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Dissociation-based single-cell technologies have enabled the 
deep characterization of cellular states and the creation of 
cell atlases of many organs and species1. However, how cel-

lular diversity constitutes tissue organization and function is still 
an open question. Spatially resolved molecular technologies aim 
at bridging this gap by enabling the investigation of tissues in situ 
at cellular and subcellular resolution2–4. In contrast to the current 
state-of-the-art dissociation-based protocols, spatial molecular tech-
nologies acquire data in greatly diverse forms, in terms of resolution 
(few cells per observation to subcellular resolution), multiplexing 
(dozens of features to genome-wide expression profiles), modality 
(transcriptomics, proteomics and metabolomics) and often with an 
associated high-content image of the captured tissue2–4. Such diver-
sity in generated data and corresponding formats currently repre-
sents an infrastructural hurdle that has hampered urgently needed 
development of interoperable analysis methods. The underlying 
computational challenges lie in efficient data representation as well 
as comprehensive analysis and visualization methods.

Existing analysis frameworks for spatial data focus either on pre-
processing5–8 or on one particular aspect of spatial data analysis9–13. 
The combination of different analysis steps is still hampered by the 
lack of a unified data representation and of a modular application 
programming interface, for example loading processed data from 
Starfish5, combining stLearn’s11 integrative analysis of tissue images 
together with Giotto’s powerful spatial statistics13, BayesSpace spa-
tial clustering14 or leveraging state-of-the-art deep-learning-based 
methods for image segmentation15,16 and visualization17. A com-
prehensive framework that enables community-driven scal-
able analyses of both spatial neighborhood graph and image, 
along with an interactive visualization module, is missing  
(Supplementary Table 1).

For this purpose we developed ‘Spatial Quantification of 
Molecular Data in Python’ (Squidpy), a Python-based framework 
for the analysis of spatially resolved omics data (Fig.  1). Squidpy 
aims to bring the diversity of spatial data in a common data  

representation and provide a common set of analysis and interactive 
visualization tools. Squidpy introduces two main data representa-
tions to manage and store spatial omics data in a technology-agnostic 
way: a neighborhood graph from spatial coordinates and 
large-source tissue images acquired in spatial omics data (Fig. 1b). 
Both data representations leverage sparse18 or memory-efficient19 
approaches in Python for scalability and ease of use. They are also 
able to deal with both two-dimensional and three-dimensional (3D) 
information, thus laying the foundations for comprehensive molec-
ular maps of tissues and organs. Such infrastructure is coupled with 
a wealth of tools that enable the identification of spatial patterns 
in tissue and the mining and integration of morphology data from 
large tissue images (Fig. 1c). Squidpy is built on top of Scanpy and 
Anndata20 and it relies on several scientific computing libraries in 
Python, such as Scikit-image21, Napari22 and Dask19. Its modularity 
makes it suitable to be interfaced with a variety of additional tools in 
the Python data science and machine-learning ecosystem (such as 
external segmentation methods and modern deep-learning frame-
works), as well as several single-cell data analysis packages. It pro-
vides a rich documentation, with tutorials and example workflows, 
integrated in the continuous integration pipeline. It allows users to 
quickly explore spatial datasets and lays the foundations for both 
spatial omics data analysis as well as development of new methods. 
Squidpy is available at https://github.com/theislab/squidpy; docu-
mentation and extensive tutorials covering the presented results and 
more are available at https://squidpy.readthedocs.io/en/latest/.

Results
Squidpy provides infrastructure and analysis tools to iden-
tify spatial patterns in tissue. Spatial proximity is encoded in 
spatial graphs, which require flexibility to support the variety 
of neighborhood metrics that spatial data types and users may 
require. For instance, in Spatial Transcriptomics (ST23, Visium24 
and DBit-seq25), a node is a spot and a neighborhood set can be 
defined by a fixed number of adjacent spots (square or hexagonal 
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grid; Fig. 2a), whereas in imaging-based molecular data (seqFISH26, 
MERFISH27, Imaging Mass Cytometry28,29, CyCif30, 4i31 and Spatial 
Metabolomics32; Fig. 2a), a node can be defined as a cell (or pixel) 
and a neighborhood set can also be chosen based on a fixed radius 
(expressed in spatial units) from the centroid of each observation. 
Alternatively, other approaches, such as Euclidean distance or 
Delaunay triangulation, can be utilized to build the neighbor graph 
(Fig. 2a). Squidpy can compute all the aforementioned modalities 
thus making it technology-agnostic and providing the infrastruc-
ture for downstream analysis tools that aim at quantifying spatial 
organization of the tissue.

A key question in the analysis of spatial molecular data is 
the description and quantification of spatial patterns and cel-
lular neighborhoods across the tissue. Squidpy provides several 
tools that leverage the spatial graph to address such questions. 
On a recently published seqFISH33 dataset we built a spatial 
nearest-neighbor graph based on Delaunay triangulation and 
computed a permutation-based neighborhood enrichment across 
cell-type annotations (Methods). Clusters of enriched cell types 
(such as ‘Lateral plate mesoderm’ with ‘Allantois’ and ‘Intermediate 

mesoderm’ clusters, ‘Endothelium’ with ‘Hematoendothelial pro-
genitors’; Fig.  2b) are consistent with the original publication33 
and the spatial proximity can be visualized in Fig.  2c. A similar 
analysis was performed on a MERFISH dataset34, where we could 
identify a neighborhood enrichment between ‘Endothelial 2’ and 
‘Pericytes’ clusters, whereas the ‘Ependymal’ cluster shows a strong 
co-enrichment with itself but depleted enrichment with the other 
clusters (Fig.  2d,e shows selected clusters and Supplementary 
Fig. 2g shows the the full dataset). Furthermore, our implementa-
tion is scalable and ~tenfold faster than a similar implementation 
in Giotto13 (Supplementary Fig.  1a,b and Supplementary Table  2 
show extensive comparisons), enabling analysis of large-scale spa-
tial omics datasets. Sparse and scalable implementation in Squidpy 
enables working with subcellular-resolution spatial data such 
as 4i31. We considered ~270,000 pixels as subcellular resolution 
observations across 13 cells (Fig.  2f) and evaluated their cluster 
co-occurrence at increasing distances (Fig.  2g). As expected, the 
subcellular measurements annotated in the nucleus compartment 
co-occur together with the nucleus and the nuclear envelope, at 
short distances. The co-occurrence score represents an interpretable 
score to investigate patterns of spatial organization in tissue. When 
applied to a SlideseqV2 dataset35 (Fig. 2h), the co-occurrence score 
could provide a quantitative indication of a qualitative observation 
that the ‘Endothelial_Tip’ cluster shows a strong co-occurrence with 
the ‘Ependymal’ cluster (Fig. 2i). To obtain a global indication of the 
degree of clustering or dispersion of a cell-type annotation in the tis-
sue area, the Ripley’s L can be computed. When applied to the same 
dataset (Fig. 2j), it highlighted how the ‘CA1 CA2 CA3 Subiculum’ 
and the ‘Dentate Pyramids’ annotations have a more ‘clustered’ 
spatial patterning than other annotations, such as the ‘Endothelial 
Stalk’. Squidpy implements three variations of the Ripley statistic  
(L, F and G; Supplementary Fig. 2b provides an additional example) 
that allows one to gain a global understanding of spatial pattern-
ing of discrete covariates. Finally, to identify genes that show strong 
spatial variability, we applied the Moran’s I spatial autocorrelation 
statistics (Methods) and visualized the three top genes (Fig. 2k; Ttr, 
Mbp and Hpca), which all show different spatial patterns and seem 
to largely colocalize with cell-type annotations (‘Endothelial Tip’, 
‘Oligodendrocytes’ and ‘CA1 CA2 CA3 Subiculum’, respectively).

These statistics yield interpretable results across diverse experi-
mental techniques, as demonstrated on an Imaging Mass Cytometry 
dataset36, where we showcase additional methods such as Ripley’s 
F function, average clustering and degree and closeness centrality 
(Supplementary Fig.  2). In conclusion, Squidpy provides a suite 
of orthogonal analysis tools that enable analysts to gain a quan-
titative understanding of the spatial organization of cellular and  
subcellular units.

Squidpy enables analysis and visualization of large images in 
spatial omics data. The high-resolution microscopy image addi-
tionally captured by spatial omics technologies represents a rich 
source of morphological information that can provide key bio-
logical insights into tissue structure and cellular variation. Squidpy 
introduces a new data object, the ImageContainer, which efficiently 
stores the image with an on-disk/in-memory switch based on xAr-
ray and Dask19,37. This object provides a general mapping between 
pixel coordinates and molecular profiles, enabling analysts to relate 
image-level observations to omics measurements (Fig. 3a). It pro-
vides seamless integration with napari22, thus enabling interactive 
visualization of analysis results stored in an Anndata object along-
side the high-resolution image directly from a Jupyter notebook. 
It also enables interactive manual cropping of tissue areas and 
automatic annotation of observations in Anndata. As napari is an 
image viewer in Python, all the above-mentioned functionalities 
can be also interactively executed without additional requirements. 
Following standard image-based profiling techniques38, Squidpy 
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Fig. 1 | Squidpy is a software framework for the analysis of spatial 
omics data. a, Squidpy supports inputs from diverse spatial molecular 
technologies with spot-based, single-cell or subcellular spatial resolution. 
b, Building upon the single-cell analysis software Scanpy20 and the 
Anndata format, Squidpy provides efficient data representations of 
these inputs, storing spatial distances between observations in a spatial 
graph and providing an efficient image representation for high-resolution 
tissue images that might be obtained together with the molecular data. 
c, Using these representations, several analysis functions are defined 
to quantitatively describe tissue organization at the cellular (spatial 
neighborhood) and gene level (spatial statistics, spatially variable 
genes and ligand–receptor interactions), to combine microscopy image 
information (image features and nuclei segmentation) with omics 
information and to interactively visualize high-resolution images.
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implements a pipeline based on Dask Image19 and Scikit-image21 
for preprocessing and segmenting images, extracting morpho-
logical, texture and deep-learning-powered features (Fig.  3a). To 
enable efficient processing of very large images, this pipeline uti-
lizes lazy loading, image tiling and multiprocessing (Supplementary 
Fig. 1b). When using image tiling during processing, overlapping 
crops are used to mitigate border effects. Features can be extracted 
from a raw-tissue image crop or Squidpy’s segmentation mod-
ule can be used to extract segmentation objects (nuclei or cells) 
counts, sizes or general image features at segmentation-mask level  
(Supplementary Fig. 2b).

For segmentation, Squidpy provides a pipeline based on the 
watershed algorithm and provides an interface to state-of-the-art 
nuclei segmentation algorithms such as Cellpose16 and StarDist15 
(Supplementary Fig. 5a). As an example for segmentation-based fea-
tures, we computed nuclei segmentation using the 4,6-diamidino- 
2-phenylindole (DAPI) stain of a fluorescence mouse brain section 
(Fig. 3b,c) and showed the estimated number of nuclei per spot on 
the hippocampus (Fig. 3d, left). The cell-dense pyramidal layer can 
be easily distinguished with this view of the data, showcasing the 
richness and interpretability of information that can be extracted 
from tissue images when brought in a spot-based format. In addi-
tion, we can leverage segmented nuclei to inform cell-type deconvo-
lution (or decomposition/mapping) methods such as Tangram39 or 
Cell2Location40. In Supplementary Fig. 4 we showcase how priors on 
nuclei densities derived from nuclei segmentation in Squidpy can be 
used both for inferring cell-type proportions as well as mapping cell 
types to segmentation objects with Tangram.

Image-based features contained in Squidpy include built-in sum-
mary, histogram and texture features and more-advanced features 
such as deep-learning-based (Supplementary Fig. 2a) or CellProfiler 
(Supplementary Fig. 5b) pipelines provided by external packages.

Using the anti-NeuN and anti-glial fibrillary acidic protein 
(GFAP) channels contained in the fluorescence mouse brain sec-
tion, we calculated their mean intensity for each Visium spot using 
summary features (Fig.  3d center and right). This image-derived 
information relates well to molecular information: Visium spots 
with high marker intensity have a higher expression of Rbfox3 
(for anti-NeuN marker) and Gfap (for anti-GFAP marker) than 
low-marker-intensity spots (Fig.  3e). Image features can also be 
calculated at the spot level, thus aggregating several cells or at an 
individual per-cell level. Using a multiplexed ion beam imaging by 
time of flight (MIBI-TOF) dataset41 with a previously calculated cell 
segmentation, we calculate mean intensity features of two markers 
contained in the original image (Fig. 3f). The calculated mean inten-
sities have a high correlation with the associated mean intensity val-
ues contained in the associated molecular profile (Supplementary 
Fig. 3a). These results highlight how explicitly analyzing image-level 
information leads to insightful validation but also potentially  
new hypotheses.

Squidpy’s workflow enables the integrative analysis of spatial 
transcriptomics data. The feature extraction pipeline of Squidpy 
allows the comparison and joint analysis of spatial patterning of 
the tissue at the molecular and morphological level. Here, we show 
how Squidpy’s functionalities can be combined to analyze 10X 

Fig. 3 | Image analysis and relating images to molecular profiles with Squidpy. a, Schematic drawing of the ImageContainer object and its relation 
to Anndata. The ImageContainer object stores multiple image layers with spatial dimensions x, y, z (left). An exemplary image-processing workflow 
consisting of preprocessing, segmentation and feature extraction is shown in the bottom. Using image features, pixel-level information is related to 
the molecular profile in Anndata (top right). Anndata and ImageContainer objects can be visualized interactively using napari (bottom right). DL, 
deep-learning. b, Fluorescence image with markers DAPI, anti-NeuN and anti-GFAP from a Visium mouse brain dataset (https://support.10xgenomics.
com/spatial-gene-expression/datasets). The location of the inset in c is marked with a yellow box. c, Details of fluorescence image from b, showing from 
left to right the DAPI, anti-NeuN and anti-GFAP channels and nuclei segmentation of the DAPI stain using watershed segmentation. d, Image features 
per Visium spot computed from fluorescence image in b. From left to right are shown: number of nuclei in each Visium spot derived from the nuclei 
segmentation, the mean intensity of the anti-NeuN marker in each Visium spot and the mean intensity of the anti-GFAP marker in each Visium spot.  
e, Violin plot of log-normalized Gfap and Rbfox3 gene expression in Visium spots with low and high anti-GFAP and anti-NeuN marker intensity (lower 
and higher than median marker intensity), respectively. f, Calculation of per-cell features from a MIBI-TOF dataset41. Tissue image showing three markers 
CD45, CK and vimentin (left). Cell segmentation provided by the authors41 (center left). Mean intensity of CD45 per cell derived from the raw image using 
Squidpy (center right). Mean intensity of CK per cell derived from the raw image using Squidpy (right). For quantitative comparison see Supplementary 
Fig. 2. This example is part of the Squidpy documentation (https://squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_visium_fluo.html and https://
squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_mibitof.html).

Fig. 2 | Analysis of spatial omics datasets across diverse experimental techniques using Squidpy. a, Example of nearest-neighbor graphs that can 
be built with Squidpy: grid-like and generic coordinates. b, Neighborhood enrichment analysis between cell clusters in spatial coordinates. Positive 
enrichment is found for the following cluster pairs: ‘Lateral plate mesoderm’ with ‘Allantois’ and ‘Intermediate mesoderm’ clusters, ‘Endothelium’ with 
‘Hematoendothelial progenitors’, ‘Anterior somitic tissues’, ‘Sclerotome’ and ‘Cranial mesoderm’ clusters, ‘NMP’ with ‘Spinal cord’, ‘Allantois’ with ‘Mixed 
mesenchymal mesoderm’, ‘Erythroid’ with ‘Low quality’, ‘Presomitic mesoderm’ with ‘Dermomyotome’ and ‘Cardiomyocytes’ with ‘Mixed mesenchymal 
mesoderm’. These results were also reported by the original authors33. NMP, neuromesodermal progenitor. c, Visualization of selected clusters of the 
seqFISH mouse gastrulation dataset. d, Visualization in 3D coordinates of three selected clusters in the MERFISH dataset34. The ‘Pericytes’ are in pink, 
the ‘Endothelial 2’ are in red and the ‘Ependymal’ are in brown. The full dataset is visualized in Supplementary Fig. 2g. e, Results of the neighborhood 
enrichment analysis. The ‘Pericytes’ and ‘Endothelial 2’ clusters show a positive enrichment score. OD, oligodendrocytes. f, Visualization of subcellular 
molecular profiles in HeLa cells, plotted in spatial coordinates (approximately 270,000 observations/pixels). ER, endoplasmic reticulum. g, Cluster 
co-occurrence score computed for each cell, at increasing distance threshold across the tissue. The cluster ‘Nucleolus’ is found to be co-enriched at 
short distances with the ‘Nucleus’ and the ‘Nuclear envelope’ clusters. h, Visualization of SlideseqV2 dataset with cell-type annotations35. i, Cluster 
co-occurrence score computed for all clusters, conditioned on the presence of the ‘Ependymal’ cluster. At short distances, there is an increased 
colocalization between the ‘Endothelial_Tip’ cluster and the ‘Ependymal’ cluster. j, Ripley’s L statistics computed at increasing distances; clusters such as 
‘CA1_CA2_CA3_Subiculum’ and ‘DentatePyramids’ show high Ripley’s L values across distances, providing quantitative evaluation of the ‘clustered’ spatial 
pattern across the slide. Clusters such as the ‘Endothelial_Stalk’, with a lower Ripley’s L value across increasing distances, have a more ‘random’ pattern. 
k, Expression of top three spatially variable genes (Ttr, Mbp and Hpca) as computed by Moran’s I spatial autocorrelation on the SlideseqV2 dataset. They 
seem to capture different patterning and specificity for cell types (‘Endothelial_Tip’, ‘Oligodendrocytes’ and ‘CA1_CA2_CA3_Subiculum’, respectively).
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Genomics Visium spatial transcriptomics data of a coronal mouse 
brain section.

As previously shown, we can apply spatially variable feature 
selection to identify genes that show a pronounced spatial pat-
tern. Moran’s I spatial correlation statistics identifies Mobp and 
Nrgn (Fig. 4a,b) to be spatially variable; both genes show a distinct 
spatial expression pattern and seem to encompass the localization 
of several cell clusters (Fig.  4d; ‘Fiber tract’ and ‘Hypothalamus 

2’ for Mobp and ‘Pyramidal layers’ and ‘Pyramidal layers/Dentate 
gyrus’ for Nrgn). An orthogonal method for the same task, Sepal42 
ranks Krt18 as a top spatially variable gene, which shows a distinct 
expression in a subset of the ‘Lateral ventricle’ cluster (Fig. 4d and 
Supplementary Fig.  1f,g show a comparison with original imple-
mentation). The variety of tools for spatially variable gene iden-
tification provided by Squidpy enhances standard cluster-based 
gene expression signatures by providing insights into spatial  
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distribution of genes. Ligand–receptor interaction analysis can 
be a useful approach to shortlist candidate genes driving cellu-
lar interactions. Squidpy provides a fast re-implementation of the 
CellphoneDB43 method (Supplementary Fig.  1b,d shows runtime 
comparison against original implementation and Giotto), which 
additionally leverages the Omnipath database for ligand–recep-
tor annotations44 (Supplementary Fig. 1e shows a comparison with 

CellphoneDB). Applied to the same dataset, it highlighted different 
ligand–receptor pairs between the ‘Hippocampus’ cluster and the 
two ‘Pyramidal layer’ clusters. Whether permutation-based tests of 
ligand–receptor interaction identification are able to pinpoint cel-
lular communication and pathway activity is an open question45. 
However, it is useful to inform such results with a quantitative 
understanding of cluster co-occurrence. Squidpy’s co-occurrence 
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Fig. 4 | Analysis of mouse brain Visium dataset using Squidpy. a,b, Gene expression in spatial context of two spatially variable genes (Mobp and Nrgn) as 
identified by Moran’s I spatial autocorrelation statistic. c, Gene expression in spatial context of one spatially variable gene (Krt18) identified by the Sepal 
method42. d, Clustering of gene expression data plotted on spatial coordinates. e, Ligand–receptor interactions from the cluster ‘Hippocampus’ to clusters 
‘Pyramidal layer’ and ‘Pyramidal layer dentate gyrus’. Shown are a subset of significant ligand–receptor pairs queried using the Omnipath database. Shown 
ligand–receptor pairs were filtered for visualization purposes, based on expression (mean expression > 13) and significant after false discovery rate (FDR) 
correction (P < 0.01). P values results from a permutation-based test with 1,000 permutations and were adjusted with the Benjamini–Hochberg method. 
f, Co-occurrence score between ‘Hippocampus’ and the rest of the clusters. As seen qualitatively by clusters in a spatial context in d, ‘Pyramidal layer’ and 
‘Pyramidal layer dentate gyrus’ co-occur with the Hippocampus at short distances, given their proximity. g, H&E stain. h, Clustering of summary image 
features (channel intensity mean, s.d. and 0.1, 0.5, 0.9th quantiles) derived from the H&E stain at each spot location (for quantitative comparison to gene 
clusters from d see Supplementary Fig. 2e). i, Fraction of nuclei per Visium spot, computed using the cell segmentation algorithm StarDist15. j, Violin plot 
of fraction of nuclei per Visium spot (g) for the cortical clusters (d) plotted with P value annotation. The cluster Cortex_2 was omitted from this analysis 
because it entails a different region of the cortex (cortical subplate) for which the differential nuclei density score between isocortical layers is not relevant. 
Test performed was two-sided Mann–Whitney–Wilcoxon test with Bonferroni correction, P value annotation legend is the following: ****P ≤ 0.0001. Exact 
P values are the following: Cortex_5 versus Cortex_4, P = 1.691 × 10−36, U = 1,432; Cortex_5 versus Cortex_1, P = 2.060 × 10−54, U = 775; Cortex_5 versus 
Cortex_3, P = 5.274 × 10−51, U = 787. This example is part of the Squidpy documentation (https://squidpy.readthedocs.io/en/latest/auto_tutorials/tutorial_
visium_hne.html).
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score is a simple but interpretable approach, which applied to the 
Visium dataset highlights an expected direct relationship between 
the previously described clusters (‘Hippocampus’ and the two 
‘Pyramidal layer’ clusters; Fig. 4f).

Squidpy’s feature extraction pipeline enables direct comparison 
and joint analysis of image and omics data. The integrative analy-
sis of gene expression and image data enhances pattern discovery 
and enables joint interpretation of the information obtained from 
morphology and molecular data. For instance, on the same mouse 
brain coronal section data, we compared clusters computed from 
gene expression profiles with clusters computed from summary sta-
tistics (mean, s.d., 0.1, 0.5 and 0.9th quantiles) of high-resolution 
hematoxylin and eosin (H&E) image channels (Fig.  4g,h). The 
image-based clusters recapitulate regions of image intensities with 
similar mean and standard variation, whereas the gene-based clus-
ters are related to broad cell-type definition. We can see that several 
image-based clusters are highly overlapping with the gene-based 
clusters, especially in the cluster ‘Hippocampus’ (54% overlap with 
image feature cluster 10) and the cluster ‘Hypothalamus’ (72% 
overlap with image feature cluster 8). This shows how members 
of such clusters share a similar definition both at morphology and 
molecular level which allows further characterization of the clus-
ter. In contrast, the image-based clusters provide a different view 
of the data in the cortex (no overlap >33% with any image feature 
clusters) (Supplementary Fig. 3e). Here, gene clusters identify broad 
cortical layers whereas the image-based clusters separate differ-
ent regions of the cortex based on changing local image intensi-
ties, indicating changes in cell density, morphology or changes in 
the staining that are not captured by the gene expression data. For 
further examination of these image feature clusters, we calculated 
a nuclei segmentation using StarDist15 and extracted the number 
of nuclei per Visium spot (Fig. 4i). This nuclear count shows that 
image-based cluster 15 highlights an area in the bottom part of the 
cortex with low cell density that is not covered fully by the gene clus-
ter ‘Cortex_5’. This example highlights how variation in interpre-
table image-based features can reveal higher variability within the 
same annotation and why the integrative tools available in Squidpy 
enables such analysis. In addition to explaining variation in the 
image-based clusters, the fraction of nuclei was combined with gene 
clusters to show that the nuclear density varies between the different 
cortical clusters (Fig. 4j,). This indicates that gene expression clus-
ters represent a different grouping of the cortex than the one identi-
fied by the image-based clustering. Such regions of different nuclear 
densities and morphology in the brain are of broad interest to neu-
roscientists46–48 and low nuclei density in the outer cortical layer of 
the isocortex (corresponding to cluster ‘Cortex_5’) has been previ-
ously established48. Furthermore, Squidpy image-processing tools 
allow to quickly validate the robustness of such findings, by refining 
the selection of spots that fully overlap the detected tissue area to 
remove potential false positives (Supplementary Fig. 6). Therefore, 
nuclear density and morphological information represent valuable 
information to disentangle sources of variation in spatial transcrip-
tomics data and allow scientists to generate additional insights for 
the biological system of interest. Similar tissue hallmarks that can be 
inferred from image data and may be used to explain gene expres-
sion variation, include blood vessels, tissue boundaries and fibrotic 
areas. Squidpy’s integrative analysis workflows leverage the spatial 
context and large microscopy images to generate new hypothesis 
classes in spatial transcriptomics data, thus bridging tissue-level 
characterizations of samples, which are typical in pathology, with 
the new high-resolution gene expression characterization yielded by 
spatial transcriptomics.

Discussion
In summary, Squidpy enables analysis of spatial molecular data by 
leveraging two data representations: the spatial graph and the tissue 

image. Squidpy infrastructure leverages sparse and memory-efficient 
implementations and its core spatial statistics and image analysis 
methods are fast and computationally efficient, making them suit-
able for the increasing size of modern spatial omics data. It inter-
faces with Scanpy and the Python data science ecosystem, providing 
a scalable and extendable framework for development of new meth-
ods in the field of biological spatial molecular data. Squidpy’s rich 
documentation in the form of functional application program-
ming interface documentation, examples and tutorial workflows, is 
easy to navigate and is accessible to both experienced developers 
and beginner analysts. Furthermore, Squidpy is equipped with an 
extensive testing suite, implemented in a robust continuous integra-
tion pipeline. We foresee in the development roadmap support for 
GPU-accelerated workflows (specifically using Dask) and a tighter 
integration with the developing ecosystem of spatial omics meth-
ods, with explicit addition of an external module with methods and 
wrappers provided by contributors and additional tutorials and best 
practices of the nascent field of spatial omics data analysis. We hope 
that Squidpy will serve as a bridge between the molecular omics 
community and the image analysis and computer vision community 
to develop the next generation of computational methods for spatial 
omics technologies.
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Methods
Infrastructure. Spatial graph. The spatial graph is a graph of spatial neighbors with 
cells (or spots in case of Visium) as nodes and neighborhood relations between 
spots as edges. We use spatial coordinates of spots to identify neighbors among 
them. Different approaches of defining a neighborhood relation among spots are 
used for different types of spatial datasets.

Visium spatial datasets have a hexagonal outline for their spots (each spot has 
up to eight spots situated around it). For this type of spatial dataset the parameter 
n_rings should be used. It specifies for each spot how many hexagonal rings of 
spots around it will be considered as neighbors.

sq.gr.spatial_neighbors(adata, coord_type=“grid”,  
n_neigh=6, n_rings=<int>)

It is also possible to create other types of grid-like graphs, such as squares, by 
changing the n_neigh argument. For a fixed number of the closest spots for each 
spot, it leverages the k-nearest neighbors search from Scikit-learn49 and n_neigh 
must be used to set the number of neighbors.

sq.gr.spatial_neighbors(adata, coord_type=“generic”, 
n_neigh=<int>)

To get all spots within a specified radius (in units of the spatial coordinates) 
from each spot as neighbors, the parameter radius should be used.

sq.gr.spatial_neighbors(adata, coord_type=“generic”, 
radius=<float>)

Finally, it is also possible to compute a neighbor graph based on Delaunay 
triangulation50.

sq.gr.spatial_neighbors(adata, coord_type=“generic”, 
delaunay=True)

The function builds a spatial graph and saves its adjacency and weighted 
adjacency matrices to adata.obsp[‘spatial_connectivities’] in either Numpy51 or 
Scipy sparse arrays18. The weights of the weighted adjacency matrix are distances 
in the case of coord_type = ‘generic’ and ordinal numbers of hexagonal rings in 
the case of coord_type = ‘grid’. Together with the connectivities, we also provide a 
sparse adjacency matrix of distances, saved in adata.obsp[‘spatial_distances’] We 
also provide spectral and cosine transformation of the adjacency matrix for uses in 
graph convolutional networks52.

ImageContainer. ImageContainer is an object for microscopy tissue images 
associated with spatial molecular datasets. The object is a thin wrapper of an 
xarray.Dataset37 and provides efficient access to in-memory and on-disk images. 
On-disk files are loaded lazily using dask19, meaning content is only read in 
memory when requested. The object can be saved as a zarr53 store. This allows 
handling of very large files that do not fit in the memory. The images represented 
by ImageContainer are required to have at least two dimensions, x and y, with an 
optional z dimension and a variable channels dimension.

ImageContainer is initialized with an in-memory array or a path to an image 
file on disk. Images are saved with the key layer. If lazy loading is desired, the lazy 
parameter needs to be specified.

sq.im.ImageContainer(PATH, layer=<str>, lazy=<bool>)

More image layers with the same spatial dimensions x, y and z such as 
segmentation masks can be added to an existing ImageContainer.

img.add_img(PATH, layer=<str>)

ImageContainer is able to interface with Anndata objects to relate any 
pixel-level information to the observations stored in Anndata (such as cells and 
spots). For instance, it is possible to create a lazy generator that yields image crops 
on-the-fly corresponding to locations of the spots in the image:

spot_generator = img.generate_spot_crops(adata) 
lambda x: (x for x in spot_generator) # yields crops  
at spots location

This of course works for both features computed at crop-level but also at 
segmentation-object level. For instance, it is possible to get centroid coordinates  
as well as several features of the segmentation object that overlap with the  
spot capture area.

Napari for interactive visualization. Napari is a fast, interactive, multi-dimensional 
image viewer in Python22. In Squidpy, it is possible to visualize the source image 
together with any Anndata annotation with napari. Such functionality is useful for 
fast and interactive exploration of analysis results saved in Anndata together with 

the high-resolution image. If multiple z dimensions are available, the  
individual z layers that can be interactively scrolled through. Furthermore, 
leveraging napari functionalities, it is possible to manually annotate tissue  
areas and assign underlying spots to annotations saved in the Anndata  
object. Such ability to relate manually defined tissue areas to observations in 
Anndata is particularly useful in settings where there is a pathologist annotation 
available and it needs to be integrated with analysis at gene expression or image 
level. All the steps described here are performed in Python, therefore available 
in the same environment where the analysis is performed (it does not require an 
additional tool).

img = sq.im.ImageContainer(PATH, layer=) 
img.interactive(adata)

Graph and spatial patterns analysis. Neighborhood enrichment test. The 
association between label pairs in the connectivity graph is estimated by  
counting the sum of nodes that belong to classes i and j (for example cluster 
annotation) and are proximal to each other, noted xij. To estimate the deviation 
of this number versus a random configuration of cluster labels in the same 
connectivity graph, we scramble the cluster labels while maintaining the 
connectivities and then recount the number of nodes recovered in each iteration 
(1,000 times by default). Using these estimates, we calculate expected means (µij) 
and standard deviations (σij) for each pair and a z score as,

Zij =
(

xij − μij

)

/σij

The z score indicates if a cluster pair is over-represented or over-depleted for 
node–node interactions in the connectivity graph. This approach was described by 
Schapiro et al.54. The analysis and visualization can be performed with the analysis 
code shown below.

sq.gr.nhood_enrichment(adata, cluster_key=“<cluster_
key>”) 
sq.pl.nhood_enrichment(adata, 
cluster_key=“<cluster_key>”)

Our implementation leverages just-in-time compilation with Numba55 to 
achieve greater performances in computation time (Supplementary Fig. 1).

Ligand–receptor interaction analysis. We provide a re-implementation of  
the popular CellphoneDB method for ligand–receptor interaction analysis43.  
In short, it is a permutation-based test of ligand–receptor expression across  
cell-type combinations. Given a list of annotated ligand–receptor pairs, the  
test computes the mean expression of the two molecules (ligand, receptor)  
between cell types and builds a null-distribution based on n permutations  
(default 1,000). A P value is computed based on the proportion of the permuted 
means against the true mean. In CellphoneDB, if a receptor or ligand is  
composed of several subunits, the minimum expression is considered for the  
test. In our implementation, we also include the option of taking the mean 
expression of all molecules in the complex. Our implementation also employs 
Omnipath44 as ligand–receptor interaction database annotation. A larger database 
that contains the original CellphoneDB database together with five other 
resources44. Finally, our implementation leverages just-in-time compilation  
with Numba55 to achieve greater performances in computation time 
(Supplementary Fig. 1).

Ripley’s spatial statistics. Ripley’s spatial statistics is a family of spatial  
analysis methods used to describe whether points with discrete annotation  
in space follow random, dispersed or clustered patterns. Ripley’s statistics can 
be used to describe the spatial patterning of cell clusters in the area of interest. 
In Squidpy, we re-implemented three of Ripley’s statistics: F, G and L functions. 
Ripley’s L function is a variance-stabilized transformation of Ripley’s K function, 
defined as

K (t) = A
n

∑

i=1

n
∑

j=1
I
(

di,j < t
)

(1)

Where I(di,j < t) is the indicator function that sets whether the operand is 1 or 0 
based on the (Euclidean) distance di,j evaluated at search radius t, A is the average 
density of point in the area of interest. Therefore, the Ripley’s L function is  
defined as:

L (t) =

(

K (t)
π

)1/2
(2)

The Ripley’s F and G functions are defined as:

P
(

di,j ≤ t
)

(3)
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Where di,j is the distance of the point to a random points for a spatial Poisson 
point process for F and the distance to any other point of the dataset for G. They 
can be easily computed with:

sq.gr.ripley(adata, cluster_key=“<cluster_key>”, 
mode=“<F|G|L>”) 
sq.pl.ripley(adata, cluster_key=“<cluster_key>”, 
mode=“<F|G|L>”)

Cluster co-occurrence ratio. Cluster co-occurrence ratio provides a score on the 
co-occurrence of clusters of interest across spatial dimensions. It is defined as

p (exp|cluster)
p (exp)

(4)

where cluster is the annotation of interest to be used as conditioning for the 
co-occurrence of all clusters. It is computed across n radius of size d across the 
tissue area. It was inspired by an analysis performed by Tosti et al. to investigate 
tissue organization in the human pancreas with spatial transcriptomics56.

sq.gr.co_occurrence(adata, cluster_key=“<cluster_key>”) 
sq.pl.co_occurrence(adata, cluster_key=“<cluster_key>”)

Spatial autocorrelation statistics. Spatial autocorrelation statistics are widely used 
in spatial data analysis tools to assess the spatial autocorrelation of continuous 
features. Given a feature (gene) and spatial location of observations, it evaluates 
whether the pattern expressed is clustered, dispersed or random57. In Squidpy, we 
implement two spatial autocorrelation statistics: Moran’s I and Geary’s C.

Moran’s I is defined as:

I = n
W

∑n
i=1

∑n
j=1 wi,jzizj

∑n
i=1 z2i

(5)

and Geary’s C is defined as:

C =
(n − 1)

∑

i,j wi,j
(

xi − xj
)2

2W
∑

i (xi − x̄)2
(6)

where zi is the deviation of the feature from the mean 
(

xi − X̄
)

, wi,j is the spatial 
weight between observations, n is the number of spatial units and W is the sum of 
all wi,j. Test statistics and P values (computed from a permutation-based test or via 
analytic formulation, similar to libpysal58 and further FDR-corrected) are stored in 
adata.uns[‘moranI’] or adata.uns[‘gearyC’].

sq.gr.spatial_autocorr(adata, 
cluster_key=“<cluster_key>”,mode=“<moran|geary>”)

Sepal. Sepal is a recently developed method for spatially variable genes 
identification42. It simulates a diffusion process and evaluates the time it takes to 
reach a uniform state (convergence). It is a formulation of Fick’s second law to a 
regular graph (grid). It is defined as:

u (x, y, t + dt) = u (x, y, t) + DΔu (x, y, t) dt (7)

Where u(x,y,t) is the concentration (for example gene expression on a node in x,y 
coordinates), D is the diffusion coefficient, t is the update time and ∆(u(x,y,t)dt) 
is the laplacian on the graph (see elsewhere42 for an extended formulation). 
Convergence is reached if the change in entropy is below a given threshold:

H (u (t)) − H (u (t − 1)) < ϵ (8)

The time t the gene takes to reach consensus is then used a ‘Sepal score’ and 
indicates the degree of spatial variability of the gene. It can be computed with:

sq.gr.sepal(adata)

Our re-implementation in Numba achieves greater computational efficiency 
(Supplementary Fig. 1).

Centrality scores. Centrality scores provide a numerical analysis on node patterns 
in the graph, which helps to better understand complex dependencies in large 
graphs. A centrality is a function C which assigns every vertex v in the graph a 
numeric value C(v) ∈ R. It therefore gives a ranking of the single components 
(cells) in the graph, which simplifies to identify key individuals. Group centrality 
measures have been introduced by Everett and Borgatti59. They provide a 
framework to assess clusters of cells in the graph (a specific cell type more central 
or more connected in the graph than others). Let G = (V,E) be a graph with nodes 
V and edges E. Additionally, let S be a group of nodes allocated to the same cluster 
cS. Then N(S) defines the neighborhood of all nodes in S. The following four 

(group) centrality measures are implemented. Group degree centrality is defined by 
the fraction of noncluster members that are connected to cluster members, so

Cdeg (S) =
|N (S) − S|
|V| − |S|

∈ [0, 1]

Larger values indicate a more central cluster. Group degree centrality can help 
to identify essential clusters or cell types in the graph. Group closeness centrality 
measures how close the cluster is to other nodes in the graph and is calculated by 
the number of nongroup members divided by the sum of all distances from the 
cluster to all vertices outside the cluster, so

Cclos (S) =
|V − S|

∑

v∈VS
dS,v

∈ [0, 1]

where dS,v = minu∈S du,v is the minimal distance of the group S from v. Hence, larger 
values indicate a greater centrality. Group betweenness centrality measures the 
proportion of shortest paths connecting pairs of nongroup members that pass 
through the group. Let S be a subset of a graph with vertex set VS. Let gu,v be the 
number of shortest paths connecting u to v and gu,v(S) be the number of shortest 
paths connecting u to v passing through S. The group betweenness centrality is 
then given by

Cbetw (S) =
∑

u<v

gu,v (S)
gu,v

for u, v /∈ S.

The properties of this centrality score are fundamentally different from 
degree and closeness centrality scores, hence results often differ. The last measure 
described is the average clustering coefficient. It describes how well nodes in a 
graph tend to cluster together. Let n be the number of nodes in S. Then the average 
clustering coefficient is given by

Ccluster (S) =
1
n
∑

v∈S

2T (v)
deg (v) (deg (v) − 1)

with T(v) being the number of triangles through node v and deg(v) the degree 
of node v. The described centrality scores have been implemented using the 
NetworkX library in Python50.

sq.gr.centrality_scores(adata, cluster_key=“<cluster_
key>”) 
sq.pl.centrality_scores(adata, cluster_key=“<cluster_
key>”, selected_score=“<selected_score>”)

Interaction matrix represents the total number of edges that are shared between 
nodes with specific attributes (such as clusters or cell types).

sq.gr.interaction_matrix(adata, cluster_key=“<cluster_
key>”, normalized=True) 
sq.pl.interaction_matrix(adata, 
cluster_key=“<cluster_key>”)

Python implementations rely on the NetworkX library50.

Image analysis and segmentation. Image processing. Before extracting features 
from microscopy images, the images can be preprocessed. Squidpy implements 
functions for commonly used preprocessing functions like conversion to grayscale 
or smoothing using a Gaussian kernel. In addition, custom processing functions 
can be used by passing a function to the method argument.

sq.im.process(img, method=“gray”) 
img.show()

Implementations are based on the Scikit-image package21 and allow lazy 
processing of very large images through tiling the image into smaller crops and 
processing these by using Dask. When using tiling, image crops are slightly 
overlapping, to reduce border effects.

Image segmentation. Nuclei segmentation is an important step when analyzing 
microscopy images. It allows the quantitative analysis of the number of nuclei, 
their areas and morphological features. There are a wide range of approaches for 
nuclei segmentation, from established techniques such as thresholding to modern 
deep-learning-based approaches.

A difficulty for nuclei segmentation is to distinguish between partially 
overlapping nuclei. Watershed is a classic algorithm used to separate overlapping 
objects by treating pixel values as local topology. For this, starting from points of 
lowest intensity, the image is flooded until basins from different starting points 
meet at the watershed ridge lines.

sq.im.segment(img, method=“watershed”) 
img.show()
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Implementations in Squidpy are based on the original Scikit-image Python 
implementation21.

Custom approaches with deep-learning. Depending on the quality of the data, 
simple segmentation approaches like watershed might not be appropriate. 
Nowadays, many complex segmentation algorithms are provided as pretrained 
deep-learning models, such as Stardist15, Splinedist60 and Cellpose16. These  
models can be easily used within the segmentation function. We provide  
extensive tutorials https://squidpy.readthedocs.io/en/latest/tutorials.
html#external-tutorials, where we show how Stardist15 and Cellpose16 can be  
easily interfaced with Squidpy to perform segmentation on both H&E and 
fluorescence images.

sq.im.segment(img, method=<pre-trained model>) 
img.show()

Image features. Tissue organization in microscopic images can be analyzed 
with different image features. This filters relevant information from the 
(high-dimensional) images, allowing for easy interpretation and comparison with 
other features obtained at the same spatial location. Image features are calculated 
from the tissue image at each location (x,y) where there is transcriptomics 
information available, resulting in an obs × features matrix similar to the obs × gene 
matrix. This image feature matrix can then be used in any single-cell analysis 
workflow, just like the gene matrix.

The scale and size of the image used to calculate features can be adjusted 
using the scale and spot_scale parameters. Feature extraction can be parallelized 
by providing n_jobs (see Supplementary Fig. 1). The calculated feature matrix is 
stored in adata[key].

sq.im.calculate_image_features(adata, img, 
features=<list>, spot_scale=<float>, scale=<float>, 
key_added=<str>)

Summary features calculate the mean, the s.d. or specific quantiles for a color 
channel. Similarly, histogram features scan the histogram of a color channel to 
calculate quantiles according a defined number of bins.

sq.im.calculate_image_features(adata, img, 
features=“summary”) sq.im.calculate_image_
features(adata, img, features=“histogram”)

Textural features calculate statistics over a histogram that describes  
the signatures of textures. To grasp the concept of texture intuitively, the 
inextricable relationship between texture and tone is considered61; if a small-area 
patch of an image has little variation in its gray tone the dominant property  
of that area is tone. If the patch has a wide variation of gray-tone features, the 
dominant property of the area is texture. An image has a simple texture if it  
consists of recurring textural features. For a gray-level image I or for example 
a fluorescence color channel, a co-occurrence matrix C is computed. C is a 
histogram over pairs of pixels (i,j) with specific values (p,q) ∈ [0,1,…,255]  
(https://squidpy.readthedocs.io/en/latest/tutorials.html#external-tutorials) and  
a fixed pixel offset:

Cp,q =
∑

i
δI(i),pδI(j),q

with Kronecker delta δ. The offset is a fixed pixel distance from i to j under a 
fixed direction angle. Based on the co-occurrence matrix different meaningful 
statistics (texture properties) can be calculated that summarize textural pattern 
characteristics of the image:
•	 ∑

p,q
Cp,q (p − q)2 contrast

•	 ∑

p,q
Cp,q |p − q| dissimilarity

•	 ∑

p,q

Cp,q
1+(p−q)2  homogeneity

•	 ∑

p,q
C2
p,q angular second moment

•	
∑

p,q
Cp,q

(p−μp)(q−μq)
√

σ2
pσ2

q

 correlation

sq.im.calculate_image_features(adata, img, 
features=“texture”)

All the above implementations rely on the Scikit-image Python package21.

Segmentation features. Similar to image features that are extracted from raw  
tissue images, segmentation features can be extracted from a segmentation  
object. These features allow to get statistics over the number, area and morphology 

of the nuclei in one image. To compute these features, the ImageContainer img 
needs to contain a segmented image at layer <segmented_img>

sq.im.calculate_image_features(adata, 
img,features=“segmentation”, 
features_kwargs={“label_layer”:<segmented_img>})

Custom features based on deep-learning models. Squidpy feature calculation 
function can also be used with custom user-defined features extraction functions. 
This enables the use of for example, pretrained deep-learning models as feature 
extractors. We provide tutorials https://squidpy.readthedocs.io/en/latest/tutorials.
html#external-tutorials on how to interface popular deep-learning frameworks 
such as Tensorflow62 with ImageContainer, thus enabling users to perform an 
end-to-end deep-learning pipeline from Squidpy.

sq.im.calculate_image_features(adata, img, 
features=“custom”, features_kwargs={“func”:<pre-trained 
keras model>})

Reporting Summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability
The preprocessed datasets have been deposited at https://doi.org/10.6084/
m9.figshare.c.5273297.v1 and they are all conveniently accessible in Python via the 
squidpy.dataset module. The datasets used in this article are the following: Imaging 
Mass Cytometry36, seqFISH33, 4i31, MERFISH34, SlideseqV2 (ref. 35), Mibi-tof41 
and several Visium24 datasets available from https://support.10xgenomics.com/
spatial-gene-expression/datasets. Information on preprocessing of such datasets 
can be found in Online Methods and code to reproduce it is at https://github.com/
theislab/squidpy_reproducibility.

Code availability
Squidpy is a pip installable Python package and available at the following GitHub 
repository: https://github.com/theislab/squidpy, with documentation at: https://
squidpy.readthedocs.io/en/latest/. All the code to reproduce the result of the 
analysis can be found at the following GitHub repository: https://github.com/
theislab/squidpy_reproducibility.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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