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Abstract 
 
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic 
agent of COVID-19, enters human cells using the angiotensin-converting enzyme 2 (ACE2) 
protein as a receptor. ACE2 is thus key to the infection and treatment of the coronavirus. ACE2 
is highly expressed in the heart, respiratory and gastrointestinal tracts, playing important 
regulatory roles in the cardiovascular and other biologic systems. However, the genetic basis of 
the ACE2 protein levels is not well understood. 
Methods: We conduct so far the largest genome-wide association meta-analysis of plasma 
ACE2 levels in over 28,000 individuals of the SCALLOP Consortium. We summarize the cross-
sectional epidemiologic correlates of circulating ACE2. Using the summary-statistics-based 
high-definition likelihood method, we estimate relevant genetic correlations with 
cardiometabolic phenotypes, COVID-19, and other human complex traits and diseases. We 
perform causal inference of soluble ACE2 on vascular disease outcomes and COVID-19 disease 
severity using Mendelian randomization. We also perform in silico functional analysis by 
integrating with other types of omics data. 
Results: We identified ten loci, including eight novel, capturing 30% of the protein’s heritability.  
We detected that plasma ACE2 was genetically correlated with vascular diseases, severe 
COVID-19, and a wide range of human complex diseases and medications. An X-chromosome 
cis-pQTL-based Mendelian randomization analysis suggested a causal effect of elevated ACE2 
levels on COVID-19 severity (odds ratio (OR), 1.63; 95% CI, 1.10 to 2.42; P = 0.01), 
hospitalization (OR, 1.52; 95% CI, 1.05 to 2.21; P = 0.03), and infection (OR, 1.60; 95% CI, 
1.08 to 2.37; P = 0.02). Tissue- and cell-type-specific transcriptomic and epigenomic analysis 
revealed that the ACE2 regulatory variants were enriched for DNA methylation sites in blood 
immune cells. 
Conclusions: Human plasma ACE2 shares a genetic basis with cardiovascular disease, COVID-
19, and other related diseases. The genetic architecture of the ACE2 protein is mapped, 
providing a useful resource for further biological and clinical studies on this coronavirus 
receptor. 
 
Key Words: ACE2, COVID-19, SARS-CoV-2, Cardiovascular disease, Complex disease 
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Non-standard Abbreviations and Acronyms 
 

 

 

ARB Angiotensin receptor blockers 
BMI Body mass index 
COVID-19 Coronavirus disease 2019 
CRP C-reactive protein 
CTSL1 Cathepsin L1 
CVD Cardiovascular disease 
eQTL Expression quantitative trait loci 
GI Gastrointestinal 
GWAS Genome-wide association study 
GWAMA Genome-wide association meta-analysis 
HWE Hardy-Weinberg equilibrium 
LD Linkage disequilibrium 
MAF Minor allele frequency 
MR Mendelian randomization 
PCR Polymerase chain reaction 
PEA Proximity Extension Assay 
pQTL Protein quantitative trait loci 
RAS Renin-angiotensin system 
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 
SBP Systolic blood pressure 
SNP Single nucleotide polymorphism 
TF Transcription factor 
TG Triglycerides 
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Clinical Perspective 

 

What is new? 

• The overall heritability of ACE2 level is 16%, of which 30% can be explained by ten 

protein quantitative trait loci (pQTL) identified in this study. 

• ACE2 level is genetically correlated with both COVID-19 and cardiovascular disease. 

• Elevated ACE2 levels show a causal relationship with COVID-19 severity, 

hospitalization, and infection, as shown by a cis-pQTL-based Mendelian randomization 

analysis. 

• ACE2 regulatory variants are enriched on DNA methylation sites in blood immune cells. 

 

What are the clinical implications? 

• The causal evidence for ACE2 suggests that pharmacological inhibition of circulating 

ACE2 may be a promising approach for treating COVID-19 or its comorbidities. 

• Transcription factors such as HNF1A and HNF4A play essential roles in ACE2 

regulation and could provide alternative paths to pharmacological modulation of ACE2 

plasma levels. 

• The genetic correlations between ACE2 levels and both COVID-19 and cardiovascular 

disease risk imply that the cardiovascular complications seen in COVID-19 patients may 

be intrinsic to the disease and mechanistically driven by ACE2. 
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Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-

19, enters human cells using the ACE2 protein as a receptor1–5. ACE2 is highly expressed in the 

heart, respiratory, and gastrointestinal (GI) tracts, and it plays important regulatory roles in the 

cardiovascular and other biologic systems6. ACE2 proteolytically degrades angiotensin II (a 

potent vasoconstrictive, pro-inflammatory, and pro-thrombotic mediator) into angiotensin (1-7) 

thereby regulating blood pressure, salt and water balance, glucose homeostasis, and amino acid 

absorption in the kidney and small intestine. 

Shedding of a soluble form of ACE2 from the cell surface is regulated by membrane-

bound enzymes such as TMPRSS2 and ADAM177,8. Enzymatic cleavage of the ACE2 

extracellular domain by TMPRSS2 following binding of the spike protein of SARS-CoV-2 to 

ACE2 also plays a role in SARS-CoV-2 cell entry and infection. To date, several large, 

observational cohort studies including either patients with heart failure or atrial fibrillation or 

healthy children and adults have demonstrated that circulating ACE2 antigen levels9–12 are higher 

in men than women, increase with age, and correlate with cardiovascular outcomes and 

cardiometabolic and inflammatory biomarkers, but not with the use of ACE inhibitors or 

angiotensin receptor blockers (ARB)13,14. Therefore, further understanding the epidemiologic 

relationships and genetic regulation of the soluble ACE2 protein could have important 

implications for risk of SARS-CoV-2 infection or disease severity, cardiovascular disease risk in 

general, and also motivate further assessment of the causal role of ACE2 in these diseases. 

A recent genome-wide analysis of soluble ACE2 measured in plasma of 3,442 heart failure 

patients identified three genome-wide significant protein quantitative trait loci (pQTL): a cis-

pQTL on chromosome X (located near the cognate ACE2 gene) and two trans-loci on 
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chromosomes 12 and 21 encompassing the genes encoding transcription factors HNF1A, and 

ERG, respectively15. Current antibody-based ACE2 pQTL studies have been insufficient to 

capture enough heritability of the protein or estimate downstream genetic connections between 

ACE2 and diseases such as Cardiovascular disease (CVD) and COVID-19. 

Here, by performing so far the largest genome-wide association meta-analysis 

(GWAMA) of plasma ACE2 (N = 28,204), we summarize the cross-sectional epidemiologic 

correlates of circulating ACE2, report ten pQTL including eight novel for ACE2, estimate 

relevant genetic correlations with other cardiometabolic phenotypes, conduct causal inference of 

soluble ACE2 on vascular disease outcomes and COVID-19 disease severity using Mendelian 

randomization (MR). 

 

Methods 

Transparency and Openness Promotion The summary statistics data of the plasma ACE2 GWAS 

meta-analysis are publicly available at: https://doi.org/10.6084/m9.figshare.19189307. Other 

summary-level data used in this study are also available as stated in Data availability in 

Supplemental Material. The individual-level human phenotypic and genetic data and biological 

samples used in this study will not be made available to other researchers for the purposes of 

reproducing the results or replicating the procedure. 

Data collection Across the participating cohorts, plasma ACE2 abundance was measured 

using the Proximity Extension Assay (PEA) technology of Olink©Proteomics on the Multiplex 

CVDII targeted 96-protein panel. PEA has high readout specificity and sensitivity (see also 

Supplemental Material) and consumes a minimal amount of sample. In PEA, matched pairs of 

oligonucleotide-labeled antibodies bind to the target ACE2 antigen, and upon antibody binding, 
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the matched oligonucleotides are brought into proximity16. A polymerase chain reaction (PCR) 

target sequence corresponding to the ACE2 protein is then created, amplified, and quantified by 

quantitative PCR. 

Genome-wide association summary statistics of plasma ACE2 protein were obtained 

from 14 cohorts of European ancestry. The cohorts’ details are given in Table S1 and 

Supplemental Methods. The institutional review committees for each cohort approved the study 

methodology, and all study participants provided informed consent for their clinical and genetic 

data to be used for research. The maximum sample size per SNP is 28,204 individuals. Each 

cohort provided data imputed to 1000 Genomes Project phase 3 reference or to the Haplotype 

Reference Consortium (HRC) reference, which resulted in 17,166,011 autosomal SNPs and 

3,922,856 X chromosome SNPs. We tested 8,682,405 and 730,046 genetic variants on the 

autosomes and X chromosome, respectively, with a minor allele frequency (MAF) > 0.01. Each 

cohort applied quality control measures for call rate filters, sex mismatch, population outliers, 

heterozygosity, and cryptic relatedness as documented in the Supplemental Methods. Before 

running the genetic analyses, protein values (on the log2 scale) were inverse-Gaussian 

transformed to zero mean and unit variance. No detection threshold was applied to the raw Olink 

measurement values. 

The summary association statistics for severe COVID-19 and other complex traits and 

diseases were obtained from publicly available established resources (see Data Availability in 

Supplemental Material). The ACE protein serum concentration GWAS in 4,147 individuals from 

the Outcome Reduction with Initial Glargine INtervention (ORIGIN) trial17 were obtained from 

the authors (see also Acknowledgements). The aptamer-based plasma ACE levels GWAS made 

use of the recent study in 35,559 Icelanders18. For severe COVID-19, we considered the 
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GenOMICC Consortium GWAS19. For COVID-19 hospitalization and infection GWAS we used 

COVID-19 Host Genetics Initiative (HGI) GWAS meta-analysis round 4 (October 20, 2020)20. 

To provide a proper replication of causal effect inference, we subtracted GenOMICC GWAS 

from the HGI meta-analysis using the R package MetaSubtract. 

Genome-wide association meta-analysis Genetic analyses were conducted using additive 

model regressions, with adjustment for population structure and study-specific parameters 

(details in Supplemental Methods). For the X chromosome, the analysis was performed 

separately for males and females, with 0-1 genotype coding for males. Each contributing cohort 

uploaded the result summary statistics in a standardized format to a secure computational cluster 

at the University of Edinburgh. The meta-analysis was performed using METAL (2011-03-25)21 

with the inverse-variance weighted approach (STDERR option). 

Heritability and genetic correlation analysis For the autosomes, we estimated the 

genome-wide SNP-based heritability and genetic correlation values for plasma ACE2 and other 

complex traits using high-definition likelihood (HDL)22, an approach based on summary 

association statistics. We used the default reference panel containing linkage disequilibrium (LD) 

information of 1,029,876 quality-controlled imputed SNPs provided in the HDL software. The 

genetic variance captured by the cis-pQTL of ACE2 on chromosome X was estimated based on 

the top SNP assuming Hardy-Weinberg equilibrium (HWE), i.e., 2𝑓𝑓(1 − 𝑓𝑓) �̂�𝛽
2
, where 𝑓𝑓 and �̂�𝛽 

are the MAF and the genetic effect estimate, respectively. The genetic variance captured by each 

autosomal trans-pQTL was also estimated based on the top SNP assuming HWE. Since the 

phenotypic variance of ACE2 was standardized to one via inverse-Gaussian transformation, the 

sum of 2𝑓𝑓(1 − 𝑓𝑓) �̂�𝛽
2
 across all the pQTL yields the proportion of phenotypic variance explained 

by the discovered pQTL. Thus, the ratio of the genetic variance captured by the pQTL to the 
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estimated heritability gives the proportion of heritability explained. 

Mendelian randomization For cis-pQTL-based Mendelian randomization (MR) analysis, 

we used SNP genotypes within the X chromosomal ACE2 gene region as instrumental variables 

to perform a standard inverse-variance-weighted (IVW) causal effect estimation using the 

TwoSampleMR package23. The LD r2 clumping threshold was set to 0.001 to ensure 

independently associated genetic instruments. For autosomal genome-wide multi-instrument MR 

analysis, we conducted the analysis using the generalized summary-data-based Mendelian 

randomization (GSMR)24 module in the GCTA software. The genome-wide significance 

threshold of p-values was set to 5 × 10−8. The LD r2 clumping threshold was set to 0.05. 

cis-eQTL analysis To analyze the effect of any identified plasma ACE2 pQTL on nearby 

gene expression, we used two well-established, publicly available genetics of gene expression 

databases: (1) the large (N > 31,000 individuals) blood gene expression eQTLGen and (2) the 

GTEx consortium which is smaller (N ~ 1000 individuals) but contains a much broader tissue 

representation (54 non-diseased tissue sites) in order to detect tissue-specific expression 

quantitative trait loci (eQTL). For each discovered trans-pQTL of plasma ACE2, we extracted 

the eQTL association summary statistics for the genes within a 1Mb window of the lead ACE2-

associated variant. The analysis was performed to evaluate candidate genes for the discovered 

ACE2 pQTL, excluding the MHC region on chromosome 6. 

Chromatin states enrichment analysis We extracted 127 consolidated epigenomes from 

the Roadmap Epigenomics Project25, which covers 15 chromatin states quantified across 28 

human tissues and cell types. We used a SNP-based logistic regression to test for the enrichment 

of LD-corrected genome-wide significant ACE2 association signals on each chromatin state in 

each tissue or cell type: 
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log �𝐸𝐸
�𝑃𝑃𝑃𝑃�𝑃𝑃𝑗𝑗<5×10−8��

𝐸𝐸�𝑃𝑃𝑃𝑃�𝑃𝑃𝑗𝑗 ≤5×10−8��
� = 𝜇𝜇 + 𝛿𝛿ℓ𝑗𝑗 + 𝛽𝛽𝐶𝐶𝑗𝑗                                             (1) 

where ℓj is the LD score of the j-th SNP, pre-calculated by the ldsc software for the HapMap3 

SNPs (MHC region excluded); Cj takes a value of zero or one, as an indicator for whether the 

SNP is annotated to be within the particular chromatin state; β is the parameter of interest, i.e., 

the log odds ratio of significant ACE2 associations in the chromatin state compared to that in the 

other SNPs. The higher enrichment of the ACE2 association signals at the annotated SNPs, the 

higher β would be. 

Statistical analysis The genetic effects from different cohorts were inverse-variance 

weighted in the meta-analysis using the METAL software. Subtraction of cohorts from GWAS 

summary statistics was done using the R package MetaSubtract. The heritability and genetic 

correlation parameters were estimated using the HDL and ldsc software. MR analysis was 

performed using the R package TwoSampleMR and the GCTA software. Linear and generalized 

linear models were fitted using the lm() and glm() procedures in R. The displayed parameters 

estimates are shown with standard errors or 95% confidence intervals. 

 

Results 

Epidemiologic correlates of plasma ACE2 levels Across our SCALLOP cohorts, plasma ACE2 

levels were higher in men than women (Table S2). Significant positive associations were found 

between higher plasma ACE2 and CTSL1 (Cathepsin L1), BMI (Body mass index), triglycerides 

(TG), liver fat, hypertension, CVD, blood pressure, and diabetes (Figure S1, Table S3). Among 

commonly used anti-hypertensive drug classes, calcium channel blockers were positively 

associated with ACE2 levels, but there was no significant correlation between ACE2 levels and 

either ACE inhibitor use or angiotensin receptor blocker use in the overall sample. Stratifying the 

 

D
ow

nloaded from
 http://ahajournals.org by on A

pril 26, 2022



13 

10.1161/CIRCULATIONAHA.121.057888 

 

sample by sex, ARB use was significantly associated with higher ACE2 levels in men only. We 

also identified significant sex heterogeneity for the associations with CSTL1, BMI, TG, and 

diabetes: the ACE2 associations with BMI and TG were stronger in men, whereas the 

associations with CSTL1 and diabetes appeared to be stronger in women. 

GWAS identified ten genome-wide significant loci for plasma ACE2 We conducted a 

GWAMA in up to 28,204 individuals from 14 cohorts in the SCALLOP consortium for plasma 

ACE2 protein measured using the ©Olink platform. Our analysis included both the autosomes 

and the X chromosome, where the ACE2 gene is encoded. Genotypes in each cohort were either 

obtained from whole-genome sequencing or imputed to the 1000 Genomes Phase 3 or Haplotype 

Reference Consortium reference panels (see Supplemental Methods). The ACE2 measurements 

were inverse-Gaussian transformed prior to analysis, adjusted for age, sex, population structure, 

and cohort-specific covariates. We tested 8,682,405 and 730,046 genetic variants on the 

autosomes and the X chromosome, respectively, with minor allele frequencies (MAFs) > 0.01. 

The GWAMA discovered ten genome-wide significant loci for plasma ACE2 (Table 1, 

Figure 1, Figures S2 – S12). From conditional and joint multi-SNP analysis26 on these 

discovered loci, we identified a secondary genome-wide significant association at the EXOC3L4 

locus on chromosome 14 (lead variant rs73356643, GWAS P = 1.3 × 10−6, conditional P = 1.0 

× 10−8). Using the high-definition likelihood method22, we estimated the autosomal SNP-based 

heritability of plasma ACE2 to be 16.1% (s.e. 2.5%). Adding the X chromosome heritability of 

0.5% for male and 1.3% for female (Figure S13), we obtained an estimated genome-wide 

heritability of 16.6% and 17.4% for men and women, respectively. Based on an additive genetic 

effects model under Hardy-Weinberg equilibrium, the ten lead variants together explain 4.1% of 

the phenotypic variance of plasma ACE2 equivalent to about 30% of the heritability. 
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Except for the ACE2 cis-pQTL (lead variant rs1849863, P = 1.1 × 10−85) and ACE2’s 

transcription factor HNF1A trans-pQTL (lead variant rs1169288, P = 4.5 × 10−78), the other 

eight trans-pQTL have not been previously associated with plasma ACE2 (Table 1, Table S4). In 

contrast to ACE2 and HNF1A pQTL, we were unable to replicate another previously reported 

locus on chromosome 21 (rs2186346, P = 0.41)15. 

To further characterize the potential functional, biologic, and clinical impact of our newly 

discovered ACE2-associated loci and prioritize plausible causal genes at these loci, we cross-

referenced each of our index SNPs using (1) two available gene expression and eQTL resources: 

the eQTLGen consortium (Figure S14A, Table S5) and the GTEx consortium (Figure S14B, 

Table S6); (2) epigenomic information from the Roadmap Epigenomics Project25, which covers 

15 chromatin states quantified across various human tissues and cell types (Figure S15, Table 

S7); (3) genotype-phenotype association database records from PhenoScanner27 (Table S8). We 

excluded the HLA locus on chromosome 6 because of the complicated genomic and LD structure 

in this region. 

Tissue, epigenomic, and regulatory characterization of the ACE2-associated genomic loci 

Across the eight autosomal ACE2-associated genomic loci, analysis of blood gene expression 

associations using eQTLGen data showed that plausible candidate genes generally ranked high 

among the genes underlying each trans-pQTL. However, multi-tissue analysis of the GTEx 

eQTL associations of the prioritized genes in the discovered pQTL at each of the eight loci did 

not point to clear specific tissues of ACE2 regulation. In GTEx, ACE2 cis-eQTL associations 

were also found in multiple tissues, including brain, tibial nerve, tibial artery, and pituitary 

(Figure S16), though ACE2 tends to have specifically lower expression in these tissues (Figure 

S17). Across diverse tissues and cell types, chromatin states such as weak transcription and 
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heterochromatin harbored enriched plasma ACE2 genetic associations (Figure S15). Notably, the 

enrichment was more tissue-specific for the strong transcription chromatin state, where the 

ACE2 genetic associations were particularly enriched in T cells, natural killer cells, 

hematopoietic cells, and blood lymphoblastoid cells. This suggests a shared genetic regulation 

between plasma ACE2 and hemocyte immune functions. 

Functional and phenotypic annotation of the ACE2-associated loci Notably, the majority 

of the autosomal trans-pQTL for ACE2 have been pleiotropically associated through prior 

GWAS with various cardiovascular, metabolic, inflammatory/immune, and pulmonary traits 

(Table S8). These loci are detailed further below. 

Two loci involve coding variants from the same family of hepatic/pancreatic transcription 

factor genes. These include missense variants of HNF1A (lead variant rs1169288 or p.Ile27Leu, 

P = 4.5 × 10−78) and hepatocyte nuclear factor HNF4A (lead variant rs1800961, p.Thr139Ile, P 

= 1.3 × 10−9). Both of these HNF1A and HNF4A missense variants have been previously 

associated with HDL, LDL and total cholesterol, type 2 diabetes, CHD, C-reactive protein 

(CRP), fibrinogen, and coagulation factor VII, and other hepatically-synthesized enzymes or 

enzyme inhibitors such as GGT or alpha1-antitrypsin levels. Especially, p.Ile27Leu is a well-

known variant with the Leu allele (corresponds to the C allele of rs1169288), increasing the risk 

of type 2 diabetes; meanwhile, it reduces plasma ACE2 concentration (β = −0.175, s.e. = 0.009) 

in our study. Rare loss-of-function variants of HNF1A and HNF4A can cause the Mendelian 

disorder mature onset diabetes of the young (MODY). The transcription factors HNF1A and 

HNF4A have been shown to regulate ACE2 expression in a pancreatic and ileal-specific manner, 

respectively28,29. Interestingly, both HNF1A and HNF4A also have a crucial role in protein 

fucosylation30. Given that the SARS-CoV-2 spike (S) protein is heavily fucosylated with host-
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derived glycans31, in addition to regulating the expression of ACE2, these two loci could 

potentially influence S protein glycosylation and thereby influence the virus’ entry to the host 

cell3. 

In addition to the two HNF transcription factors, two other loci contain genes involved in 

hepatic gene transcriptional regulation. RORA encodes retinoic acid receptor-alpha, another 

hepatic transcriptional activator involved in the regulation of circadian rhythm, metabolism, and 

immune function32. The intronic RORA variant (lead variant rs340005, P = 4.7×10−9) is located 

in an ENCODE distal enhancer region and has been previously associated with CRP and GGT 

levels. The lead SNP rs2954021 (P = 4.6 × 10−14) located upstream of the pleiotropic TRIB1 

gene has been associated with various metabolic traits, liver enzymes, plasma lipids, kidney 

function, blood cell traits, hepatic steatosis, and CHD (examples of colocalization of the ACE2 

associations with HDL, LDL, BMI, and waist circumference are given in Figure S18). The 

protein product of TRIB1, Tribbles-1, post-translationally regulates the degradation of 

CCAAT/enhancer-binding protein α (C/EBPα), which contributes to the dysregulation of hepatic 

lipid-related gene expression33 and is also a positive regulator of HNF4A34. 

The lead variant at the SERPINA1 locus, rs28929474 (P = 1.0 × 10−27), encodes the 

canonical European Pi*Z allele p.Glu342Lys causing recessively inherited alpha-1-antitrypsin 

deficiency (AATD), a disease that affects the lung and liver35. The Lys allele leads to lower 

serum concentrations of AAT36 and higher plasma ACE2 levels (β = 0.312, s.e. = 0.029). In 

population-based genetic studies, rs28929474 has been associated with various metabolic 

phenotypes (height, bone mineral density, systolic blood pressure, fat-free mass, gallstones, 

lipids), pulmonary function, alcohol consumption, and plasma levels of various hepatic enzymes 

(alkaline phosphatase, alanine aminotransferase) and acute-phase proteins synthesized in the 
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liver (e.g., CRP, AFP). Importantly, the alpha-1-antitrypsin serine protease inhibitor additionally 

possesses anti-viral and anti-inflammatory properties, including inhibition of TMPRSS2 and 

ADAM17 enzyme activities, and therefore has been proposed as a possible host protective factor 

against COVID-1937,38. The class 1 MHC locus (lead variant rs3094087, P = 6.3 × 10−9) has 

been associated with a variety of autoimmune, GI, blood cell counts, anthropometric, and 

pulmonary traits. 

Several of the newly identified pQTL have less clearly understood biological 

relationships to plasma ACE2 and/or are less clearly mapped with respect to causal genes. The 

MICAL3 intronic lead variant rs5992134 (P = 2.5 × 10−10) is a cis-eQTL for MICAL3 and 

located within a predicted distal enhancer region and has been previously associated with liver 

enzymes, pulmonary function, and SBP. MICAL-3 is an NADPH-dependent oxidoreductase 

enzyme that participates in actin cytoskeleton reorganization39. The pQTL on chromosome 16 is 

located in a gene desert (closest gene SALL1 ~300 kb), but has been previously associated with 

CRP and red blood cell count. The lead variant rs17616063 is located within an ENCODE distal 

enhancer and overlaps a transcription factor (TF) binding site (Ensembl regulatory feature id 

ENSR00000085879), with the nearest experimentally verified motif ENSM00156191351 

binding with protein HNF4A (encoded on the chromosome 20 locus) in the HepG2 cell line 

(Figure 1, Figure S19). The chromosome 14 locus (EXOC3L4 intronic lead variant rs2274685, P 

= 3.7 × 10−16) has been associated with liver enzymes and platelet quantitative traits; and with 

gene expression of CDC42BPB, whereas another gene nearby, TNFAIP2, is abundantly 

expressed in immune cells and has been implicated in inflammation and infectious disease40. 

From conditional and joint multi-SNP analysis on these discovered loci, we identified a 

secondary genome-wide significant association at the EXOC3L4 locus on chromosome 14 (lead 
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variant rs73356643, GWAS P = 1.3×10−6, conditional P = 1.0 × 10−8). 

At the cis-pQTL located near the ACE2 gene, the lead variant rs1849863 was strongly 

associated with plasma ACE2 levels (P = 1.1 ×10−85). With a threshold of LD r2 < 0.001, we 

obtained another two independent cis-instruments rs143380244 (P = 8.8 × 10−9) and 

rs73202884 (P = 2.8 × 10−13) for plasma ACE2. The three cis-variants together capture 1.4% of 

the phenotypic variance of ACE2, equivalent to 8.8% of ACE2’s heritability. Notably, no 

established clinical or phenotypic association for the ACE2 cis-regulatory locus was found, 

possibly due to the lack of association studies on the X chromosome (Figure S20).  Our sentinel 

SNP at the cis-pQTL rs1849863 is in strong LD with the previously reported top SNP 

rs12558179 by Nelson et al.15 (R2   = 0.9489 and D′ = 0.9741 in 1000 Genomes European 

individuals). A recent report identified a cis-regulatory rare variant rs190509934 for ACE2 gene 

expression that influences COVID-19 risk41, for which the rare allele C only forms a haplotype 

with the minor, C, allele of our detected top SNP rs1849863. However, the rare allele of 

rs190509934 was reported by Horowitz et al. to reduce the ACE2 mRNA expression, whereas 

we found that the minor allele of rs1849863 increases the plasma ACE2 level. 

Genetic and causal relationships between plasma ACE2 and cardiovascular diseases We 

explored the shared genetic architecture between plasma ACE2 and cardiovascular and 

metabolic risk factors and CVD outcomes. We estimated bivariate ACE2-trait genetic 

correlations using two different databases of GWAS summary statistics42. First, we assessed 

genetic correlations between plasma ACE2 and various human lifestyle/behavioral, 

psychosocial, health-related and biomarker traits with available GWAS summary statistics using 

the high-definition likelihood method22 (Table S9). Among these, plasma ACE2 showed 

significant positive genetic correlations with cigarette smoking, blood pressure, cholesterol 
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levels, CRP, and anthropometric traits (false discovery rate < 5%, Figure 2, Table S9). 

Next, in order to examine the shared genetic basis between plasma ACE2 level and specific 

vascular diseases or diagnoses, we specifically extracted the GWAS summary-level data for 48 

vascular-disease-related phenotypes from UK Biobank (see Methods, Table S10), categorized 

into 18 for heart disease, 15 for blood pressure, 9 for stroke, and the other 6 for blood lipids. We 

assessed genetic correlations and found that plasma ACE2 levels had positive genetic 

correlations with most of the vascular disease phenotypes, except for HDL cholesterol (Figure 3, 

Table S11). 

Next, we conducted bidirectional causal inference using generalized summary-level 

Mendelian randomization (GSMR) to identify potential causal effects of ACE2 on these traits 

(Figure 3, Table S12). In the GSMR analysis, the instrumental variables used to assess causality 

are restricted to the autosomal trans-pQTL for ACE2. Paradoxically, GSMR suggested that 

genetically elevated plasma ACE2 level is associated with reduced risk of heart disease, HDL, 

LDL, and total cholesterol. However, the results of MR analyses can be biased if some of the 

genetic instruments are invalid because they additionally influence the outcome through 

pathways other than ACE2 (so-called “horizontal pleiotropy”). 

Since several of the ACE2-associated autosomal loci are pleiotropically associated with 

various cardiometabolic and inflammation-related phenotypes, we further conducted the MR 

analysis for vascular diseases using only the X chromosome cis-pQTL ACE2 locus. No 

significant causal effect was detected (Figure 3, Table S13) for any of the phenotypes with 

summary association statistics of the X chromosome. It should be noted that while on the one 

hand using only cis-pQTL as the MR instrument may avoid the issue of bias due to horizontal 

pleiotropy, on the other hand, there may be reduced power to detect a true causal effect using 
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only the cis-pQTL due to the smaller number of SNPs considered. 

Genetic correlation and causal inference between ACE2 and COVID-19 Based on the 

latest genome-wide association summary statistics for severe COVID-1919, we obtained an 

estimated autosomal genetic correlation of 0.476 (P = 9.4 × 10−3) with plasma ACE2, 

indicating an increased risk of severe COVID-19 for people that have genetically raised levels of 

circulating ACE2 protein. At the cis-pQTL located near the ACE2 gene, the lead variant 

rs4830984 was nominally significantly associated with severe  COVID-19 (P = 0.026)19. GSMR 

analysis based on all the discovered ACE2 pQTL as instruments revealed no significant causal 

effect. To avoid horizontal pleiotropy, we considered in our MR analysis only the independent 

cis-variants as genetic instruments for causal inference (Figure 4A). Based on inverse-variance 

weighted (IVW) Mendelian randomization (MR), we estimated an odds ratio of 1.63 (95% CI, 

1.10 to 2.42; P = 0.01) for ACE2 on COVID-19 severity (Figure 4B). Reverse MR analysis 

instrumenting on the severe COVID-19 loci did not reveal a significant estimate (GSMR P = 

0.95), suggesting the absence of a causal effect of COVID-19 on ACE2 levels. As validation, in 

the HGI COVID-19 hospitalization data (GWAS B2, GenOMICC subtracted), we estimated the 

causal effect of ACE2 with an OR of 1.52 (95% CI, 1.05 to 2.21; P = 0.03), and in the HGI 

COVID-19 infection data (GWAS C2, GenOMICC subtracted), the estimated OR was 1.60 (95% 

CI, 1.08 to 2.37; P = 0.02). 

 

Discussion 

We provide a detailed characterization of the phenotypic and genetic correlates of plasma ACE2 

using data from several large cohort studies, including the identification of eight novel genetic 

loci, which together explain 30% of the protein’s heritability. We further demonstrate that ACE2 
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levels are genetically correlated with both cardiovascular disease and COVID-19 clinical 

outcomes. Moreover, we found genetic evidence that elevated ACE2 levels may be causally 

related to COVID-19 severity, hospitalization, and infection. These data add further evidence 

that the cardiovascular complications of COVID-19 disease patients may be mechanistically 

related to ACE2. 

Genetics of plasma ACE2 levels Previous studies have measured the heritability of ACE2 

levels43,44, with the SNP heritability estimated to be 33% in the PURE study44 using the same 

Olink PEA-based ACE2 antigen assay. The heritability was estimated to be 16% among 

Europeans (with somewhat higher estimates for Latinos and Persians) in our study. Differences 

in heritability estimation methods or geographic or demographic differences between populations 

may account for different heritabilities across populations. Despite these differences, we were 

able to confirm two recently identified genetic loci associated with ACE2, the cis-pQTL on 

chromosome X and HNF1A. The peak signal on the X chromosome is located around 100 kb 

upstream of ACE2 and therefore likely reflects regulatory effects on ACE2 expression. These 

variants are not in LD with several common missense variants of ACE2 that are predicted to 

impact ACE2 protein stability45 or SARS-CoV-2-binding46,47. The presence of a strong X-linked 

locus may explain in part the observed sex differences in ACE2 expression across various 

tissues48 as well as the higher circulating levels of ACE2 in men. 

Along with the HNF1A ACE2-associated autosomal locus, the eight newly identified 

genetic loci associated with ACE2 may help to shed additional light on mechanisms by which 

cellular or plasma ACE2 levels are regulated under physiologic and pathologic conditions48. The 

transcription factors HNF1A and HNF4A regulate ACE2 expression in the pancreas and GI 

tract28,29. Besides ACE2 expression itself, we also identified another discovered novel locus 
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being the TF binding site of HNF4A. The HNF1A, HNF4A, TRIB1 loci are also important 

determinants of cardiovascular disease, diabetes, lipids, and adiposity-related traits, and therefore 

likely contribute to the genetic correlations we observed between these cardiometabolic 

phenotypes as well as the findings from Mendelian randomization analysis between ACE2 for 

BMI and diabetes in the PURE study. While the ACE2 locus on chromosome X and several of 

the newly identified autosomal genetic loci likely influence ACE2 levels through regulation of 

cellular expression or transcription of ACE2 in various tissues, other loci may influence the 

amount of ACE2 shedding from the cell membrane. In this regard, the protease inhibitor alpha-1-

antitrypsin is capable of inhibiting the enzymatic activities of two proteases TMPRSS2 and 

ADAM17, both of which are involved in ACE2 shedding37,38. 

Relationship of ACE2 and RAS to CVD In our analysis, soluble ACE2 levels were 

positively correlated with several traditional CVD risk factors, which is consistent with its 

important role in counter-regulation of the renin-angiotensin system (RAS). Higher ACE2 has 

additionally been associated with poorer prognosis in patients with pre-existing CVD and 

recently was found to prospectively predict incident CVD, mortality, diabetes, and heart failure 

in previously unaffected individuals9–12, independently of traditional risk factors44. In particular, 

ACE2 was ranked higher as a predictor of overall mortality compared to smoking, diabetes, 

blood pressure, BMI, and lipids. We also found that higher plasma ACE2 level is genetically 

correlated with a higher risk of vascular diseases, including coronary heart disease, hypertension, 

stroke, and heart failure. Nonetheless, Mendelian randomization analysis restricted to the cis-

pQTL ACE2 locus was unable to demonstrate a causal relationship between ACE2 and CVD-

related outcomes. We speculate that the apparent but paradoxical protective effect of ACE2 on 

CVD by GSMR using the additional autosomal trans-pQTL associations may reflect that 
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extensive pleiotropy exhibited by most of the autosomal trans-pQTL on blood lipids and other 

CVD risk factors. 

Both ACE and ACE2 have connections with cardiovascular mechanisms. Although the 

sparse genetic architecture of both proteins did not result in significant genetic correlation, a 

suggestive causal effect of ACE2 on ACE was detected (see also Supplemental Material). We 

have shown above that ACE2 is genetically correlated with a series of vascular traits while its 

causal role was detected only for CVD-related phenotypes; in contrast, the hypertension target 

ACE showed a clear causal effect on blood pressure. Our results thus suggest distinct 

downstream functions of the two homologous proteins. 

Relationship of ACE2 to COVID-19 In addition to its role in the regulation of the RAS, 

cellular ACE2 is an important receptor for SARS-CoV-2 and other coronaviruses. Our findings 

of a genetic correlation of soluble ACE2 and additional evidence that genetically determined 

sACE2 is associated with increased risk of COVID-19 severity are consistent with recent in vitro 

data that the secreted form of ACE2 plays a direct role in cell entry of SARS-CoV-2 via 

receptor-mediated endocytosis49. Our results are also consistent with human genetic studies 

indicating genetic variation in soluble ACE2 influences COVID-19 risk41,50. 

Based on animal studies, ACE inhibitors or ARB may up-regulate ACE2 gene expression 

in cardiac cells51,52, which might increase COVID-19 susceptibility. However, human 

observational studies have not found a robust relationship between higher ACE2 levels and 

ACE-inhibitors or ARB use13,14. Consistent with these results, we did not find a significant 

association of ACE inhibitors or ARB on plasma ACE2. 

Study limitations While our study adds important information to the regulation of ACE2 

and the genetic relationship between ACE2 and other phenotypes, several limitations should be 
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highlighted. 

1) The genetic loci identified herein are associated with the soluble form of ACE2 found 

in human plasma, which is relatively easily obtainable and can be studied with sufficiently large 

sample sizes. The relationship of the plasma ACE2 pQTL or other genetic loci to tissue levels of 

the full-length cellular ACE2 receptor, the precise genetic regulatory mechanisms underlying 

these associations, as well as the relevant tissue sources of soluble ACE2, all remain to be 

determined. 2) Despite the large sample size, we were still only able to account for 30% of 

ACE2’s heritability, leaving the remaining loci (e.g., common genetic variants with smaller 

effect sizes or rare genetic variants of large effect) to be discovered; 3) The Olink PEA assay 

quantifies plasma ACE2 concentration, rather than the enzymatic activity of the protein. ACE2’s 

activity as an enzyme may or may not have the same biological basis as its general abundance. 

An earlier family-based study of plasma ACE2 activity levels in healthy individuals43 estimated 

that genetic factors accounted for 67% of the phenotypic variance in ACE2 but only 7% of 

individuals had detectable ACE2 levels using a fluorogenic activity assay. Using a more 

sensitive fluorogenic assay, readouts from an ACE2 enzyme activity assay tend to have a strong 

correlation with protein levels of ACE253. Given the specificity of the Olink ACE2 assay 

(Supplemental Material), one can expect that the effects on Olink and enzyme activity assay 

measurements would likely be directionally concordant. 

In summary, our findings suggest that ACE2 may play an important role not only in 

susceptibility to cardiovascular, metabolic, and pulmonary disorders but also in susceptibility to 

COVID-19 disease severity. These findings have potential therapeutic implications for the 

counter-regulatory ACE2/Ang-(1-7) axis in modulating COVID-19 disease severity54. In 

particular, identification of additional genetic factors involved in the regulation of ACE2 levels 
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may help disentangle the potential causal roles of soluble vs. cellular ACE2 in the regulation of 

chronic diseases, COVID-19 infection, disease severity, and immunity. 
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Table 1. Summary of Ten Genome-wide Significant Loci for Plasma ACE2. 
Lead SNP Chr. Position (bp) R.A. E.A. Freq. β (s.e.) P Nearest Coding 

Gene 
rs3094087 6 31061561 C T 0.853 0.073 (0.013) 6.3 × 10−9 HLA-B 
rs2954021 8 126482077 G A 0.473 0.067 (0.009) 4.6 × 10−14 TRIB1 

rs1169288* 12 121416650 A C 0.334 -0.175 (0.009) 4.5 × 10−78 HNF1A 

rs28929474† 14 94844947 C T 0.026 0.312 (0.029) 1.0 × 10−27 SERPINA1 
rs2274685 14 103575070 G A 0.550 -0.074 (0.009) 3.7 × 10−16 EXOC3L4 
rs340005 15 60878030 G A 0.581 0.054 (0.009) 4.7 × 10−9 RORA 
rs17616063 16 51436882 G A 0.915 0.115 (0.017) 5.2 × 10−11 SALL1 
rs1800961 20 43042364 C T 0.049 0.130 (0.021) 1.3 × 10−9 HNF4A 
rs5992134 22 18433994 G T 0.229 -0.067 (0.011) 2.5 × 10−10 MICAL3 
rs1849863 23 15736245 T C 0.245 0.164 (0.008) 1.1 × 10−85 ACE2 

Chr.: Chromosome. R.A.: Reference allele. E.A.: Effective allele. Freq.: Frequency of the effective allele. s.e.: Standard error. 
*: also known as p.Ile27Leu, where the Leu allele corresponds to the C allele. 
†: also known as p.Glu342Lys, where the Lys allele corresponds to the T allele. 
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Figure 1. Genomic meta-analysis scan of plasma ACE2. Mapped genes are labeled at 

genome-wide significant loci (P < 5 × 10−8). Genome-wide significant variants with minor 

allele frequency < 0.05 are marked as circles instead of solid dots. Illustrations are provided for 

the interactions between two pairs of mapped loci, where the locus on chromosome 16 is a 

transcription binding site for the transcription factor HNF4A mapped on chromosome 20, and 

HNF1A acts as the transcription factor for the ACE2 gene. TFBS: transcription factor binding 

site. 

 

Figure 2. Genetic correlations between plasma ACE2 and human complex traits and 

diseases. A, Statistically significant (false discovery rate < 5%) genetic correlations with ACE2 

are shown, where severe COVID-19, C-reactive protein (CRP), as well as other representative 

traits are labeled. The error bars represent standard errors. The colors label different groups of 

phenotypes. SBP: systolic blood pressure, BMI: body mass index, FVC: forced vital capacity. 

Detailed explanations of the annotated phenotypes are in the Supplemental Material. B, 

Enrichment of genetic correlations with ACE2 within each group of phenotypes. The circles are 

the quantile-quantile (QQ) plots of the genetic correlations test statistics against the null, whereas 

the solid dots are the QQ plots of the test statistics within each phenotype group against all the 

analyzed phenotypes.
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Figure 3. Genetic and causal relationships between plasma ACE2 and vascular diseases. 

Estimates significantly different from zero are highlighted in filled circles. The first two forest 

plots show the bidirectional generalized summary-level Mendelian randomization (GSMR) 

analysis results between plasma ACE2 and 48 vascular-disease-related traits. The third forest 

plot gives the corresponding genetic correlations estimates between plasma ACE2 and these 

phenotypes. The last forest plot shows the estimated MR effects based on cis-pQTL only. OR: 

odds ratio. 

 

Figure 4. Causal inference between plasma ACE2 and COVID-19 based on the ACE2 cis-

pQTL. A, The regional GWAS Z-scores across four traits are compared, where the alleles are 

coded so that the estimated SNP effects on ACE2 are all positive. Genome-wide significant 

SNPs for ACE2 (P < 5 × 10−8) are highlighted in yellow. The three SNPs representing 

independent significant associations after LD clumping (r2 < 0.001) are marked in red. B, 

Inference of ACE2’s causal effect on COVID-19 via Mendelian randomization (MR). The MR 

was performed using an inverse-variance weighted causal effect estimator, based on multiple 

genome-wide significant cis-regulatory SNPs. A threshold of R2 < 0.001 was applied to prune 

out SNPs in LD. OR: odds ratio. The whiskers represent 95% confidence intervals. 
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