007552.2, AC007996.1, AC097478.1,
LINC01480, MAST4-AS1, SMC5-AS1, and
TMEM161B-AS1).MMP7 illustrates how this

multiomic approach may uncover novel
relationships that will require additional
computational (replication) and experimental
(functional) validation.

Validation of the multiomic model. We
used the unsupervised approachMulti-Omics
Factor Analysis to independently identify the
principalsourcesofvariationinourmultiomic
data sets. Results of this confirmatory analysis
are discussed and summarized in the data
supplement (FigureE5andTableE4).Overall,
a number of the same transcriptome and
proteome features emerge as prioritized by
both the DIABLO andMulti-Omics Factor

ADGRG3
RIPOR2

–0.3

–0.5

–2.5

0.0

2.5

0

2

–0.2 –0.1 0.0 0.1

RIPOR2
ACSL1

SORL1

C11orf96

STC2 SORL1
ADGRG3

FNDC3B USP47
ARID5ATNFSF10 PDGFRA

FCGR2A

COL4A2 COL4A2

ARHGAP26

SORL1
LCOR SLC4A1

LIMCH1
TUBD1

TUBD1

SYT8

KRT17
ULK2

CHID1
SYT8

LTBP4 MZB1 MZB1

CHID1
RNF157

LTBP4

LIMCH1

LY6D

Protein-coding RNAA B

m
R

N
A

 lo
g

2 
(f

o
ld

 c
h

an
g

e)

m
R

N
A

 lo
g

2 
(f

o
ld

 c
h

an
g

e)

m
R

N
A

 lo
g

2 
(f

o
ld

 c
h

an
g

e)

Average % methylation change Average % methylation change

Average % methylation change

Alternatively spliced RNA

Protein

SLC52A1
ITLN1

COL17A1

AGER
AGER

AGER
AGER

CTNNA2
CAMP

TM7SF2

CTNNA2
CTNNA2

AGER

SMARCD1
CTNNA2

HLCS

AGER

ARFGEF2

STX8

KREMEN2

MCFD2MCFD2
ARFGEF2

–2

–5

0

5

5.0

–0.3 –0.2 –0.1 0.0 0.1

–0.2 –0.1 0.0 0.1

C

Figure 3. The effect of DNA methylation on dysregulated gene expression in IPF lung tissue. (A) Protein-coding mRNA, (B) alternatively spliced
mRNA (retained intron), and (C) the protein fold change plotted against the percent change in DNA methylation in DMRs assigned to the same
genes. All fold changes are presented on the log2 scale. DNA methylation changes are presented as percent methylation changes (on the scale
0–1). DMR=differentially methylated region.

ORIGINAL RESEARCH

436 American Journal of Respiratory Cell and Molecular Biology Volume 65 Number 4 | October 2021

 



DFNA5.212

Coding RNA Protein

Inc RNAMethylation

B

FXYD3.213

NDUFA4L2.204
CAPN8.202

CDH5.201
CA4.205

HSPB8.201
CASKIN2.201

TROV6.207
ERBB2.220

NDUFA4L2.202
COL17A1.201

ESAM.201
PKIG.202

LAMC3.202
STXBP6.204
PROM2.201

ADRA1D.201
MMP7.201

–0.04 –0.02 0.02 0.020.04 0.04

ITGA3
BST2

PODXL
PECAM1

AGER

AGRN
ASH1L
PALLD

CA4
BPGM

LAMC2
RHAG
WARS

DNAJC11
BRAP

CAT
GYPC

PNP
S100A8

POSTN

0.00 –0.04 –0.02 0.00

0.02 0.03–0.03 –0.02 –0.01 0.00 0.01

ANKS3.221

dmr724

dmr168
dmr533
dmr638
dmr38
dmr9

dmr1498
dmr134
dmr165
dmr383

dmr2184
dmr1

dmr872
dmr463

dmr78
dmr33
dmr41
dmr73
dmr8

dmr180

NA
LINC00570
COL23A1
LINC00619
LINC01531
HGSNAT
USP54
PIGL
NA

NA

CNTR OB
GO12
VMP1

DENNO3
LTBP1
TNXB
CTNNA1
NOS1AP
CCL2
CAMTA1

0.000 0.005 0.010 0.015 0.020 0.025

AP001189.3-201
AC007996.1-201
GATA2-AS1-202

TMEM16B-AS1-208
RARA-AS1-201
SMC5-AS1-201

AC007552.2-201
RN7SKP103-201
GATA2-AS1-201

MIR4446-201
AC019117.2-203

TMEM1618-AS1-204
MAST4-AS1-201
LINC01480-204

PCAT19-202
AC097478.1-207
LINC01565-201
GATA2-AS1-203
AC010719.1-201
MIR34AHG-203

Rows:

Columns:

Coding RNA

Protein

Methylation

Inc RNA

IPF

Controls

A

–2 2–1 10

Color key

Figure 4. Data Integration Analysis for Biomarker Discovery Using a Latent Component Method for Omics Studies multiomic model results for the top
20 features in each data set (blue indicates coding RNA, green indicates protein, red indicates methylation, and orange indicates noncoding RNA).
IPF lung tissue is represented in blue, and control lung tissue is represented in orange. (A) Top 20 features from each data set contributing to the top
latent component. (B) Clustering of subjects with IPF versus clustering of control subjects on the basis of top 20 features from each data set.
(C) Circos plot of correlations (|r|. 0.8) for all features contributing to the top latent component. Red lines represent positive correlations, and blue
lines represent negative correlations. (D) An interactome network of top features from each of the individual data sets. Red lines represent positive
correlations, and blue lines represent negative correlations.

ORIGINAL RESEARCH

Konigsberg, Borie, Walts, et al.: Multiomic Analysis of IPF Lung Tissue 437

 



Inc R
N

A

Met
hyla

tio
n

Pro
tein Coding RNA

Correlation Legend

Positive Negative

BST2

PNP

CAT

DNAJC11

dmr33

dmr168

dmr383

dmr872 dmr41

MAST4-AS1-201dmr1498

dmr638

RHAG

GATA2-AS1-203

SMC5-AS1-201

PCAT19-202

PKIG.202 dmr165
STXBP6.204

PROM2.201

ERBB2.220

CASKIN2.201

TRPV6.207

PECAM1

PODXL

ESAM.201

ASH1L

AGRN

LAMC2

LINC01565-201

AGER

AC097478.1-207
BPGM

dmr463
MIR4446-201

AC010719.1-201

RN7SKP103-201

AC007552.2-201

AP001 189.3-201

dmr2184

dmr8

dm134

dmr76

dmr73

dmr533

ADRA1D.201
CDH5.201

dmr9

ANKS3.221

NDUFA4L2.204

LAMC3.20

MIR34AHG-203

FXYD3.213

COL17A1.201

BRAP

RARA-AS1-201

TMEM161B-AS1-208

AC007996.1-201

GYPC

GATA2-AS1-202

GATA2-AS1-201

dmr724

dmr36

HSPB8.201

LINC01480-204

dmr1

POSTN

PALLD

dmr180

MMP7.201

TMEM161B-AS1-204

AC019117.2-203

NDUFA4L2.202

ITGA3

CAPN8.202

C

D

Figure 4. (Continued).

ORIGINAL RESEARCH

438 American Journal of Respiratory Cell and Molecular Biology Volume 65 Number 4 | October 2021

 



Analysis multiomic methods, whereas more
work will be needed to further assess the
reproducibility of regulatory features of the
transcriptome (DNAmethylation
and lncRNAs).

Discussion

We present the first application of
multiomic integration modalities to IPF
lung tissue, leveraging coding and
noncoding RNA expression, proteomic,
and DNA methylation data to construct a
multiomic network to gain insights into
relevant pathogenic molecules and
pathways in disease. Our analyses confirm
previously validated molecules and
pathways known to be dysregulated in
disease and implicate novel molecular
features as potential drivers and modifiers
of disease.

Themultiomicmodel provides amore
complete characterization of molecular
pathways in IPF and provides insight into
the complex biology of IPF. It also provides
better power for identification of such
pathways by using analysis of multiple sets
of data on the same tissue, as has been
previously shown in other settings (38).
Multiomic analysismay be used to identify
pathways that are dysregulated in IPF at
both the transcript and the protein level,
such as focal adhesion or regulators of
genes/proteins already identified as
important in IPF. For example, our
multiomicmodel indicated that 18 regions
of differential methylation and 10
lncRNAs may be important in regulation
ofMMP7, a gene knownwith a known role
in IPF. Interestingly, RARA-AS1, a
potential regulator of RARA, a gene that
has been shown tobedownregulated in IPF
fibroblasts (68), is highly negatively
correlated with MMP7, suggesting that
cross-talk between RARA andMMP7may
provide novel targets for IPF therapeutics.
However, additional computational
(replication) and experimental
(functional) validation is needed.

Given that IPF is a complex disease
biologically (2), it is not surprising that
narrowly targeted drugs have generally
failed in IPF and that currently approved
drugs target multiple pathways, such as
inhibition of several growth factors with

nintedanib (70). Analyzing proteomic,
transcriptomic, and regulatory
(methylome and noncoding
transcriptome) molecules at the same time
provides a more complete picture of IPF
pathophysiology and will raise the interest
fornewcompounds in IPF.Datamininghas
become an important research direction in
drug discovery that should take advantage
of multiomic analysis (71). Future work in
IPF will likely apply these multiomic
methods to longitudinally collected data in
peripheral blood, capturing earlier or
preclinical stages of disease for the
development of treatments that can be used
before the fibrotic process involves large
portions of the lung and becomes
irreversible (72).

By study design, cases were evenly
distributed between patients homozygous
for the major allele and patients
heterozygous for theMUC5B promoter
polymorphism rs3570950 to allow for
examination of the multiomic signal in
relation to theMUC5B variant. However,
differential testing within data sets based
on the variant did not yield statistically
significant results; much larger sample
sizes will likely be needed to detect the
effect of the variant in mixed tissue, given
that the small number of distal airway
epithelial cells inwhich the variant exhibits
the strongest effect (73, 74). Furthermore,
although MUC5B transcript and protein
are upregulated in IPF (7.7-fold at the
transcript level and 2-fold at the protein
level in our samples), the MUC5B
transcript and protein are not
differentially abundant at an FDR,0.05,
which is due to the heterogeneity in
abundance among cases in whole-lung
tissue. This could also explain why
MUC5B-AS1, one of the top differentially
abundant (increased) antisense RNAs in
our RNA-seq data, is not a top-weighted
feature in the DIABLO model. These
results are not surprising because of our
limited sample size. Further studies
examiningMUC5B genotype
contributions to molecular signaling will
have increased power if cell types of
interest can be isolated through
microdissection or cell selection or
enrichment methodologies.

We applied stringent corrections for bias
and inflation by using methodology

specifically developed for transcriptome-wide
association studies (TWAS) and epigenome-
wide association studies (EWAS). Methods
developed for genome-wide association
studies assume a Gaussian distribution of test
statistics; this is a valid assumption ingenome-
wideassociationstudies, as thevastmajorityof
(generally binary) variants are not expected to
be associated with the trait of interest. In
TWAS and EWAS of complex traits such as
IPF, it is common to identify changes in
hundreds to thousands of features, most of
which are likely to be true associations but
some of which may be spurious because of
inherent inflation that has been documented
in TWAS and EWAS (43). Because of this, we
applied stringent corrections within our data
for bias and inflation by using Bacon software
(43) to empirically derive a null testing
distribution from our data, which takes into
account the nonnormal mean and variance of
the data. This greatly reduced the number of
differential features meeting significance
within our data sets, compared with previous
publications (19). However, some residual
inflation remains in the DNAmethylation
data set, an issue that is common in the
field (75).

Future multiomic research in IPF
should attempt to increase the power as
well as the genetic context of these
molecular patterns. Larger cohort studies
will provide the power to derive and then
test and validate sparse multiomic
signatures for replication in independent
samples. Larger numbers will also allow
for clustering of IPF cases into potentially
meaningful subgroups. The inclusion of
genetic data, which explains a significant
proportion of disease variability, will aid
in patient clustering and recognition of
distinct molecular subtypes. These
improved integrative models hold
promise to focus our attention on key
molecules and pathways involved in the
complex biology of lung fibrosis and will
potentially enable us to identify critical
checkpoints that can manipulated
pharmacologically.�
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