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Supplementary Note 1

scvi-tools is a unified resource for single-cell omics data analysis

The single-cell omics data analysis pipeline is composed of several steps [, 2] (Figure 1a). First,
data are staged within a data object using packages like Scanpy [3], Seurat [4] or scater [5] and
preprocessed with quality control filters. The data are then analyzed through a variety of subsequent
steps, which aim to normalize, simplify, infer structure, annotate, and extract new insight (Figure 1b).
scvi-tools aims to provide a rich set of methods for these latter steps, while relying on probabilistic
models for statistically sound interpretation of data.

The models currently implemented in scvi-tools can perform normalization, dimensionality reduction,
dataset integration, differential expression (scVI [6, 7], scANVI [8], totalVI [9], PeakVI [10],
LDVAE [11], MultiVI [12]), automated annotation (scANVI, CellAssign [13]), doublet detection
(Solo [14]), factor analysis (LDVAE, LDA [15]), and deconvolution of spatial transcriptomics profiles
(Stereoscope [16], DestVI [17]). These models span multiple modalities including scRNA-seq
(scVI, scANVI, CellAssign, Solo), CITE-seq [18] (total VI), single-cell ATAC-seq (PeakVI), spatial
transcriptomics (Stereoscope, gimVI [19], DestVI [17]), and combinations thereof (multiome;
MultiVI) (Supplementary Table 1). Importantly, these models make use of stochastic inference
techniques and (optionally) GPU acceleration, such that they readily scale to even the largest
datasets.

Each model also comes with a simple and consistent application programming interface (API). They
all rely on the popular AnnData format as a way to store and represent the raw data (Figure 1a).
Consequently, scvi-tools models are easily integrated with Scanpy workflows. This also enables users
to interface with AnnData-based data zoos like Sfaira [20]. Furthermore, the globally consistent
API of scvi-tools allows us to maintain a reticulate-based [21] workflow in R, such that scvi-tools
models may be used directly in Seurat or Bioconductor workflows. Therefore, after running methods
in scvi-tools, results can be visualized and further assessed with a broad range of analysis packages
like Scanpy, Seurat, VISION [22], and cellxgene [23].



Supplementary Note 2

Nonlinear removal of unwanted variation due to multiple covariates

As the quantity, size, and complexity of single-cell datasets continues to grow, there is a significant
need for methods capable of controlling for the effects of unwanted variation [24]. Some factors that
contribute to unwanted variation depend directly on the data generating process, such as differences
between labs, protocols, technologies, donors, or tissue sites. Normally, such nuisance factors are
observable and available as sample-level metadata. Unwanted variation can also come at the level
of a single cell and can be calculated directly from the data. It can stem from technical factors like
quality as gauged by proxies such as the abundance of mitochondrial RNA or the expression of
housekeeping genes, as well as biological factors like cell cycle phase. Nuisance factors can come in
either categorical or numerical form. These factors can affect the data in a nonlinear manner [25],
and controlling for them is essential for most forms of downstream analysis.

Many methods have been proposed for removing unwanted variation, but most target the subtask
of dataset integration, which consists of controlling for one categorical confounding factor at the
sample-level, like sample ID [27, 28]. Harmony [29] is, to the best of our knowledge, the only method
capable of nonlinearly controlling for multiple categorical covariates simultaneously. While the
focus of the integration task is on categorical factors, some pipelines provide an additional layer of
normalization, where a given numerical confounder (typically, though not limited to the cell-level)
can be regressed out prior to batch correction using a linear model (e.g, the “regress out” function in
Scanpy [3] or Combat [30]). Thus, no existing method is capable of performing nonlinear removal
of unwanted variation with respect to multiple (cell- or sample-level) categorical and continuous
covariates. However, we anticipate an increase in the need for such methods, reflecting the complexity
of recent single-cell atlases.

Our previously described models scVI [6], sScANVI [8], total VI [9], and PeakVI [10] all rely on a latent
variable models and neural networks to remove unwanted variation from observed covariates, denoted
as s, for a cell n (Supplementary Figure 1a). These models learn a latent representation of each cell
that is corrected for this unwanted variation by using a nonlinear neural network decoder that receives
the representation and the observed covariates as input, and subsequently injects the covariates into
each hidden layer (Supplementary Figure 1b). While the models could theoretically process multiple
categorical or continuous covariates, their previous implementations restricted this capability due
to the difficulty of implementing proper data management throughout the training and downstream
analysis of a fitted model. scvi-tools allowed us to address this obstacle and support conditioning
on arbitrary covariates via its global data registration process (setup_anndata; Supplementary
Note 4) and shared neural network building blocks. Now, users simply register their covariates before
running a model (Supplementary Figure Ic). By implementing this feature in the four aforementioned
models, scvi-tools can handle complex data collections across a range of modalities and analysis tasks.
Additionally, this feature can be easily propagated to new models (and modalities), all with the same
user experience, due to the modular nature of the scvi-tools package.

To demonstrate this capability, we applied scVI to a dataset of Drosophila wing disc myoblast cells [31]
that suffered from strong effects due to cell cycle and sex of the donor organism, both of which were
observed via a set of nuisance genes (i.e., numerical covariates; Supplementary Table 2). Both of
these confounding factors are observed at the cell-level, as these cells were taken from batches of
fly larva and were processed together without sex sorting. The dataset also featured a sample-level
confounding factor (batch ID; two batches) and non-nuisance factor (developmental time point;
Supplementary Figure 1d).

When scVI was trained only conditioned on the batch covariate, we observed that it successfully
integrated each batch, however the effects from PCNA, a cell cycle gene, and IncRNA:roX1, a gene
that is expressed by males (Supplementary Figure 1d), still manifested in the latent space. When scVI
was additionally conditioned on the expression of the set of nuisance genes (scVI-cc; Methods), we
observed that it successfully integrated the data across batch, cell cycle, and sex. Additionally, we
found that the desirable biological signals, such as the expression of vg, a gene marking a spatial
compartment in the wing disc, were preserved (Supplementary Figure 1d).

We compared these results to the respective Seurat-based and Scanpy-based workflow, which consisted
of the scanpy.pp.regress_out function for linear removal of signal from nuisance genes followed



by Seurat [32] (regress-seurat), bbknn [33] (regress-bbknn) or Harmony (regress-harmony) for
correction of batch effects (Supplementary Figure le; Methods). We evaluated these alternative
workflows using an autocorrelation measure (Geary’s C [34]; Methods) computed with respect to
each workflow’s low-dimensional representation and a set of genes. This metric quantifies the extent
to which the gene expression of a cell can be explained by its neighboring cells. An optimal correction
would leave a set of key marker genes well explained by the neighborhood graph (low Geary’s C)
while forcing nuisance genes to not be well explained by the same graph structure (high Geary’s C).
We observed that scVI-cc was able to both retain important biological signal (via the set of key marker
genes) and remove the unwanted variation due to the nuisance genes relative to the vanilla scVI
baseline (Supplementary Figure 1f,g). While we found a tradeoff between retaining biological signal
of marker genes and removing nuisance variation across all workflows, these results demonstrate that
scVI strikes a balance in removing unwanted variation and retaining wanted variation. The scVI
workflow with multiple covariates is also more scalable than the alternatives; we evaluated scalability
using subsampled versions of the Heart Cell Atlas dataset [35] that had categorical covariates like
donor and continuous covariates like cell-level mitochondrial count percentage (Supplementary
Figure 1h; Methods).
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Supplementary Figure 1: Removal of unwanted variation in the analysis of Drosophila wing disc
development. a, Graphical model representation of a latent variable models in scvi-tools that conditions on
nuisance covariates. b, Graphical representation of covariates injected into each layer of decoder neural networks.
¢, Code snippet to register AnnData and train scVI with continuous covariates. The covariates are identified
with keys stored in the AnnData.obs cell-level data frame. d, e, UMAP [26] embedding of (d) uncorrected
latent space computed using principal components analysis, scVI latent space with only batch covariates (scVI),
scVI latent space with batch and continuous covariates (scVI-cc), (e) low-dimensional embeddings after running
scanpy.pp.regress_out followed by Seurat (Regress-seurat), bbknn (Regress-bbknn), and similarly after
running scanpy.pp.regress_out followed by Harmony (Regress-harmony). UMAP plots are colored by
batch, PCNA (cell cycle gene), IncRNA:roX1 (cell sex gene), and vg (gene marking spatial compartment within
the wing disc). f, Geary’s C of canonical marker genes of interest per model. Hypothesis testing between scVI-cc
and competing mehods was performed with a Mann Whitney Wilcoxon test (two-sided; M.W.W). g, Geary’s
C of the cell cycle and cell sex genes conditioned on per model. Box plots were computed on n=31 genes for
(f) and n=55 genes for (g) and indicate the median (center lines), interquartile range (hinges), and whiskers at
1.5x interquartile range. Gene lists can be found in Supplementary Table 2. h, Runtime of workflows to correct
multiple continuous and categorical covariates on subsampled versions of the Heart Cell Atlas dataset.



Methods

Drosophila The dataset of Drosophila myoblasts was downloaded from Gene Expression Omnibus
(Accession ID GSE155543). The list of cell cycle and cell sex genes were derived from ref. [31]
while marker genes were derived from refs. [31] and [36]. (Supplementary Table 2). These marker
genes were previously identified as markers of either the direct or indirect myoblasts, subpopulations
of the wing disc-associated myoblasts in the larva that eventually give rise to distinct adult flight
muscles. scVI was trained on the raw count data with a single batch covariate for timepoint and
replicate. For scVI-cc, the model was conditioned on each nuisance gene’s log normalized expression
(first each cells counts were normalized, then scaled to the median of total counts for cells before
normalization, before calculating the log on the scaled normalized counts) as well as a categorical
batch covariate for timepoint and replicate. Furthermore, each nuisance gene that was conditioned on
was also removed from the input count matrix. Each scVI model was trained for 400 epochs. For
regress-bbknn, the regress_out scanpy function was used for the continuous covariates, while the
bbknn scanpy function was used for the categorical batch covariates. Similar to scVI-cc, the nuisance
gene expression was removed from the input count matrix. For regress-harmony, the regress_out
function was used for the continuous covariates, while the harmony_integrate scanpy function was
used for the categorical batch covariates. The nuisance genes were also removed from the input count
matrix. For regress-seurat, the regress_out function was used to correct for continuous covariates.
Then anndata2ri (version 1.0.6, https://github.com/theislab/anndata2ri) was used to
convert the AnnData to a SingleCellExperiment object. Then to correct for the categorical covariates,
we used (with Seurat version 4.0.1) SelectIntegrationFeatures to select features variable across
our categorical covariates, followed by FindIntegrationAnchors, and IntegrateData in order to
create an integrated dataset across all categorical covariates. Finally RunPCA was used to get the final
latent representation. To compute Geary’s C we used the gearys_c scanpy function.

Runtime Runtime analysis was run on a desktop with an Intel Core i9-10900K 3.7 GHz processor,
2x Corsair Vengeance LPX 64GB ram, and an NVIDIA RTX 3090 GPU. Runtime was performed
with the Heart Cell Atlas dataset downloaded from https://www.heartcellatlas.org/. We
then subsampled and created datasets of 5,000, 10,000, 20,000, 40,000, 80,000, 160,000, 320,000,
and 486,134 cells and selected the top 4,000 genes via highly_variable_genes per dataset, with
parameter flavor=“seurat_v3”. For each of the following methods, we used the cell_source
and donor fields of the dataset as categorical covariates. For continuous covariates, we generated
8 random covariates by sampling from a standard normal distribution in addition to treating the
percent_mito and percent_ribo fields as additional continuous covariates, for a total of 10 continuous
covariates. For scVI runtime, we tracked the runtime of running the train function with the following
parameters:

early_stopping=True, early_stopping_patience=45, max_epochs=10000,
batch_size=1024, limit_train_batches=20,
train_size=0.9 if n_cells < 200000 and train_size=1-(20000/n_cells) otherwise

This choice of the size parameter for the training set ensures that the validation set always has size of
less than 20,000 cells for the whole runtime experiment. For the regress-bbknn baseline, we tracked
the runtime of correcting continuous covariates with regress_out, running pca, and correcting for
categorical covariates with bbknn (all from the scanpy package). For the regress-harmony baseline,
we tracked the runtime of regress_out to correct for continuous covariates, running pca, and
correcting for categorical covariates with harmony_integrate (all from the scanpy package). For
the regress baseline, we only tracked the runtime of the regress_out function.


https://github.com/theislab/anndata2ri
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Supplementary Note 3

Reference mapping with scArches

While dataset integration provides a way to leverage information from many sources, current methods
do not scale well to the subtask of integration in which a “query” dataset is integrated with a large,
annotated “reference” dataset. This is an increasingly common scenario, however, that is driven by
community efforts for establishing consolidated tissue atlases. These atlases are meant to be used as
general references of cell states in a given tissue and may consist of millions of cells [37].

scArches [38] is a recent method that was developed to address this scenario. scArches leverages
conditional (variational) autoencoders and transfer learning to decouple the reference mapping task
into two subproblems: First, a reference model is trained on the reference data only; and second, the
neural network from the reference model is augmented with nodes that are only influenced by the
query data. This new part of the network is subsequently trained with the query data, resulting in a
joint model that describes both the datasets, while correcting for the technical variation between the
query and reference (reference is unchanged). This procedure dramatically reduces the computational
burden of dataset integration.

Assuming a pre-trained reference model is available (e.g., representing the “atlas” of cell state for a
particular tissue), one only needs to process the (typically much smaller) query data, which makes
scArches a purely online procedure. This is in contrast to other reference mapping methods like
Seurat [39, 32], which requires the presence of the reference data to correct technical variation and
transfer metadata. Furthermore, scArches-style reference mapping can better leverage model/data
sharing repositories like Sfaira [20], as the model file itself is approximately 15 megabytes. Beyond
the aforementioned reference mapping scenario, scArches is also useful in studies where data is
accumulated gradually as it eliminates the need for reanalysis when new samples are collected.

We implemented the scArches method in scvi-tools through the addition of one class called
ArchesMixin. This class contains a generic procedure for adding new nodes to a given reference
model, as well as appropriately freezing the nodes corresponding to the reference dataset during
training. The ArchesMixin class is already inherited by scVI, scANVI, total VI, and peakVI, without
any other custom code, and it can easily be inherited by new models. From a user’s perspective, this
inheritance adds one function called 1load_query_data to each of these models that is used to load a
pre-trained reference model with new query data.

We applied scArches-style reference mapping in the multi-modal CITE-seq setting with totalVI
in order to quickly annotate and then interpret a dataset of immune cells of the blood in donors
responding to COVID-19 infection [40] (Supplementary Figure 2a, Methods). First, we used totalVI
to train a reference model of immune cell states, using an annotated CITE-seq dataset of 152,094
peripheral blood mononuclear cells (PBMCs) with over 200 surface proteins [32]. Next, we applied
scArches to augment the reference model with an additional CITE-seq dataset of 57,669 PBMCs
with 35 proteins from donors with moderate and severe COVID-19, as well as healthy controls [40].
We note that scArches-powered totalVI is to the best of our knowledge the only method that can
perform reference mapping in the case where both reference and query are CITE-seq datasets. The
most similar method, Seurat v4 [32], can use CITE-seq protein data to build the reference, but can
only use scRNA-seq data for the query.

Running totalVI in this setting is made straightforward with the scvi-tools interface and required
only a few lines of code (Supplementary Figure 2a). After query training, we visualized the joint
latent representation of the reference and query cells using UMAP (Supplementary Figure 2b,c). We
transferred the annotated cell type labels from the reference cells to the query cells using a random
forest classifier operating on the 20-dimensional joint latent space. As the model does not change
for the reference data, the training of the classifier is independent of the query data. Therefore, the
classifier itself can also be seen as a part of the pre-trained reference model.

The predicted labels of the query cells generally agreed with the labels that were provided in the
original study and held-out from this analysis (Supplementary Figure 2d). However, there were some
inconsistencies related to T cell subtype classification. The totalVI-scArches approach identified
populations of Mucosal associated invariant T (MAIT) cells and CD4 positive cytotoxic T lymphocytes
(CD4 CTLs), whereas both populations were mostly annotated as CD8 T cells in the original study
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Supplementary Figure 2: Sequential integration of CITE-seq PBMC samples with totalVI and the
scArches method. a, (Pseudo)code-based overview of using scArches with the implementation of total VI in
scvi-tools. scArches was implemented globally through the ArchesMixin class. First, the reference model is
trained on reference data, and then the scArches architectural surgery is performed when load_query_data
is called on the query data. Finally, the (now) query model is trained with the query data and downstream
analysis is performed. b, ¢, UMAP embedding of the total VI reference and query latent spaces colored by (b) the
reference labels and predicted query labels and (c) the dataset of origin. d, Row-normalized confusion matrix of
scArches predicted query labels (rows) and study-derived cell annotations (columns). e, Dotplot of log library
size normalized RNA expression across cell type markers for predicted T cell subsets. f, g Frequency of (f)
MALIT cells and (g) CD4 CTLs for each donor in the query dataset across healthy controls and donors with
moderate and severe COVID. Horizontal line denotes median. h, Row-normalized confusion matrix of scArches
predicted query labels (rows) and default total VI predicted labels (columns).

(Supplementary Figure 2d). We found that the predicted MAIT subpopulation had expression of the
known markers SLC4A10, CCR6, KLRBI, and PRSS35, and that they decreased in frequency as a
function of COVID severity, which has been previously described [41, 42] (Supplementary Figure
2e, f). CD4 CTLs have not been as well characterized in terms of their response to COVID, but
the predicted CD4 CTLs had relatively high expression of cytotoxic molecules like PRF1, GZMB,
GZMH, GNLY, and were found to be most prevalent in donors with moderate COVID (Supplementary
Figure 2e,g). This pattern is consistent with evidence suggesting that the presence of CD4 CTLs is
associated with better clinical outcomes in other viral infections in humans [43], though more targeted
study designs may be necessary to better understand this relationship [44]. Overall, these results
suggest that integrating with reference atlases can lead to more rapid, and potentially more accurate
and consistent annotations of cells across studies.

Finally, we compared the totalVI-scArches approach to default total VI, namely training totalVI in one
step, using both the reference and query datasets, as well as to the Seurat v4 workflow. Using the same
random forest procedure, we found that the predictions from totalVI scArches and default modes were
in high agreement (Supplementary Figure 2h, Supplementary Figure 3a-e), with the scArches mode



producing slightly more accurate predictions (Supplementary Figure 3f; Methods). This is despite
the massive speed increase of the scArches approach, which took only 10 minutes to integrate the
query dataset, whereas default total VI took over 80 minutes total due to necessary retraining with the
reference data (Supplementary Figure 3g). Comparing totalVI scArches to Seurat v4, we observed
that the methods had similar performance with Seurat v4 having the slight advantage (Supplementary
Figure 2d, Supplementary Figure 3h,i). We note that the cell type labels in the reference dataset
were derived from Seurat v4, which should provide Seurat an inherent advantage over totalVI in this
particular example.
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Supplementary Figure 3: Sequential integration of PBMC samples with totalVI and the scArches method.
a, b, UMAP embedding of the total VI reference and query latent spaces from default total VI model run colored
by (a) the reference labels and predicted query labels and (b) the dataset of origin. c-e, UMAP embedding
of the total VI scArches query latent space from colored by (c) study-derived labels, (d) predicted labels from
total VI scArches, and (e) predicted labels from total VI default. f, Row-normalized confusion matrix of totalVI
default predicted query labels (rows) and study-derived cell annotations (columns), g, Runtime of total VI default
versus total VI scArches, h, Row-normalized confusion matrix of Seurat v4 predicted query labels (rows) and
study-derived cell annotations (columns), i, Row-normalized confusion matrix of total VI scArches predicted
labels (rows) and Seurat predicted labels (columns).
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Methods

The reference dataset of Human PBMCs corresponding to the CITE-seq dataset described in
[32] was downloaded from Gene Expression Omnibus (Accession ID GSE164378). Associated
metadata, like cell-type annotations, were retrieved from https://atlas. fredhutch.org/nygc/
multimodal-pbmc/. The query dataset of Human PBMCs corresponding to the CITE-seq dataset
described in ref. [40] was provided by the authors, with full metadata including study-derived
annotations and other study design information. The reference data were additionally filtered to
include cells that meet the following criteria: (1) greater than 150 proteins detected, (2) percent
mitochondrial counts less than 12%, (3) not doublets (i.e., reference cells annotated as doublets
removed), (4) natural log protein library size, defined as total protein counts, between 7.6 and 10.3.
Furthermore, protein features corresponding to isotype controls were removed (for reference and
query), and protein features targeting the same protein (i.e., antibody clones) were summed together
(applies to reference only). The query data were additionally filtered for doublets using Scrublet [45]
with default parameters. Highly variable genes (4000) were selected using only the reference datasets
and with the method in Scanpy (flavor="seurat_v3"). Finally, the protein expression for a random
set of five out of the 24 batch categories (representing time and donor) in the reference dataset
were masked from totalVI, in order to help the model generalize to query data with mismatched
proteins.

In the case of scArches, totalVI was trained on the reference data for 250 epochs, using two
hidden layers and layer normalization as described in the total VI scArches tutorial https://docs.
scvi-tools.org/en/stable/user_guide/notebooks/scarches_scvi_tools.html. After
applying the scArches architectural surgery, the model was updated with the query data for 150
additional epochs. The latent representation for the reference and query datasets was obtained from
the model after it was updated with the query data; however, we note that the latent representation of
the reference data does not change after query traning in the case of scArches. In the case of default
total VI, we kept all hyperparameters and data preprocessing the same, except that we trained total VI
only once, on the concatenated reference and query datasets for 250 epochs.

For both scArches and default totalVI, we transferred the reference cell-type annotations using
a random forest classifier implemented in scikit-learn [46]. In particular, we trained a random
forest classifier on the latent representations of the reference cells (default parameters except
class_weight="balanced_subsample"). The query cell annotations were then obtained by
passing the query latent representations to the classifier. In all cases, UMAP embeddings were
computed using Scanpy [47] with metric="cosine" and min_dist=0.3. The frequency of
predicted query MAIT cells and CD4 CTLs were computed on a per-donor basis and were defined
as the frequency given the total number of observed cells per donor. All analyses were run on a
computer with one NVIDIA GeForce RTX 3090 GPU.

To evaluate Seurat for this task, we downloaded the processed CITE-seq Seurat object hosted on
the Seurat website (https://satijalab.org/seurat/articles/multimodal_reference_
mapping.html) and subset it to the same cells used in total VI. We then applied (using Seurat version
4.0.4) the ScTransform normalization to the query data, followed by FindTransferAnchors
with the ’spca’ reference reduction, followed by MapQuery, which produces predicted query
labels.

In order to quantify the annotation prediction performance, we first created a bipartite mapping
between reference labels and query labels (Supplementary Table 3). After harmonizing these two
label sets we then assessed prediction performance using scikit-learn (sklearn.metrics. f1_score
with average=“weighted” and sklearn.metrics.adjusted_mutual_info_score). Cells that
had annotations in the query without a clear reference-level match were excluded from this analysis
(Supplementary Table 3). We refer to these scores as “fuzzy F1” and “fuzzy AMI” when comparing
labels at the level of the reference to labels at the level of the query.
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Supplementary Note 4

scvi-tools accelerates probabilistic model development

scvi-tools has a convenient programming interface for rapid construction and prototyping of novel
probabilistic methods, built on top of PyTorch [48] and AnnData [3]. With this interface, developers
can build novel methods through the composition of Python objects (i.e., classes) in scvi-tools
that range from being black-box in nature (reused as is) or extensible (can be easily customized)
(Supplementary Figure 4a). The primary entry point is the Model class, which includes all the
components needed to fully specify a new probabilistic model. To ensure flexibility, we implemented
the Model class in a modular manner through four internally used classes (Figure 2a). The Module
class specifies the probabilistic form of the model (Figure 2b) and contains the elementary calculations
that make up the generative model and the inference procedure, including the objective function to
optimize during training (e.g., log likelihood or a lower bound thereof). The TrainingPlan class
defines the procedure for training the model (Supplementary Figure 4b). This class specifies how to
manage stochastic gradient descent in terms of optimizer hyperparameters as well as how to update
the parameters of a model given random subsamples (i.e., mini-batches) of data. It also provides
an interface with PyTorch Lightning’s training procedures [49], which can automatically move the
data between different devices such as from CPU to GPU to maximize throughput or perform early
stopping. The AnnDataLoader class reads data from the AnnData object and automatically structures
it for training or for downstream analysis with the trained model (Supplementary Figure 4c). Finally,
the Mixins are optional classes that implement specific routines for downstream analysis, which
can be model-specific or shared among different model classes, such as estimation of differential
expression or extraction of latent representations (Supplementary Figure 4d).

These four components may be reused by many models. The AnnDatalLoader was written as a
generic class and already has support for jointly processing data from multiple modalities, such
as transcriptomics and proteomics data in totalVI. The TrainingPlan subclasses cover a wide
range of scenarios, from optimizing a simple objective function, such as in maximum likelihood
estimation (MLE), expectation maximization (EM), or variational inference (VI), to more complex
semi-supervised learning procedures as is done in scANVI for handling cells with unobserved
annotations. Finally, the available Mixin(s), like the VAEMixin that offers procedures specific to the
variational autoencoder (VAE) (listed in Supplementary Figure 4c), can be inherited by new models
and augment their functionalities.

Consequently, methods developers can focus on the Module class, which specifies the parameters
of the model, the metric of fitness (e.g., data likelihood), and (optionally) a recipe for how latent
variables can be sampled given the data. The Module class has a generic structure consisting of three
functions. First, the generative function returns the parameters of the data generating distribution,
as a function of latent variables, model parameters, and observed covariates. In the case of a VAE
(e.g., scVI, total VI, etc.), the generative function takes samples of the latent variables as input and
returns the underlying data distribution encoded according to the generative (decoder) neural network
(Figure 2b). In the case of maximum a posteriori (MAP) inference (as in Stereoscope) or EM (as in
CellAssign), the generative function maps the model parameters to the data generating distribution
or returns the components of the expected joint log likelihood, respectively. Second, the inference
function caters to models that use VI and returns samples from the variational distribution of the
latent variables. For a VAE, this calculation is done through an encoder neural network (Figure 2b).
Finally, the 1loss function specifies the learning objective given the inference and generative
outputs. For example, the 1oss function can either return the data likelihood (e.g., for MAP), or a
lower bound thereof (e.g., for VI or EM).

scvi-tools also contains many other pre-coded building blocks that can be used in the development
of new Module subclasses for new probablistic models. These include popular neural network
architectures, as well as distribution classes that are commonly used for single-cell data, like the
mean-parameterized negative binomial. scvi-tools also provides an alternative “backend” with
Pyro, which has useful properties like automated 1oss computation and (in some cases) inference
procedures like automatic differentiation variational inference (ADVI [50]). We envision that Pyro
will be useful for hierarchical Bayesian models with a large collection of latent variables, such as
Cell2Location [51]. Pyro will also be appropriate in cases where a black-box inference procedure is
known to work well. However, for more complex cases with inference schemes that deviate from
standard Bayesian recipes (e.g., warmup [52], alternate variational bounds [53, 54], adversarial
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Supplementary Figure 4: Overview of the scvi-tools codebase and exposition of key black-box components.
a, Static view of the scvi-tools codebase shown at the abstraction level of discrete layers of components. Only
select components are shown for each layer and only a single model is presented (scVI). b, The training plan
configures several aspects relevant for model training, like the optimizers, and the actual training optimization
step in which data gets passed through a module. ¢, The AnnDataLoader is used to load minibatches of data
directly from an AnnData object into a module. d, Mixins are Python classes with pre-coded functionality
that can be inherited into many models, introducing isolated feature sets, like getting metrics relevant to VAEs

(VAEMixin).

inference [55]), we recommend using the PyTorch backend. We provide a more technical exposition
of these and other capabilities in the tutorials on the scvi-tools website.

AnnData registration and setup in scvi-tools

AnnData objects are the common data structure for single-cell omics data and are the backbone of
software like Scanpy [47]. They have also become increasingly easy to convert to and from popular
R-based formats like Seurat. Here we provide an overview of how scvi-tools handles AnnData as it

relates to the AnnDataloader class.

The AnnData object is flexible and allows users to store their data and metadata in locations that are
key-valued. Thus, as there is no standard for the names of keys in AnnData, we devised a function
in scvi-tools that registers the location of tensors of interest from AnnData such that only these
tensors would be loaded into PyTorch-based modules. We named this function setup_anndata. We
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designed setup_anndata to be model-specific, as each particular model may have different data
input requirements. For example, scVI can perform integration if a batch_key is supplied by the
user, but the Stereoscope scRNA-seq model does not perform batch correction and only needs the
UMI count data and cell type annotations (through a 1abels_key).

This example is depicted below:

import scanpy as sc
from scvi.model import SCVI
from scvi.external.stereoscope import RNAStereoscope

adata = sc.read("my_anndata.h5ad")
SCVI.setup_anndata(adata, batch_key="donor")
model = SCVI(adata)

model.train()

RNAStereoscope.setup_anndata(adata, labels_key="cell_types")
model = RNAStereoscope(adata)
model.train()

setup_anndata is mandatory to run on an AnnData instance prior to initializing any model. The
method itself is very lightweight (Supplementary Figure 5). For each model, setup_anndata
creates a Python dictionary and adds it back inside the AnnData instance. This dictionary contains
information about the shape of the instance (number cells, number genes) as well as registers
bookkeeping information, such as the name of each category present at the batch_key (if relevant).
This is important for validating AnnData objects and preventing unexpected inputs to the model
and, in turn, outputs to the user (e.g. if model trained on donors 1-4, but user passes donor 5 after
training).
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Supplementary Figure 5: Evaluation of memory and runtime of setup_anndata. a, Plot of runtime and
additional memory consumed by the AnnData object after running SCVI.setup_anndata. The method was
tested against a dataset of CITE-seq measurements from immune cells from murine spleen and lymph node [9].
Before calling SCVI.setup_anndata, the dataset was subsetted to 1000, 2000, 4000, 8000, and 16000 cells
to test the method’s performance at varying dataset sizes. The method was also profiled on the full dataset,
comprising of 30474 cells. The method was called with the subsetted AnnData object and the batch_key
argument, indicating that the model will incorporate prior batch information from the data. The reported runtimes
are wall clock time measured by the built-in Python time module on a single-core Intel(R) Xeon(R) CPU
@ 2.20GHz provided by Google Colaboratory Pro. The memory increments reported were measured as the
difference between the results of the Python sys.getsizeof method on the AnnData object before and after
calling setup_anndata. b, Plot of runtime and additionally memory consumed by the AnnData object after
running TOTALVI.setup_anndata with both the batch_key argument and the protein_expression_key
argument. The main difference in this method call involves the incorporation of the protein expression data
within the dataset. The other details of the dataset used and the measurements exactly match that of (a).
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Supplementary Note 5

Reimplementation of models with scvi-tools

Using the scvi-tools model development interface, we implemented three published methods external
to our collaboration: Solo for doublet detection [14], CellAssign for single-cell annotation based
on marker genes [13], and Stereoscope for deconvolution of spatial transcriptomics profiles [16].
Additionally, we refactored the codebase for scGen [56, 57], a method for predicting gene expression
perturbations on single cells, as well as the codebase for Cell2Location [58], a method for deconvolution
of spatial transcriptomics data, to rely on scvi-tools. For all five algorithms, we saw a sharp decrease
in number of lines of coded needed. Here we describe the reimplementation of Stereoscope.

Stereoscope Stereoscope is a probabilistic method for deconvolution of spatial transcriptomics
profiles, which may represent the average of dozens of cells in each spot [59] (Figure 2¢). It is
composed of two distinct latent variables models. The first model is trained with an annotated
scRNA-seq dataset and learns the gene expression profiles of every annotated cell type. The second
model, trained on the spatial data, assumes that the counts in every spot come from a linear combination
of the same cell types defined in the scRNA-seq data. The coefficients in this linear combination are
normalized and returned as the inferred cell-type proportions at every spot.

There are several reasons for including Stereoscope in scvi-tools. First, while it is a significant and
timely contribution for leveraging spatial transcriptomics, it is difficult to use in practice. Indeed, the
reference implementation only provides a command line interface to run the algorithm rather than an
API, thus complicating its integration in analysis pipelines. Second, Stereoscope is a linear model
that is fit with maximum a posteriori inference. It is therefore conceptually different from many of
the other models currently implemented in scvi-tools, most of which are deep generative models
trained with amortized variational inference. Consequently, this example illustrates the flexibility of
our developer interface. A third reason is the elegance and conciseness of this model, which made it a
good case study for demonstrating an implementation with our PyTorch backend.

Using the scvi-tools developer interface provided both a conceptual and practical simplification of the
reimplementation, focusing most of the effort on the formulation of the actual probabilistic model.
Specifically, our reimplementation consisted of two module classes and two model classes (one pair of
classes per latent variable model; Figure 2d). It was not necessary to write any code for data loading
or training, as these functionalities are inherited through the scvi-tools base classes. Consequently,
we observed a marked reduction both in the code complexity (average cyclomatic complexity [60])
and the number of lines of code (Methods) compared to the original codebase (Figure 2e). Our
reimplementation also leveraged existing components of scvi-tools. For example, Stereoscope can
now use early stopping during training as well as handle data in a sparse format without any additional
code due to the common scvi-tools training components. These features, which make the scvi-tools
implementation faster and more memory-efficient, are not currently implemented in the original
Stereoscope codebase.

To further illustrate the simplicity of implementing new models in scvi-tools, we elaborate on the
development of the ScSignaturelModule class (the module class for the scRNA-seq data latent
variable model). In the model, for every cell n, the observed data includes its cell type c,, its library
size [,, and for every gene g, the gene expression x,4. Let G be the number of observed genes and let
C be the number of annotated cell types. The parameters of the model, which we want to infer, specify
the distribution of each gene g in every cell type c. This distribution is assumed to be a negative
binomial, parameterized by A, and r,, where (rg\,q)/(1 — 74) is the expectation and where 7 is
a gene-specific parameter determining its mean-variance relationship. Parameter A,y = I, figc,, Of
the negative binomial depends on the type assigned to the cell (¢, ), its overall number of detected
molecules (I,,). Supplementary Figure 6a specifies the model more concisely.

The parameters of the data generative procedure are calculated in ScSignatureModule (Supplemen-
tary Figure 6b). While the code follows the model closely, care must be given to the constraints on the
parameters. For example, ;4 must be positive, so we use a softplus transformation. Similarly,  must
be in the range [0, 1], which we enforce with a sigmoid transformation. The loss function returns the
likelihood of the observed data, using a negative binomial distribution and evaluated at the model
parameters. In contrast to VAEs (Figure 2b), there is no need to provide an implementation of the
inference method because there are no latent variables. Our implementation therefore consists only of
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Supplementary Figure 6: Reimplementation of Stereoscope in scvi-tools. a, b, Description of implementation
of the ScSignatureModule, the module class for the single-cell model of the Stereoscope method. ¢, Example
of user (pseudo)code and interaction with Scanpy. d, Output example on the hippocampus spatial 10x Visium
dataset.

We applied the method to the 10x Visium spatial transcriptomics data of an adult mouse brain [61]
and a single-cell RNA sequencing dataset of the mouse hippocampus [62] (Methods). Applying
Stereoscope and visualizing the results with Scanpy takes less than 20 lines of code including the
import statements and the call to the Scanpy library (Supplementary Figure 6¢). In contrast to the
original software, which only accommodated a command line interface, our reimplementation can be
used from Jupyter notebooks and with AnnData objects. The result of our Stereoscope implementation
(Supplementary Figure 6d) performs nearly the same as the original implementation (Supplementary
Figure 7) in terms of the average Spearman correlation of cell-type proportion across all individual
cell types. This is expected as the module classes of the reimplementation are a reorganization of
their analogs in the original codebase.

CellAssign CellAssign is a model for automated annotation of scRNA-seq data based on overex-
pression of markers. The implementation provides annotations that are reproducible with the original
implementation with an increase in inference time due to minibatching (Methods). An overview of
the scvi-tools implementation of CellAssign can be found in the scvi-tools online user guide https:
//docs.scvi-tools.org/en/stable/user_guide/models/cellassign.html.
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Supplementary Figure 7: Reproducibility of Stereoscope implementation in scvi-tools. a, Scatter plot for
six cell types of the hippocampus dataset. Each point in the scatter plot represents one spot. The x axis is
the unnormalized proportion inferred by the original Stereoscope software and the y axis is the unnormalized
proportion inferred by our implementation. We report the Spearman coefficient for each cell type. The top three
cell types are the most reproducible and the bottom three cell types are the least reproducible. b, Box plot of
correlations of unnormalized proportions between the two implementations. Box plots were computed on n=17
cell types and indicate the median (center lines), interquartile range (hinges), and whiskers at 1.5x interquartile
range.
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Supplementary Figure 8: Evaluation of CellAssign implementation in scvi-tools. a, b, UMAP embedding
of follicular lymphoma single-cell expression data, labeled by maximum probability assignments from the (a)
original CellAssign implementation and (b) scvi-tools implementation. ¢, Row-normalized confusion matrix of
scvi-tools predicted labels (rows) and study-derived cell annotations (columns) for follicular lymphoma expression
data. d, e, UMAP embedding of HGSC single-cell expression data, labeled by maximum probability assignments
from the (d) original CellAssign implementation and (e) scvi-tools implementation. f, Row-normalized confusion
matrix of scvi-tools predicted labels (rows) and study-derived cell annotations (columns) for HGSC single-cell
expression data. g, Runtime on downsampled versions of 68k peripheral blood mononuclear cells dataset for the
original and scvi-tools implementations.
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Methods

Stereoscope For the single-cell data, we used the dataset from Saunders et al. [62], as pre-processed
by Cable et al [63]. We filtered genes out with a minimum count of 10. Then, we selected 2,000
highly variable genes using the corresponding scanpy function. For the spatial transcriptomics data,
we used the V1 Adult Mouse Brain dataset [61] and filtered spots so as to focus on the hippocampus
(as in Cable et al. Supplementary Figure 7). We then filtered genes in the spatial transcriptomics
data by taking the intersection with the highly variable genes in the single-cell data. We then ran the
single-cell model for 100 epochs and ran the spatial model for 5,000 epochs. We ran the original
Stereoscope code from the command line, on the same dataset and with the same parameters. We
used the Radon package for the calculations of average cyclomatic complexity [60] and source lines
of code.

CellAssign We downloaded two datasets with full metadata and cell-type marker matrices from
the original publication [13] (from https://zenodo.org/record/3372746) and compared the
scvi-tools implementation predictions to the original predictions for these datasets. The first dataset
consisted of 9,156 cells from lymph node biopses of two follicular lymphoma (FL) patients. The second
dataset consisted of 4,848 cells from a high-grade serous carcinoma (HGSC) patient. On both datasets,
the scvi-tools implementation predictions were highly reproducible with the original implementation
(Supplementary Figure 8a-f). UMAP embeddings used in Supplementary Figure 8 were the original
embeddings from the publication and were retrieved from the downloaded objects.

Next, we evaluated the runtime of the two implementations on a desktop with an Intel Core i9-10900K
3.7 GHz processor, 2x CorsairVengeance LPX 64GB ram, and an NVIDIA RTX 3090 GPU. To do
so, we used a dataset of 68k peripheral blood mononuclear cells from 10x Genomics [61], and used
the same cell-type marker matrix as the FL dataset (23 markers, 5 cell types). Across a range of
cells, we observed that the scvi-tools implementation is consistently faster and thus more scalable
(Supplementary Figure 8g). This is mostly due in part to the minibatching, which is a capability
present in the original codebase, but not set as default (also no guidance on how to set it). Thus, we
have shown that the scvi-tools implementation of CellAssign is both reproducible, and by default,
more scalable than the original implementation.
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Supplementary Tables

Modality | Model | Tasks
scVI [6] Dimensionality reduction, removal of unwanted variation, inte-
gration across replicates, donors, and technologies, differential
expression, imputation, normalization of other cell- and sample-
scRNA-seq -
level confounding factors
LDVAE [11] scVI tasks with linear decoder
scANVI [8] Automated annotation, all scVI tasks
AutoZI [64] Gene-wise model selection for zero-inflation
Solo [14] Doublet detection
CellAssign [13] Marker-based automated annotation
CITE-seq total VI [9] Dimensionality reduction, removal of unwanted variation, inte-
gration across replicates, donors, and technologies, differential
expression, protein imputation, imputation, normalization of
other cell- and sample-level confounding factors
scATAC-seq PeakVI [10] Dimensionality reduction, removal of unwanted variation, differ-

ential accessibility, imputation, normalization of other cell- and
sample-level confounding factors

Spatial Transcriptomics

gimVI [19]

Stereoscope [16]
DestVI [17]

Imputation of missing genes in spatial data using scRNA-seq
reference

Deconvolution of spatial transcriptomics profiles
Multi-resolution deconvolution of spatial transcriptomics profiles

Multiple

scArches [38]

MultiVI [12]

LDA [15]

Transfer learning for reference-query integration applied on top
of peakVI, scVI, scANVI, totalVI

Integration of paired/unpaired multiome data, missing modal-
ity imputation, normalization of other cell- and sample-level
confounding factors

Topic modeling, dimensionality reduction

Supplementary Table 1: Overview of models and functionality currently implemented in scvi-tools. A
web-based table is accessible at https://docs.scvi-tools.org/en/stable/user_guide/index.html
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Cell Sex Genes Cell Cycle Genes Marker Genes

IncRNA:roX1 PCNA Argk
IncRNA:roX2 dnk Nrt
Sxl1 RnrS Ten-a
msl-2 RnrLL Ten-m
Claspin wb
Mcm5 Act57B
Caf1-180 drl
RPA2 mid
HipHop nemy
stg Ims
Mcmb6 CG11835
dup Gyg
WRNexo ara
Mcm7 tok
dpa kirre
CG10336 NK7.1
Mcm3 fj
Mcm?2 beat-I1lc
RpA-70 CG33993
Chrac-14 dprl6
CG13690 CG15529
RPA3 CG9593
asf1 beat-IIb
DNApol-alpha73  robo2
CycE Ama
DNApol-alpha50  fz2
Kmnl1 elB
Lam noc
Nph nkd
msd5 fng
msd1 vg
ctp
Set
scra
Chrac-16
ncd
Ote
pzg
HDACI
nesd
tum
CGS8173
aurB
feo
pav
CG6767
sip2
Det
Cks30A
CycB
B52

Supplementary Table 2: Gene sets for multiple covariates Drosophila analysis.
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Jointlabel Reference label Query label
0 B intermediate, B naive, B mem- C7-B
ory
1 CD14 Mono C3-C  MONO_1, Cl16-C
MONO_2, C22-C MONO_3,
C11-C MONO_IFN
2 cDCl1 C24-CDCl1
3 cDC2 C5-CDC2
4 pDC C10-PDC
5 CD4 Naive, CD4 TCM, CD4 C0-CD4
TEM, CD4 Proliferating, Treg
6 CDS8 Naive, CD8 TCM, CD8 CD-CD8
TEM, CD8 Proliferating
7 NK, NK Proliferating, CD-NK
NK_CD56bright
8 Platelet C6-PLATE_1, C14-PLATE_2
9 Plasmablast C13-PB_1, C15-PB_2
10 HSPC C19-HSC
11 Eryth C17-RBC
N/A CD4 CTL, dnT, MAIT, gdT, ILC, C9-GRAN, CI18-T_IFN, C23-
ASDC T, C20-BASO, C21-CI21, Cl12-
EOS
Supplementary Table 3: Mapping of reference and query labels.
Data availability

A collection of processed data discussed in this manuscript have been deposited on figshare

(https://doi.org/10.6084/m9.figshare.14374574.v1).

Code availability

The code to reproduce the experiments of this manuscript is available at https://github.com/
YosefLab/scvi-tools-reproducibility. The scvi-tools package can be found on GitHub
at https://github.com/YosefLab/scvi-tools, and is also deposited on Zenodo https:
//doi.org/10.5281/zenodo.4341715. Documentation and tutorials can be found at https:
//scvi-tools.org.
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