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Adverse stem cell clones within a single 
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Abstract 

Acute myeloid leukemia (AML) patients suffer dismal prognosis upon treatment resistance. To study functional hetero‑
geneity of resistance, we generated serially transplantable patient‑derived xenograft (PDX) models from one patient 
with AML and twelve clones thereof, each derived from a single stem cell, as proven by genetic barcoding. Transcrip‑
tome and exome sequencing segregated clones according to their origin from relapse one or two. Undetectable for 
sequencing, multiplex fluorochrome‑guided competitive in vivo treatment trials identified a subset of relapse two 
clones as uniquely resistant to cytarabine treatment. Transcriptional and proteomic profiles obtained from resistant 
PDX clones and refractory AML patients defined a 16‑gene score that was predictive of clinical outcome in a large 
independent patient cohort. Thus, we identified novel genes related to cytarabine resistance and provide proof of 
concept that intra‑tumor heterogeneity reflects inter‑tumor heterogeneity in AML.
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To the editor
Acute myeloid leukemia (AML) is difficult to treat and 
shows major genetic and functional heterogeneity [1, 2]. 
To complement single cell sequencing studies [3, 4], we 
characterized single AML stem cells on an in vivo func-
tional level.

From an exemplary and unique AML patient, two 
relapses, but not the primary diagnostic sample, 
allowed establishing serially transplantable PDX mod-
els, which fulfilled the complex requirements for the 
planned molecularly guided, clonally diverse, single cell 

in vivo studies (REL1 and REL2, Figs. 1A and Additional 
file  2: Figure S1A, Additional file  9: Table  S1). Targeted 
sequencing of AML-specific mutations revealed shared 
and individual alterations, reflecting clonal heteroge-
neity and evolution of highly aggressive clones, accord-
ing to previously published data (Fig.  1B, Additional 
file 10: Table S2) [5]. Compared to REL1, REL2 showed 
increased proliferation rates, increased frequency of leu-
kemia initiating cells (LICs), and increased resistance to 
cytarabine treatment (Additional file 2: Figure S1B-E) [6].

Aiming for PDX clones originating from a single AML 
stem cell, we cloned a genetic barcode for first use in PDX 
models of AML and transplanted cells at limiting dilu-
tions (Fig. 1C, Additional file 1: Supplementary Methods 
and Additional file  3: Figure S2A) [7, 8]. After growth 
to end stage leukemia and re-isolation of cells, barcode 
numbers correlated with numbers of transplanted cells 
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and with LIC frequencies (Fig. 1D and Additional file 3: 
Figure S2B). In some mice, all PDX cells carried the iden-
tical barcode, indicating the engraftment of a single AML 
stem cell clone; 12 clones allowed reliable serial trans-
plantation, 8 from REL1 and 4 from REL2.

Targeted sequencing revealed that 50% of REL1 and 
REL2 clones contained the NRASQ61K hotspot mutation, 
although its variant allele frequency was below 10% in 
both bulk PDX samples (Fig.  1E); accordingly, the LIC 
frequency of clone 4 (NRASQ61K) was higher compared 
to clone 8 (NRASwt) (Fig. 1F), indicating an elevated stem 
cell potential in NRASQ61K AML, according to normal 
hematopoiesis [9].

Transcriptome analysis clustered REL1 apart from 
REL2 clones (Figs. 1G and Additional file 4: Figure S3AB). 
Exome sequencing revealed loss of chromosome 7q in 
REL1 and loss of chromosome 6p in REL2, with clones 
11 and 12 showing an additional loss of chromosome 
17q (Additional file  4: Figure S3C, Additional file  11: 
Table  S3). Together with 424 single nucleotide variants, 
exome data inferred a phylogenetic tree which separated 

REL1 from REL2 and identified 4 clusters (A–D) (Fig. 1H, 
Additional file 12: Table S4). Taken together, exome and 
transcriptome mainly divided REL1 from REL2.

The PDX model approach allowed complementing 
descriptive data with in  vivo functional data [8]. In an 
innovative approach, we marked the clones with indi-
vidual fluorophore-combinations for flow-cytometric 
distinction in multiplex competitive in vivo transplanta-
tion assays (Figs. 2A and Additional file 5: Figure S4) [10]. 
REL2 clones harboured slightly elevated homing ability, 
while REL2 cluster D showed growth advantage over all 
other clusters (Fig.  2B), with minor inter-mouse varia-
tions, indicating biological rather than stochastic effects. 
Data were reproducible in assays restricted to clones 
from REL2 with impeded starting conditions for cluster 
D (Fig. 2C).

Regarding response to chemotherapy, cluster D clones 
gained clonal dominance upon cytarabine therapy, 
suggesting increased resistance (Figs.  2BC and Addi-
tional file 6: Figure S5). Thus, a discrepancy became vis-
ible between sequencing and in vivo functional data; the 

Fig. 1 Sequencing divided 12 PDX AML single stem cell clones according to first and second relapse. A Primary AML cells from a 52‑year‑old female 
patient at time of initial diagnosis (ID), first (REL1) and second relapse (REL2) were transplanted into NSG mice. REL1 and REL2, but not ID, allowed 
engraftment. B Primary tumor (n = 1), REL1 PDX (n = 9) and REL2 PDX (n = 3) cells were analyzed by targeted sequencing. Variant allele frequency 
(VAF) is depicted. C–H Generation and characterization of single PDX AML stem cell clones. C Experimental procedure; passage‑1 bulk REL1 or REL2 
PDX cells were transduced with a genetic barcode and  marker+ cells injected into mice in limiting dilutions (REL1: 1100–33,000 cells, n = 18; REL2: 
100–10,000 cells, n = 11). At advanced leukemia, PDX cells were re‑isolated and barcodes quantified. D Numbers of barcodes within REL1 or REL2 
populations; one dot represents one mouse. PDX populations consisting of a single barcode were defined as single stem cell clones (red box). E 
 NRASQ61K was determined in PDX clones and compared to proportion of  NRASQ61K cells within bulk REL1 and REL2 PDX cells (mean ± SD, see B). 
F Leukemia initiating cell (LIC) frequency of clone 4 (NRASQ61K) and clone 8 (NRASwt); cells were injected into mice in limiting dilutions and positive 
engraftment analyzed. Frequency of LIC and statistical significance was calculated using the ELDA software. Mean (solid line) ± 95% CI (dashed line) 
is depicted. G Gene expression profile was analysed via prime-seq from 3–4 biological replicates per clone and a t‑distributed stochastic neighbor 
embedding (t‑SNE) plot built by unsupervised clustering. H 424 single nucleotide variants (SNVs) were identified from exome sequencing and 
used to calculate a phylogenetic tree; the length of each branch correlates to number of SNV changes (grey boxes). 50 SNVs of the trunk refer to 
the complete remission control. Depicted are major chromosomal changes and AML related mutations at each intersection (black), numbers of 
individual clones (colored boxes), and name of clusters (colored letters)

(See figure on previous page.)

(See figure on next page.)
Fig. 2 A transcriptome based score from cytarabine resistant PDX clones predicts clinical outcome in AML patients. A Experimental procedure; 
stem cell clones were marked with an individual combination of fluorochromes, mixed and injected into mice for multiplex competitive in vivo 
experiments. B 11 clones were mixed at similar ratios and injected into groups of mice (2 ×  105 cells per mouse; n = 6 per group). 36d after injection, 
mice were treated with either PBS (control) or cytarabine (Ara‑C). Clonal distribution was determined by flow cytometry at indicated time points. 
Mean ± SD is depicted. C Identical experiment as in (B), except that clones 9–12 were mixed in a 1:1:10:10 ratio (3 ×  105 cells per mouse; n = 6 per 
group). Mean ± SD is depicted. D Correlation of the phylogenetic tree from Fig. 1H and a summary of the in vivo function; larger circle size indicates 
increased stemness, faster proliferation or higher Ara‑C resistance, respectively. E Heatmap showing mRNA expression of the 16 genes of the score 
in the 12 PDX clones (3–4 biological replicates each, see Supplemental Methods for details on the calculation of the score). Columns were sorted 
by the score and all variables scaled to the mean value of 0 and variance of 1. F The distribution of the predictive score in each cluster; difference 
between the resistant and the sensitive clusters was calculated with a two‑sided t test. G Heatmap showing protein expression of the 9 genes of 
the score which were measurable in proteome of REL2 clones (3 biological replicates each); columns were clustered in an unsupervised manner. 
Proteins with differential expression in the same direction as the corresponding mRNAs are displayed in bold. H Association of the predictive score 
between CR/CRi (n = 111) and RD patients (n = 46). Two‑sided t‑test. CR: complete remission; CRi: complete remission with incomplete count 
recovery; RD: refractory disease. I, J Kaplan–Meier plots showing the association between the predictive score and overall survival in the validation 
cohort (I), and in the subcohort of patients who achieved CR/CRi after induction treatment (J). The numbers below the x‑axis show the patients at 
risk
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former separated REL1 from REL2, while the latter iden-
tified cluster D as most resistant against cytarabine treat-
ment (Fig. 2D).

To study treatment resistance, we now focused on clus-
ter D which was identified by our unique in  vivo func-
tional approach. Transcriptome analysis identified 14 
pathways to be enriched, including genes associated with 
TGFbeta, KRAS and inflammatory signaling (Additional 
file 7: Figure S6, Additional file 13: Table S5). In an innova-
tive patient-to-mouse-to-patient approach, we associated 
genes dysregulated in cluster D with cytarabine resistance 
in 3 independent cohorts, comprising 1,095 AML patients 
[11]. A prediction model for cytarabine resistance using 
penalized logistic regression identified a score of 16 genes 
that clearly discriminated cluster  D from all other clus-
ters (Figs. 2EG, Additional file 1: Supplementary Methods 
and Additional file  8: Figure S7A). High-resolution mass 
spectrometry quantified 6894 proteins, with 9/16 score 
genes present in the proteome, 4 of which showed signifi-
cant regulation (Fig. 2F). Using an additional independent 
cohort for validation [12], the 16-gene score was signifi-
cantly associated with refractory disease, ELN risk groups 
(Figs.  2H and Additional file  8: S7B), and overall survival 
(Fig. 2IJ). Moreover, the score was associated with overall 
and event-free survival in patients with CR/CRi, demon-
strating its predictive value beyond induction treatment 
(Figs. 2IJ and Additional file 8: Figure S7C). Therefore, the 
score might improve diagnostics of high-risk disease upon 
putative future routine RNA sequencing.

In summary, our functional in vivo approach on single 
PDX stem cells linked heterogeneity within a single AML 
sample to heterogeneity between different samples and 
provided novel candidate genes associated with cytara-
bine resistance.
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