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Current evidence suggests that severity and mortality of COVID-19 is higher in men than in women, whereas women 
might be at increased risk of COVID-19 reinfection and development of long COVID. Differences between sexes have 
been observed in other infectious diseases and in the response to vaccines. Sex-specific expression patterns of proteins 
mediating virus binding and entry, and divergent reactions of the immune and endocrine system, in particular the 
hypothalamic–pituitary–adrenal axis, in response to acute stress might explain the higher severity of COVID-19 in 
men. In this Personal View, we discuss how sex hormones, comorbidities, and the sex chromosome complement 
influence these mechanisms in the context of COVID-19. Due to its role in the severity and progression of SARS-CoV-2 
infections, we argue that sexual dimorphism has potential implications for disease treatment, public health measures, 
and follow-up of patients predisposed to the development of long COVID. We suggest that sex differences could be 
considered in future pandemic surveillance and treatment of patients with COVID-19 to help to achieve better disease 
stratification and improved outcomes.

Introduction 
Evolution has led to a substantial divergence in endocrine, 
metabolic, and immune functions between males and 
females that is reflected in sex-specific differences in 
disease susceptibility and outcomes.1,2 Factors responsible 
for sex-specific differences include sex hormones, gender-
dependent lifestyle, and environmental aspects, such as 
smoking, diet, and alcohol consumption. Additionally, the 
sex chromosome complement, which leads to sex-specific, 
age-specific, and tissue-specific variations in gene 
transcription, contributes to these differences.3

A striking example of sexual dimorphism is the 
currently observed difference in severity and survival 
between men and women infected with SARS-CoV-2.4 
Early reports of COVID-19 already suggested that men 
are at higher risk of developing severe disease, which is 
associated with increased case fatality compared with 
women.5,6 Sex-disaggregated data from several 
governments compiled by the Global Health 50/50 
research initiative confirmed an increased mortality in 
men despite similar numbers of COVID-19 cases in men 
and women.7 Biological sex is associated with life span 
differences in humans, with a substantially higher life 
expectancy in women. However, mechanisms responsible 
for shorter life expectancy in men have already been 
ruled out as major drivers of excess mortality in men 
with COVID-19.8

Patients with comorbidities such as diabetes, 
hypertension, and cancer are at higher risk of a severe 
course of SARS-CoV-2 infection, with men being 
significantly more likely to have these comorbidities than 
women.9 Even before the onset of clinical symptoms or 
diagnosis of diabetes and metabolic disease, there are 
striking intrinsic sex hormone-dependent distinctions in 
metabolic regulation, including insulin sensitivity. 
Genetic differences are associated with disparate 
regulation of glycaemic control, insulin sensitivity, lipid 

metabolism, and adipose tissue homoeostasis; these 
metabolic processes are primarily, but not exclusively, 
controlled by sex hormones.10,11 In an observational study 
of people with diabetes admitted to hospital for 
COVID-19, female sex was associated with a lower 
incidence of severe outcomes but similar mortality 
compared with men (NCT04324736). The authors of this 
study concluded that diabetes might reduce the 
protection that women have over men in terms of 
susceptibility to severe COVID-19.12 In another cohort 
study of people with diabetes, male sex, among other 
factors, such as living in residential care, was identified 
as a risk factor for developing fatal or critical care unit-
treated COVID-19.13 Cardiovascular disease is the leading 
cause of death among men and women, although 
epidemiological observations indicate that women have a 
lower risk of major adverse cardiovascular events than 
age-matched men and that the manifestation of 
cardiovascular disease in women is delayed, as 
cardiovascular risk increases in women predominantly 
after the menopause. Thus, oestrogens are generally 
assumed to have protective effects on the cardiovascular 
system.14

Sex-specific differences in the regulation of the 
hormonal stress response and inflammatory processes 
might also contribute to sexual dimorphism in 
COVID-19.15 This notion is supported by the fact that some 
diseases with an autoimmune background, such as 
Grave’s disease, systemic lupus erythematosus, and 
rheumatoid arthritis, show a clear predominance in 
women.16 Although the cellular and molecular basis for 
the sex-specific increased incidence of some diseases 
remains largely unknown, genetic mechanisms have been 
discussed in the literature. For example, expression of 
specific innate immune-associated genes (eg, TLR4, TLR7, 
TLR8) is X-chromosome-linked and the pattern of cytokine 
expression varies between sexes.17–20 Moreover, the gene 
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encoding angiotensin-converting enzyme 2 (ACE2), the 
host receptor that binds coronaviruses such as SARS-
CoV-221 is located at specific sites of the X chromosome 
that commonly escape the inactivation of one X 
chromosome in mammalian XX cells. This silencing 
mechanism avoids redundant gene expression in female 
cells by up to 90%; consequently, XX cells overexpress 
genes such as ACE2.22 Males are usually more affected by 
X-linked pathogenic variants, which might also contribute 
to the increased severity of COVID-19 in males.23

Moreover, susceptibility to virus infections differs 
between males and females. Thus, even in previous 
endemic infections, including SARS-CoV (2002) and 
MERS-CoV, men were more severely affected than 
women.4 In general, men with severe acute respiratory 
syndrome have a significantly higher mortality rate than 
women.24 Given the close link between the 
pathophysiological mechanism of COVID-19 and 
endocrine, metabolic, and immune regulation,25–27 we 
argue that various aspects of sexual dimorphism should 
be more thoroughly considered in disease surveillance 
and treatment of patients with COVID-19. In this 
Personal View, we present the current knowledge of 
sexual dimorphism in COVID-19 and speculate about its 
clinical and public health implications.

Sex differences in COVID-19 
Women are less affected by insulin resistance, have fewer 
cardiovascular risk factors, and have more favourable 
protein, microbiome, lipidome, and microRNA expression 
profiles than men.28–32 Given that insulin resistance and 
impaired glucose metabolism are key risk factors for 
developing severe COVID-19, females might have a more 
advantageous metabolism, thereby preventing disease 
progression (figure 1). 

Higher predisposition to inflammation in men 
Infections with a range of pathogens are associated with 
different immune responses and disease outcomes 
depending on sex.33 Men are more likely to have a less 
potent immune response and thus a higher susceptibility 
or vulnerability to infections.33 Obesity has previously 
been described as a predictor of severe COVID-19 course.34 
However, beyond BMI, the distribution of fat deposits also 
seems to be important; it has been shown that visceral fat, 
which accumulates more in men than women, is 
associated with more severe COVID-19.35,36 Furthermore, 
adipose tissue in males contains more macrophages and 
immune cells with higher and longer-raised cytokine 
concentrations than in females.37–39 This might become the 
source of more rapid and intense systemic inflammation 
in men contributing to the detrimental rise of cytokines 
(cytokine storm) observed in critical SARS-CoV-2 
infections. It is conceivable that this rapid cytokine 
response, mediated by adipose tissue among other factors, 
could even be beneficial initially by providing an 
immediate immune response. In patients with moderate 

COVID-19 on no immunomodulatory medications, men 
had higher plasma concentrations of innate immune 
cytokines (eg, IL-8, IL-18) together with a more robust 
induction of non-classical monocytes.40 However, women 
showed stronger activation of T cells than men during 
SARS-CoV-2 infections.40 Furthermore, age-dependent 
effects on the immune system contribute to vulnerability 
and a more severe course of COVID-19.41 Interestingly, 
immunosenescence also shows sex-specific effects. 
Prominent examples in this context are the observation 
that the number of naive T cells generally decreases with 
age in both men and women, with a more pronounced 
drop in men, while a profound decline of B cells is 
observed only in men.42 In females, high oestradiol and 
progesterone concentrations suppress pro-inflammatory 
cytokine production by macrophages and stimulate anti-
inflammatory cytokines in CD4+ T helper cells.43,44 
Moreover, oestradiol stimulates antibody production by 
B cells.45 The stronger immune response mediated by 
oestradiol and progesterone in females might contribute 
to less severe COVID-19 infections and lower mortality 
rates in women compared with men (figure 1).

Sex-dependent DPP4 activity and COVID-19 
In addition to ACE2, SARS-CoV-2 uses dipeptidyl 
peptidase-4 (DPP4) as a co-receptor when entering cells.46 
DPP4 is involved in the regulation of the immune 
response and autoimmune processes and has been 
identified as a druggable target.47 Therefore, continued 
administration of DPP4 inhibitors, commonly used in 
people with diabetes, has been discussed in patients 
infected with SARS-CoV-2.48,49 Although a retrospective 
analysis showed that DPP4 inhibitors can improve 
mortality in patients with COVID-19 and type 2 diabetes,50 
an open-label, prospective, multicenter, randomised 
clinical trial in three Israeli hospitals found no differences 
in the time to clinical improvement between hospitalised 
patients with diabetes and COVID-19 who received 
linagliptin and a control group receiving standard of care.51

Interestingly, in mice, notable changes in DPP4 activity 
occur during the oestrous cycle, with a low activity at 
oestrus and a high activity at dioestrus.52 Exposure to 
oestrogens diminishes DPP4 activity in ovariectomised 
mice52 and application of phytoestrogens leads to 
inhibition of DPP4 activity.53 Conversely, DPP4 inhibitors 
decrease free androgens in patients with polycystic ovary 
syndrome54 and might have the potential to reduce the 
risk of autoimmune disease and inflammation.55 Recent 
evidence suggests that DPP4 inhibitors alter specific 
aspects of the innate immune response.56 DPP4 inhibition 
could potentially also modulate the higher plasma 
concentrations of innate immune cytokines in males that 
have also been described in the context of COVID-19.57 
Sex hormone-dependent regulation of DPP4 activity 
could be another important factor in determining 
different outcomes in COVID-19 severity and mortality 
between men and women.
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TMPRSS2 mediates sex differences in COVID-19 severity 
Once SARS-CoV-2 binds to host ACE2, the trans membrane 
protease serine subtype 2 (TMPRSS2) mediates cleavage 
of SARS-CoV-2 spike proteins, allowing fusion with the 
cell membrane.58,59 Age-dependent regulation of TMPRSS2 
in lung epithelium, characterised by increased expression 
with age, might explain the relative protection of infants 
and children from severe respiratory illness.60 Single-cell 
RNA sequencing of lung tissue from 13 healthy men and 
13 healthy women revealed no sex-related differences in 
expression of ACE2, but TMPRSS2 expression was signifi-
cantly increased in men.61 Moreover, ACE2+ TMPRSS2+ 
double-positive cells were more than threefold higher in 
men than in women.61 The tissue-specific higher expres-
sion of TMPRSS2 in men might be because TMPRSS2, 
like ACE2,62 is a known target of the androgen receptor.61,63 
In line with this hypothesis, the anti-androgen 
enzalutamide lowers TMPRSS2 expression in human 
lung cells and mouse lungs; moreover, it significantly 
reduces SARS-CoV-2 entry and infection in lung cells.64 
Unfortunately, treatment with the TMPRSS2 inhibitor 
camostat mesilate did not shorten the time to clinical 
recovery and failed to reduce mortality in hospitalised 
patients with COVID-19 in a double-blind, randomised, 
placebo-controlled multi centre trial (NCT04321096).65 This 
study highlights that addressing virus uptake alone might 
not be sufficient to improve the outcome of patients with 
COVID-19. Therefore, combination therapies that address 
viral uptake and the pro-inflammatory state, particularly in 
men, should be considered.

Sexual dimorphism in adrenal stress response and 
COVID-19 
The hypothalamic–pituitary–adrenal (HPA) axis, respon-
sible for integrating and managing internal and external 
stress stimuli of the organism, demonstrates a clear sex-
biased activity, with striking sex differences in the neuro-
endocrine response particularly to acute stress.66 Females 
generally present with increased glucocorticoid secretion 
in response to various acute stressors.67 Adult sex differ—
ences in the neuroendocrine response to acute stress are 
partly the result of interactions between the HPA axis and 
the endocrine system, which controls reproduction. There-
fore, by increasing the production of dihydro testosterone 
or oestradiol, the hypothalamic–pituitary–gonadal axis 
modulates the function of the HPA axis in adults in a 
sex-dependent manner. Oestradiol treatment enhances the 
activity of the HPA axis, but endogenous oestrogens have 
also been reported to have inhibitory effects.66 The 
importance of the HPA axis, and particularly of the adrenal 
glands, in the context of COVID-19 is supported by our 
recent findings demonstrating that the adrenal glands are 
a potential target for SARS-CoV-2 infection; the resulting 
cellular damage could potentially predispose patients with 
COVID-19 to adrenal dysfunction.68

Evolution has resulted in profound differences 
between sexes that extend to non-reproductive organs. 

As an example, adrenal gland tissue renewal is highly 
active and sexually dimorphic, with female mice 
demonstrating a threefold higher turnover than males.1 
Interestingly, females employ an additional stem-cell 
compartment throughout life, located in the adrenal 
capsule. In males, these stem cells become inactive by 
adulthood. Sex-specific stem-cell activity in adrenal 
development is driven by androgens that repress 

Figure 1: Systemic and molecular basis for sexual dimorphism in COVID-19
SARS-CoV-2 uses its spike glycoprotein (S) to attach to the host cell, triggering fusion between virus and lipid 
membrane (exocytosis). ACE2, TMPRSS2, and DPP4 are critical mediators of this process and show tissue-specific 
and sex-specific expression patterns. Higher expression of TMPRSS2 and DDP4 in men is associated with increased 
viral binding and entry, leading to higher viral load compared with women. Oestrogens and androgens regulate 
the subsequent immune response. Women exhibit a stronger immune response, which is characterised by, among 
other factors, the release of anti-inflammatory cytokines (eg, IL-6, IL-1β, TNFα). In men, on the other hand, 
pro-inflammatory cytokines (eg, IL-4, IL-10) dominate. Sex-related differences in the response to stress further 
contribute to the predisposition of men to a pro-inflammatory state. An overall increased basal activity of the 
hypothalamic–pituitary–adrenal axis in women, mediated by oestrogens, results in increased cortisol 
concentrations compared with men. Decreased concentrations of anti-inflammatory cortisol further contribute to 
the pro-inflammatory status in men, possibly causing more severe COVID-19 courses in men compared with 
women. Other factors, such as age, smoking, alcohol consumption, and presence of comorbidities further 
contribute to the increased risk of severe disease and higher case fatality rates in men. Plus symbols mark an 
activation and minus symbols mark an inhibition. ACE2=angiotensin-converting enzyme 2. 
ACTH=adrenocorticotropic hormone. ADH=antidiuretic hormone. CRH=corticotropin-releasing hormone. 
DPP4=dipeptidyl peptidase-4. TMPRSS2=transmembrane protease serine subtype 2. 
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recruitment of stem cells from the capsule and cell 
proliferation.1

A more robust and enhanced release of stress hormones 
by the adrenal glands, including glucocorticoids, in 
response to acute stressors might contribute to greater 
protection against severe COVID-19 and mortality in 
women (figure 1). In this context, it is not surprising that 
potent glucocorticoids such as dexamethasone have been 
shown to be the most effective therapy currently available 
to limit the progression of severe COVID-19 and inflam-
mation.69,70 In a controlled, open-label trial of 
6425 hospitalised patients with COVID-19, treatment with 
dexamethasone resulted in lower 28-day mortality in those 
receiving either invasive mechanical ventilation or oxygen 
only at randomisation.69 A small prospective, triple-blind, 
randomised controlled trial (84 patients) demonstrated 
superiority of methylprednisolone compared with 
dexamethasone in terms of clinical status and length of 
hospitalisation in patients with COVID-19.71

Besides glucocorticoid concentrations, differential 
action of cortisol between sexes might contribute to a 
more favourable response of women to severe COVID-19 
(figure 1). Recently, it has been shown that cytokine 
secretion and responsiveness of lymphomonocytes 
following cortisol exposure occurs in a sex-dependent 
manner.72 Thus, following cortisol exposure, the concen-
trations of the pro-inflammatory cytokines IL-6 and IL-8 
were increased in cells derived from males, whereas 
in female cells, IL-6 release was unchanged and 
IL-8 concentrations decreased. Furthermore, anti-inflam-
matory cytokines such as IL-4 and IL-10 did not change in 
male cells but increased in female cells. Therefore, these 
results suggest that cortisol can differentially affect 
lymphomonocytes in males and females, changing the 
cytokine release from a pro-inflammatory pattern in male 
cells to a more anti-inflammatory secretion profile in 
females.72 Sex differences in cytokine storm, as well as in 
concentrations and effects of endogenous glucocorticoids, 
might provide a rational pathophysiological basis for 
explaining the potential advantage of women in managing 
severe COVID-19.

Clinical and public health implications of sex-
based differences in COVID-19 
Since men have a higher risk of developing severe 
COVID-19, the question arises whether older men 
(≥50 years) with severe comorbidities might require 
special consideration concerning prevention, screening, 
surveil lance, and vaccination strategies. Conversely, 
women appear to be at increased risk of some 
vaccine-related adverse effects, vaccine breakthroughs, 
and long COVID (discussed in detail later). Therefore, a 
sex-specific approach could be desirable in making 
optimal recom men dations of prevention and treatment 
strategies in the context of the COVID-19 pandemic. 
However, we are only just beginning to define sex-specific 
preventive and therapeutic approaches for COVID-19. 

Considering that we are still far away from sex-specific 
treatment in other areas of clinical practice, it becomes 
obvious that there is still a long way to go until we reach 
the goal of a sex-specific or even individualised treatment 
of our patients.

Oestrogens versus androgens: novel therapeutic 
approaches in COVID-19 
Regarding the development of novel therapeutic 
approaches in COVID-19, it has been hypothesised that 
increased oestrogen or progesterone signalling or 
decreased androgen signalling can be beneficial for 
improving COVID-19 outcomes in men. Therefore, 
pharmacological intervention modulating the biological 
effects of oestrogens and androgens appears to be a 
plausible approach. Since many drugs targeting these 
hormonal pathways are approved and have been in 
clinical use for years and even decades, there are a 
number of registered clinical trials (eg, NCT04728802, 
NCT04865029, NCT05172050) addressing this question, 
some of which have been completed and are awaiting 
publication. In a small randomised controlled pilot 
study of 42 men hospitalised with moderate-to-severe 
COVID-19, subcutaneous administration of progesterone 
in addition to standard treatment was associated with 
shorter hospitalisation and reduced requirement for 
oxygen supplementation compared with standard 
treatment alone.73 The authors of a community-based 
study from the Veneto region of northern Italy with 
4532 patients concluded that androgen deprivation 
therapy—used for the treatment of prostate cancer—
might reduce the risk of infection with SARS-CoV-2.74 
Data from a small prospective cohort of 77 hospitalised 
men suggested that anti-androgenic treatment might 
have beneficial effects for the clinical outcome in patients 
with severe COVID-19.75

A retrospective cohort study of 5451 women with 
COVID-19 found that women who received hormone 
replacement therapy (HRT) had a lower mortality rate 
than those who did not receive HRT.76 This was 
somewhat expected, as HRT is associated with 
therapeutic benefits, including reduced incidence of 
cardiovascular disease.77 In addition, postmenopausal 
women present with increased concentrations of pro-
inflammatory cytokines (IL-6, IL-1) and the use of 
oestrogen-associated HRT has shown potential to 
decrease the cytokine concentrations to the 
premenopausal levels.78 In men with COVID-19, low 
circulating testosterone concentrations during hospitali-
sation were associated with increased disease severity, 
inflam ma tion, and mortality in two observational 
studies.79,80 Testosterone administration might also be 
beneficial in men hospitalised with COVID-19, because 
testosterone has been reported to effectively reduce 
inflammation by increasing anti-inflammatory cytokines 
(IL-10) and decreasing pro-inflammatory cytokines 
(IL-1β, IL-6, and TNFα).81
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Dehydroepiandrosterone (DHEA) and its sulfate 
(DHEAS) are precursors for sex hormones that decrease 
with age and are higher in males. DHEA is a powerful 
inhibitor of glucose-6-phosphate dehydrogenase 
(G6PD), which has relevance in the context of the 
COVID-19 pandemic since the reduction of normal 
G6PD activity has been shown to sensitise human cells 
to coronavirus 229E infections.82 Elevated DHEA 
concentrations exhibit toxic effects on endothelial cells, 
which might enhance SARS-CoV-2-induced vascular 
endothelialitis.83 These effects are of particular relevance 
for people with diabetes, as they already have reduced 
G6PD activity in blood.84 DHEA is an over-the-counter 
drug in the USA and is commonly used by men to 
compensate for age-related decline in circulating 
androgens. In view of the ongoing COVID-19 pandemic, 
such unrestricted distribution of DHEA might 
contribute to a more severe course of the disease in 
individual men, although there are no data currently 
available to support this theory. Placebo-controlled 
studies are required to investigate the use of DHEA in 
elderly men in the context of COVID-19.85

Due to sustained high concentrations of oestrogens 
during gestation, maternal outcomes in pregnant women 
with COVID-19 were analysed in a systematic review and 
meta-analysis based on data from 24 articles including 
1100 pregnancies.86 The authors concluded that pregnancy 
itself does not substantially affect maternal and neonatal 
outcomes; however, patient numbers were low, especially 
considering that pregnant women are usually of younger 
age without specific comorbidities. Conversely, a large US 
cohort study of women of reproductive age (15–44 years; 
91 412 women) revealed that pregnancy (8207 women) was 
associated with increased risk of hospitalisation, intensive 
care unit admission, and requirement for mechanical 
ventilation, but no difference in mortality was found.87 In 
another cohort study from the UK (427 pregnant women), 
comorbidities such as hypertension, asthma, and diabetes 
were identified as major risk factors for hospitalisation of 
pregnant women.88 Although physiological changes 
during pregnancy, including hormonal status, have 
implications for immune response, cardiovascular 
function, and the respiratory system, current knowledge 
regarding the course and risks of COVID-19 in pregnancy 
is still limited.89

Overall, these data suggest that hormone status should 
be given greater consideration in COVID-19 disease 
stratification and might offer potential therapeutic 
approaches for selected patients with COVID-19, but no 
defined recommendations can be made at this stage. For 
this purpose, it should first be clarified whether 
treatment with sex hormones is helpful during acute 
COVID-19 infection, or whether preventive use is 
beneficial only for certain populations with increased 
risk. Potential side effects of sex hormones, such as the 
occurrence of thrombosis, should also be taken into 
account.

Sex-dependent effects of COVID-19 vaccines and 
reinfections 
Data from the past 2 years suggest that sex differences 
might also have implications for responses to 
SARS-CoV-2 vaccination (figure 2) and reinfection. 
Smaller studies propose that COVID-19 reinfections 
might be associated with increased severity compared 
with initial infection in both sexes; moreover, there is 
evidence that women are more commonly affected by 
COVID-19 reinfections than men.90,91 The higher rate of 
reinfection in women is unexpected, since women show 
a stronger immune response. The reasons for this 
apparent paradox are unclear but might be related to 
increased antibody responses found in male convalescent 
plasma donors.57,92 Described differences in social 
behaviour during the COVID-19 pandemic would also 
suggest increased susceptibility to reinfection in men 
compared with women. Panel evidence suggests that 
women are more likely to perceive COVID-19 as a very 
serious health issue and therefore more likely to agree 
with and comply with restrictive policies.93 A study using 
mobile phone data from 1·2 million devices in Austria 
found gender differences in social behaviour during 
different phases of the COVID-19 pandemic; for example, 

Figure 2: Sexual dimorphism in severity and mortality of COVID-19
Men experience more severe disease courses and more deaths connected to 
COVID-19, but women appear to be at increased risk of long COVID. Therefore, 
we argue that sex should be taken in consideration regarding COVID-19 
treatment, follow-up, and establishment of public health measures.
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and prioritisation of, eg, vaccines, to improve patient outcomes 

Sex-specific medicine
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women avoided larger shopping malls during lockdown, 
and after lockdown, men returned to their normal social 
behaviour faster than women.94

An asymptomatic or mild course of a first COVID-19 
infection seems to increase the likelihood of reinfection 
compared with patients with symptomatic disease, which 
could be explained by a weaker immune response after a 
first infection with a mild course.95,96 However, the 
COVID-19 reinfection rate associated with the beta and 
delta SARS-CoV-2 variants is low. Population-based data 
now indicate that the new omicron variant, first described 
in South Africa in November, 2021, is associated with a 
substantial ability to bypass immunity to previous 
infection,97 potentially resulting in an increase in the 
number of reinfections.98 COVID-19 vaccines are an 
effective tool to reduce the risk of reinfection.99

Women exhibit a more robust immune response to 
vaccines, associated with higher and longer-lasting 
protective antibody responses,33 but report more frequently 
adverse side effects, including fever, pain, and inflam-
mation, compared with vaccinated men.100 This could be 
because women are more likely than men to report adverse 
side effects.100 As discussed earlier, oestrogens and 
androgens differentially modulate immune responses 
(figure 1), including responses to vaccines; however, other 
factors, such as epigenetic and genetic differences and an 
additional X chromosome, are likely to play a role.

Another point of discussion is the general safety of 
currently available COVID-19 vaccines and, specifically, 
how extremely rare cases of unusual thrombocytopenia 
should be handled. These events, first reported after 
immunisation with ChAdOx1 nCoV-19 (AstraZeneca), 
have also been observed after administration of Ad26.
COV2.S (Johnson & Johnson/Janssen)101 and appear to 
occur preferentially in women below the age of 
50 years.102 The pathophysiology of these venous 
thromboembolic events affecting the cerebral sinus and 
splanchnic and pulmonary veins, and the reason why 
predominantly women are affected, remains largely 
unclear. This form of thrombocytopenia is mediated by 
platelet-activating autoantibodies against platelet factor 4 
(PF4) and carries some resemblance to autoimmune 
heparin-induced thrombocytopenia.102,103 While the 
European Medicines Agency continues to classify 
ChAdOx1 nCoV-19 (AstraZeneca) as safe and effective 
and recommends its use without restriction, several 
national and regional authorities in Europe, as well as in 
Australia and the UK, have restricted the use of this 
vaccine. In most countries, its use is recommended for 
people older than 60 years. Recent case reports describe 
rare cases of myocarditis (24 cases per million) after a 
second dose of mRNA-based COVID-19 vaccine, 
occurring predominantly in young men (18–29 years).104,105 
Moreover, rare cases of Guillain-Barré syndrome have 
been described after vaccination with Ad26.COV2.S 
(Johnson & Johnson/Janssen), particularly in men aged 
50–64 years.105 Despite these extremely rare potential 

adverse events, benefits of these vaccines clearly out-
weigh their risks.

Although all approved vaccines are highly effective, 
even fully vaccinated individuals can develop symptomatic 
or asymptomatic infection with SARS-CoV-2. Break-
through infections in two women were reported in a fully 
vaccinated cohort (417 individuals), which received the 
second dose of BNT162b2 (Pfizer–BioNTech) or 
mRNA-1273 (Moderna) vaccine at least 2 weeks earlier.106 
In the USA, 10 262 SARS-CoV-2 vaccine breakthrough 
infections had been reported as of April 13, 2021, of which 
6446 (63%) occurred in women.107 These preliminary data 
indicate that females appear to be more at risk of vaccine 
breakthrough infections than males. With the emergence 
of the new omicron variant, which might bypass 
immunity, an adjustment of existing vaccines might be 
necessary to prevent increasing numbers of breakthrough 
infections.98 The outlined differences between sexes with 
respect to susceptibility to reinfection and response to 
SARS-CoV-2 vaccines are rooted most likely in their 
specific immune responses; hence, we suggest that future 
recommendations for the allocation and prioritisation of 
certain vaccines should take biological sex into consider-
ation. 

Sex-related predisposition to long COVID 
Another phenomenon with potential sex-related 
predisposition is long COVID (also named post-COVID 
syndrome), which is defined as a complex of non-specific 
persisting symptoms, such as chronic fatigue, muscle 
weakness, sleep difficulties, anxiety, and depression, that 
are observed in individuals after acute COVID-19 and are 
not explained by other diagnoses.108 Post-virus syndromes, 
including chronic fatigue syndrome, are not uncommon 
after a variety of viral infections with extended course—eg, 
caused by cytomegalovirus or Epstein-Barr virus.109,110 An 
increasing number of long COVID cases have been 
reported during the past months, and a female 
predominance is emerging, similar to chronic fatigue 
syndrome.111.112 In a cohort study of 5838 individuals in 
Switzerland, women reported more frequently at least one 
persistent symptom, with reduced resilience being the 
most common symptom in both men and women.113 In 
women, cardiovascular risk factors, pre-existing mental 
illness, and self-reported domestic stress increased the risk 
of long COVID.113 Besides female sex, number of 
symptoms in the first week, BMI, and increasing age were 
found to be predictors for long COVID.114 For long COVID 
in particular, as well as for any other symptoms reported to 
the physician, it is important to consider that there might 
also be sex-related differences in how symptoms are 
perceived and reported, which might affect outcomes of 
studies. For example, women with West Nile virus 
infection reported significantly more symptoms compared 
with men despite a similar viral load in men and women.115

Increasing evidence suggests that autoantibodies, 
whose concentrations exhibit also sex-specific 
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differences,116,117 play a crucial role in the extended multi-
organ illness in patients with long COVID.118,119 Pre-existing 
asthma, which is more prevalent in women than in men, 
has been reported to further increase the risk of developing 
long COVID.114,120 Further characterisation of predictors for 
long COVID, such as sex and comorbidities, might help to 
identify patients at high risk of developing long COVID 
and allow early intervention to address their individual 
needs and improve outcomes.

Conclusion 
Taken together, there is evidence that sexual dimorphism 
in COVID-19 has potential implications that should be 
considered in treatment of COVID-19 and follow-up of 
patients predisposed to the development of long COVID, 
as well as for vaccine prioritisation. While COVID-19 
infections are more frequently associated with a severe 
course and higher mortality in men, women appear to be 
predisposed to long COVID (figure 2). Although general 
molecular mechanisms do not differ between males and 
females, differences in the expression patterns of several 
cell surface proteins responsible for virus binding and 
entry, as well as sex-specific differences in the stress and 
immune response, likely contribute to the observed 
sexual dimorphism in COVID-19. Reanalysis of our own 
data121 regarding sexual dimorphism suggests that male 
patients have a higher expression of ACE2 and 
inflammatory markers in the coronary tree than female 
patients with similar cardiovascular diseases. This might 
further underline a specific predisposition of men to 
having a higher susceptibility to severe and fatal 
COVID-19. Lifestyle and behavioural factors, differences 
in the presence of comorbidities, and sex-specific risk 
factors also contribute to sexual dimorphism in 
COVID-19 and should always be considered. Although 
there are no known clear mechanisms yet to explain 

sexual dimorphism in COVID-19, as reviewed here, there 
are many possible leads, some of which are worthy of 
further exploration. Therefore, larger prospective and 
mechanistic studies are required to provide scientifically 
robust evidence to draw improved conclusions that 
would allow for clear recommendations for the 
prevention and management of patients with COVID-19 
based on sex differences. 
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