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Abstract 

Background: Caloric restriction can delay the development of metabolic diseases ranging from insulin resistance to 
type 2 diabetes and is linked to both changes in the composition and metabolic function of the gut microbiota and 
immunological consequences. However, the interaction between dietary intake, the microbiome, and the immune 
system remains poorly described.

Results: We transplanted the gut microbiota from an obese female before (AdLib) and after (CalRes) an 8‑week 
very‑low‑calorie diet (800 kcal/day) into germ‑free mice. We used 16S rRNA sequencing to evaluate taxa with dif‑
ferential abundance between the AdLib‑ and CalRes‑microbiota recipients and single‑cell multidimensional mass 
cytometry to define immune signatures in murine colon, liver, and spleen. Recipients of the CalRes sample exhibited 
overall higher alpha diversity and restructuring of the gut microbiota with decreased abundance of several microbial 
taxa (e.g., Clostridium ramosum, Hungatella hathewayi, Alistipi obesi). Transplantation of CalRes‑microbiota into mice 
decreased their body fat accumulation and improved glucose tolerance compared to AdLib‑microbiota recipients. 
Finally, the CalRes‑associated microbiota reduced the levels of intestinal effector memory  CD8+ T cells, intestinal 
memory B cells, and hepatic effector memory  CD4+ and  CD8+ T cells.

Conclusion: Caloric restriction shapes the gut microbiome which can improve metabolic health and may induce a 
shift towards the naïve T and B cell compartment and, thus, delay immune senescence. Understanding the role of the 
gut microbiome as mediator of beneficial effects of low calorie diets on inflammation and metabolism may enhance 
the development of new therapeutic treatment options for metabolic diseases.

Trial registration: NCT01 105143, “Effects of negative energy balance on muscle mass regulation,” registered 16 April 
2010.
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Background
The incidence of obesity is continuously increasing, 
affecting more than 2 billion people worldwide [1]. 
Obesity is associated with cardiovascular diseases, such 
as hypertension, peripheral artery disease, myocar-
dial infarction, and metabolic comorbidities, ranging 
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from insulin resistance to dyslipidemia, non-alcoholic 
steatohepatitis, and type 2 diabetes [2–5]. Obesity has 
been widely associated with systemic and adipose tis-
sue inflammation with accumulating pro-inflammatory 
T cells, including cytotoxic  CD8+ T cells,  CD4+ type 
1 helper T cells (Th1),  CD4+ type 3/17 helper T cells 
(Th17), and memory B cells that exacerbate inflamma-
tion through the recruitment of chemokines, initiating 
an inflammatory process that promotes insulin resist-
ance [6–10]. Moreover, obesity-associated chronic low-
grade inflammation has been shown to impair insulin 
sensitivity through activation of c-Jun N-terminal kinase 
and nuclear factor-kappa B signaling pathways that 
subsequently increase the release of proinflammatory 
cytokines such as tumor necrosis factor-alpha and inter-
leukin-6 (IL-6) [9]. We and others previously reported 
that the T cell profile in visceral and subcutaneous adi-
pose tissue is associated with insulin resistance and 
systemic inflammation in humans and that insulin resist-
ance correlates with a shift towards the memory T cell 
compartment in adipose tissues [6, 11–13]. The relative 
increase in the frequency of memory cells is a process, 
referred to as immune senescence, an age-associated 
immune alteration, which can be delayed by caloric 
restriction [14, 15]. Importantly, the trillions of microbes 
colonizing the gastrointestinal tract, the gut microbiota, 
can also modulate adipose tissue expansion and glucose 
metabolism, which has been shown in various colo-
nization experiments in germ-free (GF) mice [16, 17]. 
Numerous clinical studies revealed an altered microbiota 
composition in obese participants with type 2 diabetes, 
and, thus, emphasized a critical role of the gut microbi-
ota on metabolic homeostasis [18–20]. Obesity is linked 
to profound alterations in gut microbial communities in 
humans and mice. However, caloric restriction-induced 
weight loss can reverse this phenotype [17, 21, 22]. We 
have recently reported that the gut microbiota shows 
highly dynamic responses to dietary changes and is caus-
ally linked to nutrient absorption in humans [23]. Diet is 
one of the strongest drivers for changes in the microbial 
community structure which even dominates the genetic 
background of the host [24]. Colonization of GF mice 
with a microbiota harvested from genetically obese ob/ob 
mice resulted in higher percentage of total body fat com-
pared to microbiota recipients from lean donors [17], 
emphasizing the critical role of the gut microbiota for 
energy balance regulation. Experiments in GF and gno-
tobiotic mice have shown that the host immune system 
is distinctly shaped by the gut microbiota [25]. For exam-
ple, it has been reported, that the microbial composition 
regulates the balance of Th17 and regulatory T cells in 
the lamina propria of the small intestine [26]. Recently, 
another group identified the immunomodulatory effects 

of diverse gut microbes in mice monocolonized with 53 
individual bacterial species, systemically analyzing host 
immunologic adaptation to colonization [27]. However, 
the interaction of the gut microbiota with innate and 
adaptive immune cells remains unclear with limited data 
and controversial results being reported. Altogether, the 
impact of diet-induced obesity, dietary interventions, as 
well as caloric interventions on the gut microbiome, is 
well described [16, 17, 28–32], but downstream conse-
quences of diet-driven microbiome alterations on host 
immune signatures, are yet unclear and remain to be 
elucidated.

In this study, we combined a human dietary interven-
tion trial with gnotobiotic experiments applying immu-
nophenotyping using single-cell multidimensional mass 
cytometry with a 31-antibody panel consisting of leuko-
cyte subset differentiation markers. Together, our results 
emphasize the importance of the gut microbiota for 
mediating the host response to dietary interventions.

Methods
Clinical study protocol
Fecal samples for fecal microbiota transfer (FMT) were 
collected from one of the top 5 weight losers during a 
weight loss intervention study focusing on muscle mass 
regulation in postmenopausal women “Effects of negative 
energy balance on muscle mass regulation” (registered at 
https:// clini caltr ials. gov, NCT01105143) at the Depart-
ment of Endocrinology of the Charité- Universitätsmedi-
zin, Berlin, Germany [33, 34].

This study was carried out in accordance with the rec-
ommendations of the International Conference on Har-
monization Guidelines for Good Clinical Practice and 
the Declaration of Helsinki. The protocol of the study was 
approved by the local Ethics Committee of the Charité- 
Universitätsmedizin Berlin (EA2/050/10). All subjects 
gave written informed consent before participating in 
this study. Inclusion criteria comprised female gender, 
a BMI > 27 kg/m2, and postmenopausal status. Severe 
untreated medical, neurological, and psychiatric dis-
eases within the last 5 years which may interfere with the 
planned interventions, such as unstable coronary heart 
disease, kidney and liver disease, systemic infections, 
endocrinological disorders, and hypertension (systolic 
blood pressure > 180 mm Hg, diastolic blood pressure 
> 110 mm Hg) were excluded by medical history assess-
ment. Further exclusion criteria were changing dieting or 
smoking habits significantly in the last 2 months includ-
ing a weight loss of 5 kg or more. Exclusion criteria for 
participants were also a history of medication, changes in 
smoking habits, or diets within the last 3 months, which 
may have significantly affected body weight. Participants 
with synthetic thyroid medications were not excluded if 
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they were clinically euthyroid. A total of 80 overweight or 
obese female subjects were initially included in the study. 
Subjects were randomly assigned to the intervention and 
the control group, respectively.

The detailed study protocol has been reported else-
where [11, 34, 35]. In brief, weight loss was induced by 
an established, standardized weight reduction program 
for 12 weeks in the intervention group. In the first 8 
weeks of the 12-week calorie restriction period, weight 
loss was performed by a very-low-calorie diet (VLCD, 
800 kcal/d) replacing all meals with a formula diet (Opti-
fast 2®, Nestlé HealthCare Nutrition GmbH) [36]. Before 
and after these eight weeks of VLCD, stool samples were 
taken for downstream analyses and experiments from the 
one individual of the top 5 weight losers, who exhibited 
the strongest improvement in insulin sensitivity.

Mice and intervention protocol
Male GF C57BL/6J mice (15–24 weeks old, n = 33) were 
housed in gnotobiotic isolators with two to four mice 
per cage on a 12-h light-dark cycle. Mice were divided 
into three groups, each group in one individual isolator, 
respectively. Mice were colonized by FMT with a human 
gut microbiota, that was collected before (AdLib, n = 
13) and after (CalRes, n = 9) a calorie-restricted dietary 
intervention and compared to an age-matched GF con-
trol group (n = 11). Animals were maintained on a chow 
diet (SSNIFF, V1534-300) which provides 9% kJ from fat, 
33% kJ from proteins and 58% kJ from carbohydrates for 
3 weeks after the FMT. Mice were sacrificed by cervical 
dislocation following anesthesia. This study was carried 
out in accordance with the Guide for the Care and Use of 
Laboratory Animals of the National Institutes of Health 
and the Animal Welfare Act under the supervision of our 
institutional Animal Care and Use Committee. Animal 
protocols were conducted according to institutional ethi-
cal guidelines of the Charité-Universitätsmedizin, Ber-
lin, Germany, and were approved by the Landesamt für 
Gesundheit und Soziales (approval number G 0085/17 
LAGeSo Berlin, Germany) and comply with the ARRIVE 
guidelines.

Human FMT into germ‑free mice
Human stool samples were collected before starting the 
intervention (AdLib) and after 8 weeks on the formula 
diet in the intervention group (CalRes). As previously 
described [34], volunteers were given a stool collection 
kit and were instructed to store collected stool samples 
in the freezer at − 20 °C until they were transported in a 
cooled container to our research unit. All samples were 
subsequently stored at − 80 °C. Each fecal sample was 
thawed and prepared in an anaerobic chamber. Stool 
samples were resuspended in phosphate-buffered saline 

(PBS) (1:10, Sigma-Aldrich), followed by centrifuga-
tion for 1 min at 500 rpm. The resulting preparation was 
externally sterilized, transferred into gnotobiotic isola-
tors, and 200 μl were administered by oral gavage. Mice 
not receiving the FMT received oral gavages of auto-
claved drinking water as a sham gavage. For the FMT, 
samples were chosen from an individual who was the 
top five weight losers of the program, who showed the 
strongest increase in insulin sensitivity during the weight 
loss phase and provided a complete set of stool samples 
(since not all individuals provided stool samples at each 
study visit).

Analysis of metabolic parameters
Mice were weighed every two days throughout the course 
of the experiment using a model EMB 200-2 scale (KERN 
& Sohn GmbH). Mice were fasted for 6 hours, and an oral 
gavage glucose tolerance test (OGTT) was performed. 
Fasted blood glucose levels were determined before a 
solution of glucose (10% Glucose, Braun) was adminis-
tered (2 g glucose/kg body weight) by oral gavage. Sub-
sequently, blood glucose levels were monitored at 15, 30, 
60, and 120 min after glucose administration. Total fecal 
excretion and food consumption were obtained weekly 
from one representative cage per group. The energy den-
sity of the chow diet and fecal samples were determined 
using bomb calorimetry.

Bomb calorimetry
The energy content of the chow diet and mouse feces 
were analyzed using an Isoperibol Calorimeter 6200 
instrument with a model 1108 oxygen bomb (Parr Instru-
ment Co.), as described elsewhere. Briefly, the sample was 
pressed into a 1-g pellet and was placed into the bomb, 
which was filled with oxygen (3000 kPa), and placed in a 
bomb cylinder with 2000 ml distilled water. The increase 
in the temperature (∆T) of the surrounding water by the 
heat produced at combustion was measured. The energy 
content (E) of the pellet was calculated as follows:

The energy equivalent (W) specifies the energy 
required to raise the temperature of the surrounding 
water by 1 °C (W = [Calorie/°C]).

Fecal DNA extraction and sequencing
Fecal samples were collected from mice in the AdLib 
and the CalRes groups respectively at day 1, 3, 7, 14, 
and 21 after colonization with the human donor micro-
biota. DNA was extracted using the QIAamp Fast DNA 
Stool Mini Kit as detailed in the manufacturer’s proto-
col (Qiagen, USA). Library preparation for 16S rRNA 
gene sequencing was done according to the protocol of 

E = W ×�T/m
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Illumina (USA), targeting the 16S V3 and V4 region, and 
sequenced on an Illumina MiSeq instrument with 2 × 
300-bp v3 chemistry. Reads were demultiplexed using 
bcl2fastq (Illumina, San Diego, USA) and submitted to 
initial quality control by QCumber-2 (https:// gitlab. com/ 
RKIBi oinfo rmati csPip elines/ QCumb er). In brief this 
pipeline trims sequencing adapters as well as low qual-
ity read ends and discards reads shorter than 50bp using 
Trimmomatic [37].

16S rRNA sequencing analyses
Demultiplexed reads were processed and denoised by 
DADA2 [38]. Taxonomy was assigned using the DADA2 
implementation of the RDP classifier [39] using the 
DADA2-formatted training sets for SILVA138 (zenodo. 
org/ record/ 37311 76/ files/ silva_ nr_ v138_ train_ set. fa. gz). 
Species were assigned by exact matching against a ref-
erence (zenodo. org/ record/ 37311 76/ files/ silva_ speci es_ 
assig nment_ v138. fa. gz). A phylogenetic tree was con-
structed de novo via the DECIPHER and phangorn R 
packages. The optimized tree counts for a total of 1504 
detected different amplicon sequence variants (ASVs), 
and taxonomy tables were converted into a phyloseq 
object [40] for further downstream analyses. No filtering 
except for unassigned taxa was performed prior to calcu-
lation of diversity metrics and ordination analysis of the 
complete dataset (1414 ASVs, 104 samples, day 1 to 21), 
while singletons were removed from differential abun-
dance analysis in 20 samples at day 21 (284 ASVs).

Isolation of murine splenic immune cells
Spleen was homogenized, passed through 70 μm filters, 
washed, and subjected to red blood cell lysis (ACK lys-
ing buffer, GIBCO). The red blood cell lysis was stopped 
by adding washing buffer (MaxPar Cell staining Buffer, 
Fluidigm), and the homogenate was then passed through 
30 μm filters and washed again before final suspension 
in MaxPar Cell staining Buffer. The cell suspension was 
adjusted to  2x106 cells/500 μl.

Isolation of murine intrahepatic immune cells
Isolation of murine intrahepatic immune cells was per-
formed as reported previously [41]. Briefly, whole liver 
was prepared by harvesting perfused liver lobes into 15 
ml PBS. The liver was dissociated mechanically, followed 
by tissue digestion (0.5 mg/ml Collagenase Type IV 
(Worthington), 0.02 mg/ml DNAse I (Sigma-Aldrich), 2 
% fetal calf serum, 0.6 % bovine serum albumin in HBSS) 
for 30 min at 37 °C in a rotation shaker (200 rpm). Hepat-
ocytes were then pelleted (30 g, 1 min, room temperature 
(RT)), the supernatant was centrifuged (310 g, 4 min, 4 
°C), and the pellet was resuspended in 30 % density gradi-
ent media (Percoll, Sigma-Aldrich) in HBSS followed by 

centrifugation (800 g, 30 min, RT) to enrich liver mono-
nuclear cells. Following red blood cell lysis (ACK lysing 
buffer, GIBCO), the homogenate was washed again, and 
passed through 30-μm filters before final suspension 
in MaxPar Cell staining Buffer. The cell suspension was 
adjusted to 2 ×  106 cells/500 μl.

Isolation of lamina propria mononuclear cells
Lamina propria mononuclear cells (LPMC) were isolated 
from colon sections (10 cm distal part) as described pre-
viously [42]. Briefly, the colon was opened longitudinally, 
cut into small pieces, and subsequently incubated twice 
with HBSS containing 1 mmol/l EDTA for 30 min, fol-
lowed by enzymatic digestion (0.44 mg/ml Collagenase 
D and 20 μg/ml DNase I in RPMI, Sigma-Aldrich) for 60 
min at 37 °C. After a filtration step through a 100μm fil-
ter, the LPMC were purified by 44/67% density gradient 
(Percoll™, GE Healthcare) centrifugation for 20 min at 
600 × g.

Staining for mass cytometry
For barcoding, anti-CD45 antibodies were conjugated 
in house to 89Y, 147Sm, and 166Er. Up to six individual 
samples were stained with a combination of the differ-
ent anti-CD45 antibodies for 30 min at 4 °C. Cells were 
then washed and pooled for surface staining. A total of 
2 ×  106 cells per sample were stained in a 96-deep-well 
plate with metal-conjugated antibodies (antibodies for 
mass cytometry as previously described [43]) for 30 min 
at RT. 0.5 mM cisplatin (Fluidigm) was added as live/
dead cell marker for the last 10 min. Cells were then 
washed twice and the pellet was resuspended in 1 ml of 
nucleic acid Intercalator-Ir solution (12.5 nM Cell-ID 
Intercalator-Ir diluted in MaxPar Fix and Perm Buffer, 
Fluidigm), followed by incubation at RT for 30 min. Fol-
lowed by two washing steps, the cells were resuspended 
in 100 μl formaldehyde-solution (1:10) and fixed over-
night at 4 °C. The next day, cells were washed twice with 
ultrapure water and kept at 4 °C until mass cytometry 
measurement.

Mass cytometry measurement
Cells were analyzed using a CyTOF2 upgraded to Helios 
specifications, with software version 6.7.1014, using a 
narrow bore injector. The instrument was tuned accord-
ing to the manufacturer’s instructions with tuning 
solution (Fluidigm) and measurement of EQ four ele-
ment calibration beads (Fluidigm) containing 140/142Ce, 
151/153Eu, 165Ho, and 175/176Lu served as a quality con-
trol for sensitivity and recovery. Directly prior to analy-
sis, cells were resuspended in  ddH2O, filtered through 
a 20-μm cell strainer (Celltrics, Sysmex), counted and 
adjusted to max. 8 ×  105 cells/ml. EQ four element 
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calibration beads were added at a final concentration 
of 1:10 v/v of the sample volume to be able to normal-
ize the data to compensate for signal drift and day-to-day 
changes in instrument sensitivity. Samples were acquired 
with a flow rate of max. 300 events/s. The lower convolu-
tion threshold was set to 400, with noise reduction mode 
turned on and cell definition parameters set at event 
duration of 10-150 pushes (push = 13 μs). The resulting 
flow cytometry standard (FCS) files were normalized and 
randomized using the CyTOF software’s internal FCS-
Processing module on the non-randomized (“original”) 
data. The default settings in the software were used with 
time interval normalization (100 s/minimum of 50 beads) 
and passport version 2. Intervals with less than 50 beads 
per 100 s were excluded from the resulting FCS file.

Mass cytometry data analysis
FCS files were compensated for signal spillover using 
CATALYST package and per channel intensity ranges 
were aligned between batches of measurements using 
the normalizeBatch function (cydar package). Cytobank 
[44] was used for manual debarcoding, gating of lym-
phocyte subsets and to perform viSNE on pre-gated sub-
sets as described previously [43]. For each organ (colon, 
liver, spleen) semi-supervised population identification 
was conducted by graph-based clustering (R pheno-
graph package) on total leukocytes as well as on events 
pre-gated for  TCRab−CD19−NK1.1− and  TCRab+ to 
better resolve the innate/myeloid compartment and T 
cells, respectively. Leaf nodes were merged into biologi-
cally relevant subsets by second-level hierarchical clus-
tering while putting more weight on lineage-delineating 
markers.

Statistical analysis
The results are shown as the mean ± SD. A P-value of 
< 0.05 was considered significant. All analyses were per-
formed using GraphPad Prism version 7 (GraphPad Soft-
ware) and R version 3.4.0, available free online at https:// 
www.r- proje ct. org. Mathematical correction for multiple 
comparisons was made whenever indicated. Diversity 
metrics were calculated from microbial ASVs and prin-
cipal coordinate analysis (PCoA) carried out using the 
phyloseq and vegan packages. Changes in alpha-diversity 
over time and between group were tested by ANOVA-
type statistic using the nparLD package [45]. Bray-Curtis 
dissimilarity computed from variance-stabilized counts 
of the complete dataset was used to quantify and visual-
ize compositional changes between microbial commu-
nities by PCoA. Global differences between groups and 
changes over time were tested on the dissimilarity matrix 
by permutational analysis of variance using adonis with 
9999 replications. Differential abundance analysis of 

ASVs between CalRes and AdLib groups at day 21 was 
carried out using DESeq2. Abundances of significant 
ASVs (FDR < 0.01) were visualized by heatmap along 
with log2-fold change (LFC) values.

For statistical analysis of cell population abundances, 
we fitted a generalized linear mixed-effects model 
(GLMM) for each population using the lme4 package as 
previously described [46]. To take into account the day-
to-day (batch) variability of the mass cytometry runs, we 
included batch as fixed effect in the models and all quan-
titative data presented are shown after batch-adjustment. 
P-values resulting from differential abundance testing 
were adjusted using the Benjamini-Hochberg procedure 
and an FDR-cutoff of 5% across all clusters/subsets and 
between-group comparisons. To estimate differences 
between manually gated immune cell subsets, one-way 
ANOVA followed by Tukey’s tests were applied.

To investigate associations between microbial compo-
sition and immune cell populations, we performed sparse 
canonical correlation analysis. For each organ, a semipa-
rametric correlation matrix was estimated based on the 
latent Gaussian copula model using the mixedCCA  pack-
age with selection of canonical correlation vectors using 
L1-penalization (lasso) and the Bayesian information cri-
terion for unknown error variance [47]. Sparse canonical 
covariates were computed by matrix multiplication of the 
ranked variables of each dataset with its canonical vector. 
Each latent correlation matrix was ordered using the pro-
jection on its first principal component to visualize the 
cross-correlation structures and to additionally highlight 
the top ten taxa that either positively or negatively asso-
ciate with the immunological datasets. All heatmaps and 
circular correlation plots were generated using the Com-
plexHeatmap and circlize.

The body weight and glucose time course data were 
analyzed by two-way repeated measures ANOVA fol-
lowed by post-hoc (Bonferroni) test.

Results
Caloric restriction changes the gut microbiome 
composition in humanized gnotobiotic mice
Germ-free mice were colonized with the human gut 
microbiota taken from an obese female before (AdLib) 
and after (CalRes) an 8-week very low-calorie diet (800 
kcal/day), which was part of a randomized human inter-
vention study, including 80 postmenopausal women who 
were overweight or obese [11, 33, 34]. In our prior work, 
we have shown that caloric restriction has pronounced 
impacts on microbial community structure with marked 
changes in metabolic activity and expansion of bacteria 
that can degrade host glycans [34]. Importantly, differ-
ences between the microbiota of humans before and after 
caloric restriction were recapitulated in microbiota from 

https://www.r-project.org
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gnotobiotic-recipient mice [34]. Here, we collected stool 
samples from GF-recipient mice frequently over a period 
of 3 weeks and performed 16S rRNA gene sequencing 
to determine differences in microbiota between groups. 
Consistent with previous findings [48], the CalRes-recip-
ient microbiota exhibited overall higher alpha diversity 
compared to the AdLib group (Fig. 1A). A principal com-
ponent analysis revealed that the first two components 
driving the variation within the microbiota are time after 
colonization and donor group (Fig.  1B), demonstrat-
ing the development of different microbial communities 
between groups (ADONIS pgroup:time < 0.001). Addition-
ally, these data demonstrate that one week is sufficient 
for a human microbiota to mature in a previously GF 
mouse gut, replicating, as shown previously [34, 49]. 
Using DESeq2 differential abundance testing, AdLib and 
CalRes samples were distinguished by defined microbial 
taxa as shown in Fig.  1C. Colonization with the CalRes 
microbiota led to a significant decrease of multiple taxa 
such as Rhodospirillales, Eubacterium ventriosum, Hun-
gatella hathewayi, or Chlostridium ramosum [50–54]. 
Rhodospirillales belong to the phylum Proteobacteria, 
which was overrepresented in obese humans in multiple 
studies [55, 56], whereas several bacteria that belong to 
the Lachnospiraceae family and were shown to negatively 
correlate with energy consumption [57] were signifi-
cantly more abundant in the CalRes group. Interestingly, 
the abundance of Monoglobus pectinilyticus, which pos-
sesses a highly specialized glycobiome for pectin degra-
dation was significantly increased in mice that had been 
inoculated with the CalRes microbiota. M. pectinilyti-
cus is present in humans with a high intake of dietary 
fiber and pectin [58]. Recipients of the CalRes sample 
showed increased abundance of several taxa belonging 
to the phylum Bacteroidetes in line with previous find-
ings [17, 31], whereas other bacteria specialized for the 
metabolism of plant polysaccharides (Ruminococcus, 
Eubacterium) [59, 60] were decreased, consistent with 
our findings in the human microbiota [34]. A compre-
hensive list of differentiating taxa is given in Additional 
file  2. Together, these results suggest that inoculation 
of the AdLib or the CalRes human microbiota into GF 
mice induced different shifts in recipient gut microbial 

communities. Importantly, given the limitation of a sin-
gle donor approach, comparison of our selected donor 
(MMSP50) against the remainder of the cohort indicated 
that the donor was a good representative of the cohort 
[34] (Supplementary Figure 1A-C).

Colonization with CalRes‑associated gut microbiota alters 
body fat and glucose clearance
Next, we evaluated the effect of human microbial colo-
nization on adiposity and glucose metabolism in gnoto-
biotic-recipient mice. Epigonadal white adipose tissue 
(eWAT) and spleen weights increased after colonization 
compared to the GF control group with the same trend 
in liver weights (Fig. 2A–C), despite no significant dif-
ferences in feces weight, energy loss, fecal energy con-
tent, food consumption, and energy absorption during 
the 3 weeks following the inoculation (Fig.  2D, Sup-
plementary Figure  2A-D). Moreover, eWAT was sig-
nificantly lower in mice colonized with the CalRes 
compared to mice colonized with the AdLib microbiota 
(Fig. 2B). The reduction in body weight was associated 
with reduced cecum weight after colonization (Fig. 2E, 
Supplementary Figure  2E), which has been reported 
to be a hallmark of the colonization process [16, 61]. 
However, we did not observe significant changes in 
body weight gain over the course of the experiment 
between mice colonized with the AdLib and mice colo-
nized with the CalRes microbiota (Supplementary Fig-
ure 2E). To further identify metabolic changes between 
GF and colonized mice, we performed oral glucose tol-
erance tests 3 weeks after the colonization. Glucose lev-
els over time tended to be lower and glucose area under 
the curve was significantly lower in mice receiving the 
human CalRes microbiota compared to mice receiving 
the AdLib sample of the same donor (Fig. 2F, G). Simi-
lar to our previous work [34], these data demonstrate 
that caloric restriction-induced changes in the trans-
ferred human gut microbiota may induce metabolic 
improvement, although further experiments including 
dietary challenges of the recipient mice are needed to 
more precisely define the link between microbial and 
metabolic alterations.

Fig. 1 Caloric restriction changes the gut microbiome composition in humanized gnotobiotic mice. A Number of observed amplicon sequence 
variants (ASVs) and Shannon index indicate microbial richness and diversity for 3 weeks following colonization. P‑values are given for repeated 
measures non‑parametric ANOVA‑type testing for differences between groups and time points (n = 104 stool samples across 23 mice and 5 
time points). B Principal coordinates of Bray‑Curtis dissimilarity between stool samples. Color indicates groups. Numeric labels denote the 5 time 
points. Ellipses enclose group masses (99% CI) for day 21. P‑values are given for adonis permutational analysis of variance testing for group × time 
differences. C Heatmap representation of day 21 differentially abundant ASVs (n = 20). ASVs are shown at the most specific assigned taxonomy 
with FDR‑adjusted P‑values < 0.01 in DESeq2 two‑sided Wald test. Bubbles indicate log‑fold change (LFC) between the two groups. Heatmap 
colors indicate relative abundances as variance‑stabilizing (log2) transformed counts ranging from 4 (dark blue, corresponding to 0 raw counts) 
to 14 (yellow, corresponding to 14K raw counts). Color of bubbles and species labels denote phylum. Bubble sizes are proportional to − log10 
FDR‑adjusted P‑values. Dendrogram leaf numbers indicate individual housing cages

(See figure on next page.)
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The CalRes microbiota reduces levels of intestinal effector 
memory  CD8+ T cells and memory B cells
Given the increasing evidence for the crosstalk between 
the gut microbiota and the host immune system [16], 
we aimed to elucidate whether the intestinal immune 
cell composition would differ between GF and AdLib- 
and CalRes-recipient mice. Using multidimensional 
mass cytometry and a metal-conjugated antibody panel 
that has been described elsewhere [43], we first ana-
lyzed colon immune cells 3 weeks post-colonization. 
We generated a global lineage 2D t-distributed neighbor 
embedding (t-SNE) map based on lineage-specific differ-
entiation markers and performed PhenoGraph cluster-
ing after gating on viable intestinal  CD45+ leukocytes. 
The unbiased comparison between the relative cellular 

distributions of the three mouse groups revealed that 
each group (AdLib, CalRes, or GF) can be almost exclu-
sively differentiated by their immune cell profile (Supple-
mentary Figure  3A). Next, we analyzed the distribution 
of innate and adaptive immune cells, using PhenoGraph 
clustering and t-SNE on all lineages (Supplementary Fig-
ure  3B), on pre-gated TCRß+ T cells (Fig.  3A), and on 
pre-gated TCRß−CD19−NK1.1− innate immune cells 
(Fig. 3B). The differential expression of surface and acti-
vation markers for T cells is shown in the heatmap for 
each of the 23 sub-clusters. Colonization with the human 
microbiota led to higher proportions of  CD4+ T cells 
expressing the memory and activation markers CD44 
and CD69 (cluster 22, Fig.  3A). Double-negative T cells 
expressing CD38, CD69, and CD103 were significantly 

Fig. 2 Colonization with CalRes‑associated gut microbiota alters body fat and glucose clearance. Metabolic analysis of germ‑free (GF) mice and 
mice inoculated with AdLib and CalRes human gut microbiota. A–C Spleen (A), epigonadal white adipose tissue (eWAT) (B), and liver (C) weights 
from GF and colonized mice. D Feces weight was measured using bomb calorimetry in GF and colonized mice. E Caecum weights from GF and 
colonized mice were analyzed with and without fecal contents. F Fasting male adult GF or colonized mice maintained on normal chow diet were 
challenged with oral glucose and blood was sampled for glucose at times indicated. G Area under the OGTT glucose‑time curve (AUC). * P < 0.05, 
** P < 0.01, **** P < 0.0001 as determined using ANOVA with Bonferonni’s post‑test correction for multiple comparisons; error bars = SEM; ns = not 
significant
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higher in GF mice (cluster 11, Fig.  3A). In the  CD8+ T 
cell compartment, we observed increased levels of cells 
with high expression of CD44, CD69, and CD38 and low 
expression of CD62L (that can be defined as effector 
memory T cells) in mice colonized with obesity-associ-
ated AdLib compared with mice colonized with the Cal-
Res microbiota (cluster 9, Fig. 3A). In the innate immune 
cell compartment, we found significantly higher levels of 
immune cell clusters expressing the activation markers 
CD40 and CD38 in GF mice (cluster 5, Fig. 3B), whereas 
the activation markers CD25 and CD83 were signifi-
cantly higher in both colonized mouse groups (cluster 17, 
Fig. 3B). The proportions of myeloid cells expressing the 
immune checkpoint receptor ligands PD-L1 and PD-L2 
and the memory marker CD44 were also significantly 
higher in colonized mice (cluster 13, Fig. 3B). Moreover, 
CalRes-recipient mice exhibited significantly higher pro-
portions of the activation markers CD83 and CD86 com-
pared to AdLib-recipient mice (cluster 16, Fig. 3B).

Manual gating allowed us to define known subsets and 
to compare levels of distinct subsets within the adaptive 
and innate immune cell compartment. Colonization with 
the AdLib microbiota increased the frequencies of effec-
tor memory  CD4+ T cells (Fig. 3C, left panel). However, 
colonization with the CalRes microbiota reversed this 
trend in the  CD8+ T cell compartment with increased 
frequencies of naïve  CD8+ T cells, whereas the levels of 
effector memory  CD8+ T cells were decreased (Fig. 3C, 
right panel). We found similar results in the B cell com-
partment with increased B cell frequencies in mice col-
onized with CalRes-associated microbiota (Fig.  3D), 
whereas the frequencies of naïve B cells were increased 
and the frequencies of “switched” memory B cells were 
decreased (Fig. 3E, F). In addition, mass cytometry quan-
tification of absolute numbers of colonic leukocytes, 
 CD4+ and  CD8+ T cells, and B cells revealed no differ-
ences between these groups (Supplementary Figure  3C-
F). Interestingly, both colonized mouse groups exhibited 
significantly lower frequencies of NK cells compared to 
GF mice, and CalRes recipients showed even lower NK 
cell frequencies compared to AdLib recipients (Fig. 3G). 
Mice colonized with the CalRes microbiota also had 

lower absolute numbers of NK cells compared to GF 
mice (Supplementary Figure 3G), and significantly higher 
levels of  CD62L+ NK cells compared to the other mouse 
groups (Fig. 3H). These results suggest that diet-induced 
microbial alterations can lead to altered frequencies of 
effector memory T and B cells and, thus, can induce a 
delay of immune cell senescence in the colon.

Colonization with human gut microbiota induces 
alterations of splenic immune cell subsets
Given that transplantation of human feces affected by 
caloric restriction was sufficient to reveal differential 
accumulation of naïve and effector memory  CD4+ and 
 CD8+ T cells, and memory B cells in the gut compared 
to the obese ad  libitum state, we next tested whether 
these differences in adaptive immune cells would also be 
detectable systemically and, thus, investigated immune 
cell subsets in the spleen. PhenoGraph clustering after 
gating on viable splenic  CD45+ leukocytes revealed dis-
tinct immune cell distributions in GF mice, AdLib-recip-
ient mice, and CalRes-recipient mice (Supplementary 
Figure  4A). Similar to our previous analysis of colonic 
immune cells, we used t-SNE on all lineages (Supple-
mentary Figure 4B), on pre-gated splenic TCRß+ T cells 
(Fig.  4A), and on TCRß−CD19−NK1.1− innate immune 
cells (Fig.  4B) to detect differential expression levels of 
cell surface markers.  CD4+,  CD8+, and double-nega-
tive T cells were divided into a total of 20 immune cell 
clusters. GF mice had significantly more abundant clus-
ters expressing high levels of CD4, CD62L, and CD25 
compared to both groups of colonized mice (cluster 19, 
Fig. 4A), whereas colonized mice had increased levels of 
clusters 18, 6, and 13 expressing T cell memory mark-
ers (CD44, Fig.  4A). CalRes-recipient mice exhibited 
increased proportions of a subset with high expression of 
CD8, CD62L, and CD44 (central memory  CD8+ T cells) 
compared to mice colonized with the AdLib microbiota 
(cluster 10, Fig.  4A). Differences in a cluster with high 
expression of CD4 and CD25 could also be observed, 
with increased levels in mice colonized with the CalRes 
microbiota vs. the AdLib group (cluster 19). However, 
there were no significant differences in other immune 

Fig. 3 The CalRes microbiota reduces levels of intestinal effector memory  CD8+ T cells and memory B cells. A, B The heatmaps show cluster 
phenotypes based on the expression of canonical lineage markers on pre‑gated TCRß+ T cells (A) and on pre‑gated TCRß−CD19−NK1.1− innate 
immune cells (B). The differential expression of each selected surface marker (rows) is shown for each immune cell cluster (columns). The 
significance levels of the comparison between the three mouse groups for each immune cell cluster are depicted by semi‑supervised hierarchical 
clustering. The top bubbles denote clusters with significantly different abundances between the three groups. Bubble colors indicate one of 
the two groups being compared with higher average cellular frequencies; bubble size indicates the ‑log2 FDR‑adjusted p‑values. C Relative 
proportions of  CD4+ (left panel) and  CD8+ (right panel) naïve  (Tnaïve,  CD44−CD62L+), central memory  (TCM,  CD44+CD62L+), effector memory  (TEM, 
 CD44+CD62L−) and terminally differentiated effector memory T cells  (TEMRA,  CD44−CD62L−) measured by mass cytometry. T cell populations were 
manually gated according to established lineage markers. D–H Relative proportions of total B cells (D), naïve B cells (E), “switched” memory B cells 
(F), NK cells (G) and activated  CD62L+CD11b+ NK cells (H). n = 9 or more mice per group. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P < 0.0001 as 
determined using Student’s t‑test or Mann‑Whitney test, dependent on the distribution of the data

(See figure on next page.)
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cell clusters in the T cell compartment between mice 
colonized with the AdLib or CalRes microbiota (Fig. 4A). 
Interestingly, GF mice exhibited higher levels of most of 
the 23 clusters of the splenic myeloid compartment that 
expressed surface markers for macrophages and mono-
cytes in comparison with colonized mice (clusters 21, 5 
and 7, Fig.  4B). Immunophenotyping of innate immune 
cell populations in the spleen, did not reveal major 
changes comparing AdLib-recipient mice to CalRes-
recipient mice. To further evaluate differences between 
GF and colonized mice, we analyzed innate and adaptive 
immune cells by manual gating. Microbiota colonization 
decreased the frequencies of naïve  CD4+ and  CD8+ T 
cells independent of caloric restriction but led to a signif-
icant increase of terminally differentiated effector  CD4+ 
T cells and effector memory  CD8+ T cells (Fig. 4C). As 
expected, absolute numbers of leukocytes,  CD4+ T cells, 
 CD8+ T cells, B cells, and NK cells were significantly 
increased in human gut microbiota-recipient mice (Sup-
plementary Figure  4C-G). There were no significant 
changes in the splenic T cell compartment between 
mice colonized with the AdLib and mice colonized with 
the CalRes microbiota. However, we observed a sig-
nificant decrease of total B cell frequencies in CalRes-
recipient mice compared to AdLib-recipient mice and a 
slight decrease of “switched” memory B cell frequencies 
within the B cell compartment in mice colonized with 
the CalRes human gut microbiota compared to GF mice 
(Fig. 4D–F). We found no differences in splenic NK cell 
frequencies or their activation state (Fig.  4G, H). Our 
results suggest that colonization with the human gut 
microbiota into GF mice led to significant alterations of 
systemic innate and adaptive immune cells.

Caloric restriction‑associated gut microbiota reduces levels 
of hepatic effector memory  CD4+ and  CD8+ T cells
We next set out to elucidate whether diet-induced 
changes within the human gut microbiota would trans-
late to differences in hepatic immune cell changes in the 
gnotobiotic host. Recent studies on the colonization-
induced host-gut microbial interaction revealed that 
the colonization process stimulated glycogenesis in the 

liver, increased hepatic triglyceride synthesis, and that 
the microbial composition was strongly associated with 
hepatic metabolic profiles [62], raising the question 
whether the hepatic immune cell composition was also 
affected. We first addressed this question using Pheno-
Graph clustering after gating on viable hepatic  CD45+ 
leukocytes, which revealed distinct immune cell distri-
butions in GF mice, AdLib-recipient mice, and CalRes-
recipient mice, similar to our observations in colon and 
spleen (Supplementary Figure  5A). Next, we used Phe-
noGraph clustering on all lineages (Supplementary Fig-
ure  5B), on pre-gated splenic TCRß+ T cells (Fig.  5A), 
and TCRß−CD19−NK1.1− innate immune cells (Fig. 5B), 
as described above. A total of 19 clusters were defined 
in the T cell compartment of murine livers, whereas the 
myeloid compartment consisted of a total of 20 clusters. 
Microbial colonization increased levels of hepatic  CD4+ 
T cell clusters expressing the memory marker CD44 
(cluster 4, Fig.  5A), consistent with previous findings in 
the colon and spleen. Moreover, the frequencies of clus-
ters comprising naïve  CD8+ T cells (high expression of 
CD62L and low expression of CD44) were significantly 
higher in GF mice compared to mice inoculated with 
the human gut microbiota (cluster 11, Fig.  5A). Simi-
larly, microbial colonization increased levels of  CD4+ 
expressing innate immune cell clusters, which also exhib-
ited expression of activation markers, such as CD80 and 
CD40 (cluster 5, Fig.  5B). Comparing levels of distinct 
hepatic T cell subsets between the three mouse groups by 
manual gating, we observed a significant drop in effector 
memory  CD4+ T cells in mice colonized with the CalRes 
microbiota, whereas effector  CD4+ T cells were increased 
in both colonized mouse groups compared with GF mice, 
with a similar pattern in the  CD8+ T cell compartment 
(Fig. 5C). In line with our previous findings in the colon 
and spleen, microbial colonization led to significantly 
decreased levels of naive B cells in favor of increased lev-
els of “switched” memory B cells (Fig. 5D–F). In contrast 
to our findings in the colon, the frequency of hepatic NK 
cells was increased in colonized mice, whereas no sig-
nificant changes in the activation state of NK cells were 
observed (Fig.  5G, H). Absolute numbers of leukocytes, 

(See figure on next page.)
Fig. 4 Colonization with human gut microbiota induces alterations of splenic immune cell subsets. A, B The heatmaps show the distribution 
of splenic immune lineages based on the expression of canonical lineage markers by t‑SNE on pre‑gated TCRß+ T cells (A) and on pre‑gated 
TCRß−CD19−NK1.1− innate immune cells (B). The differential expression of each selected surface marker (rows) is shown for each immune cell 
cluster (columns). The significance levels of the comparison between the three mouse groups for each immune cell cluster are depicted by 
semi‑supervised hierarchical clustering. The top bubbles denote clusters with significantly different abundances between the three groups. Bubble 
colors indicate one of the two groups being compared with higher average cellular frequencies; bubble size indicates the − log2 FDR‑adjusted 
P‑values. C Relative proportions of  CD4+ (left panel) and  CD8+ (right panel) naïve  (Tnaïve,  CD44−CD62L+), central memory  (TCM,  CD44+CD62L+), 
effector memory  (TEM,  CD44+CD62L−) and terminally differentiated effector memory T cells  (TEMRA,  CD44−CD62L−) measured by mass cytometry. T 
cell populations were manually gated according to established lineage markers. D–H Relative proportions of B cells (D), naïve B cells (E), “switched” 
memory B cells (F), NK cells (G), and activated  CD62L+CD11b+ NK cells (H). n = 9 or more mice per group. * P < 0.05, ** P < 0.01, *** P < 0.001, **** P 
< 0.0001 as determined using Student’s t‑test or Mann‑Whitney test, dependent on the distribution of the data
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 CD4+ T cells,  CD8+ T cells, B cells, and NK cells were 
similar between the three groups (Supplementary Fig-
ure 5C-G). Together, these results suggest that the CalRes 
microbiota not only induced alterations in frequencies of 
memory cells in the colon, but similarly led to delayed T 
cell senescence in the liver.

Immune cell composition correlates with microbial taxa
To identify significant correlations between immune 
cell subsets across multiple organs (colon, spleen, liver) 
and gut microbial alterations, we used sparse canoni-
cal correlation analyses. Interestingly, microbial taxa 
with increased abundances in mice colonized with 
the CalRes microbiota, including M. pectinilyticus, 
Tuzzerella, or Lachnospiraceae UCG-009 were associ-
ated with a decreased percentage of NK cells and other 
innate immune cells such as dendritic cells and mac-
rophages in the colon (Fig.  6A), in which the levels of 
innate immune cells are dominant compared to B and 
T cells. In line with these data, NK cell frequencies were 
recently shown to be reduced in peripheral tissues and to 
exhibit an altered phenotype in the spleen in mice that 
underwent caloric restriction [63]. CalRes-associated 
taxa were also positively associated with intestinal naïve 
and central memory  CD4+ and  CD8+ T and naïve B cell 
subsets, whereas taxa with high abundance in mice colo-
nized with the AdLib microbiota such as E. ventriosum 
gr., H. hathewayi, E. ramosum, and Rhodospirillales cor-
related positively with switched B cell and memory/effec-
tor T cell subsets in the colon (Fig. 6A). In addition, we 
found positive associations between E. ventriosum gr., H. 
hathewayi, E. ramosum, and Rhodospirillales with per-
centages of splenic switched B cells and memory/effector 
 CD4+ and  CD8+ T cells, whereas taxa with high abun-
dance in the CalRes group, including Lachnospiraceae 
and Ruminococcaceae correlated positively with naïve 
and central memory  CD4+ and  CD8+ T cells in the 
spleen (Fig. 6B). Similar results were observed in the liver, 
where taxa belonging to the phylum Firmicutes were 
positively associated with  CD44−CD62L− effector  CD4+ 
and  CD8+ T cells, whereas taxa with high abundance in 
the CalRes group correlated positively with naïve B and 

naïve and central memory T cell subsets (Supplementary 
Figure 6). These findings highlight the impact of caloric 
restriction on alterations in gut microbial communities, 
which may subsequently attenuate immune senescence 
across multiple organs.

Discussion
Obesity is linked to alterations in the human gut micro-
biome and chronic low-grade inflammation, potentially 
affecting numerous metabolic pathways including the 
development of fatty liver disease and insulin resistance. 
Caloric restriction induces distinct metabolic altera-
tions in host metabolism and may play an important 
role by influencing the activation and effector functions 
of immune cells. Here, we used multiparameter mass 
cytometry combined with a clinical diet intervention 
in humans and 16S rRNA sequencing of the recipient 
gut microbiome to test whether diet-induced changes 
in the human gut microbiome would affect the host’s 
immune response. Transplantation of fecal samples 
from the obese human donor before (AdLib) and after 
(CalRes) caloric restriction-induced maturation of dis-
tinct microbial communities in gnotobiotic-recipient 
mice. The initial drop in body weight after colonization, 
as well as increased adiposity, epigonadal fat expansion 
and impaired glucose tolerance in the delayed phase after 
colonization of GF mice has already been reported [16] 
and is consistent with our findings. Multiple studies have 
shown that switching from a high-fat, high-sugar “West-
ern” diet to caloric restriction can shift the structure 
of microbial communities and alter microbiome gene 
expression rapidly [28, 31, 32]. We observed a reduc-
tion in several taxa in the CalRes-recipient mice, includ-
ing B. vulgatus, Eubacterium ventriosum group, Dorea, 
Adlercreutzia aequolifaciens, Butyricicoccus, Erysipela-
toclostridium ramosum, Anaerostipes hadrus, Alistipes 
obesi, Hungatella hathewayi, Rhodospirillales, and Bacte-
roides uniformis, and increased abundances of taxa such 
as Roseburia hominis, Bilophila wadsworthia and Cop-
rococcus consistent with previously reported taxonomic 
changes in our donor individual and in multiple other 
studies [34, 54, 64–67], with the exception of Anaerostipes 

Fig. 5 Caloric restriction‑associated gut microbiota reduces levels of hepatic effector memory  CD4+ and  CD8+ T cells. A, B The heatmaps show 
the distribution of hepatic immune lineages based on the expression of canonical lineage markers by t‑SNE on pre‑gated TCRß+ T cells (A) and 
on pre‑gated TCRß−CD19−NK1.1− innate immune cells (B). The differential expression of each selected surface marker (rows) is shown for each 
immune cell cluster (columns). The significance levels of the comparison between the three mouse groups for each immune cell cluster are 
depicted by semi‑supervised hierarchical clustering. The top bubbles denote clusters with significantly different abundances between the three 
groups. Bubble colors indicate the one of the two groups being compared with higher average cellular frequencies; bubble size indicates the − 
log2 FDR‑adjusted p‑values. C Relative proportions of  CD4+ (left panel) and  CD8+ (right panel) naïve  (Tnaïve,  CD44−CD62L+), central memory  (TCM, 
 CD44+CD62L+), effector memory  (TEM,  CD44+CD62L−) and terminally differentiated effector memory T cells  (TEMRA,  CD44−CD62L−) measured by 
mass cytometry. T cell populations were manually gated according to established lineage markers. D–H Relative proportions of B cells (D), naïve B 
cells (E), “switched” memory B cells (F), NK cells (G), and activated  CD62L+CD11b+ NK cells (H). n = 9 or more mice per group. * P < 0.05, ** P < 0.01, 
*** P < 0.001, **** P < 0.0001 as determined using Student’s t‑test or Mann‑Whitney test, dependent on the distribution of the data

(See figure on next page.)
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hadrus, which has been described to increase during 
human weight loss [68], and Dorea, for which increased 
and decreased abundances during weight loss were 
reported [69–71]. Similarly, microbial colonization with 
the CalRes microbiota increased the abundance of taxa 
belonging to the phylum Bacteroidetes, whereas several 
bacteria belonging to the Proteobacteria family were 
decreased compared to mice inoculated with the AdLib 
microbiota. The AdLib microbiota in the gnotobiotic-
recipient mice was characterized by increased abun-
dances of taxa such as E. ventriosum gr., H. hathewayi, 
E. ramosum, and Rhodospirillales which were associated 
with higher percentages of memory B cells and memory/
effector  CD4+ and  CD8+ T cells in the colon and the 
spleen. H. hathewayi, E. ramosum, Rhodospirillales, and 
E.ventriosum are linked to obesity and obesity-related 
pathologies [51–53]. Moreover, previous clinical studies 
investigating the role of H. hathewayi have highlighted 
its association with colorectal cancer [72, 73] and poor 
response to immunotherapy in melanoma and renal cell 
cancer patients [74, 75]. E. ramosum was shown to pro-
mote high fat diet-induced obesity in gnotobiotic mice, 
is associated with the metabolic syndrome in humans 
[53], increased in Crohn’s disease, and induced Th1 cells 
and intestinal inflammation in gnotobiotic mice [76]. In 
contrast, caloric restriction increased the abundance of 
M. pectinilyticus, associated with a high intake of dietary 
fiber and pectin [58]. Multiple taxa belonging to the phy-
lum Lachnospiracae had a significantly higher abundance 
in the CalRes group as well and were positively correlated 
with percentages of naïve B and T cells. Importantly, 
taxonomic differences between experimental groups are 
partially driven by the fact that some taxa were below the 
detection limit in one group or the other (Fig. 1C). Thus, 
we anticipate that the AdLib and CalRes communities 
would not further converge over time (if entirely absent), 
albeit being on the same diet, which is shown in Fig. 1B 
where community structure remained stable within each 
group but separated between groups after day 14.

Fecal transplantation with the human microbiota led 
to significant differences in naïve and memory/effector 
B and T cell subsets, NK cells and various other subsets 
of innate immune cells depending on the nutritional state 

of the donor. Colonization of GF mice with the AdLib 
human gut microbiota raised frequencies of memory/
effector  CD4+ and  CD8+ T cell subsets, as well as fre-
quencies of class-switched memory B cells throughout 
all investigated tissues. Contrastingly, the levels of effec-
tor memory  CD8+ T cell subsets were significantly lower 
in mice colonized with the CalRes microbiota compared 
to mice colonized with the AdLib microbiota in the large 
intestine and the liver. Thus, the caloric restriction-
associated microbiota delayed immune cell senescence, 
which may have initially been induced by an increase in 
intestinal permeability of pro-inflammatory molecules 
and increased hepatic inflammation in the early phase of 
colonization [16]. Similarly, caloric restriction preserved 
a naïve T cell phenotype and an immature NK cell phe-
notype in aged wildtype mice [15].

Consistent with our prior work, mice inoculated with 
the AdLib gut microbiota exhibited increased epigo-
nadal fat pads and lower glucose clearance during an 
OGTT compared to mice inoculated with the Cal-
Res gut microbiota [34]. Whereas caloric restriction 
and weight loss improved systemic insulin sensitivity 
in human participants of our weight loss intervention 
study, human subcutaneous adipose tissue displayed no 
significant improvement of inflammatory parameters 
(cytokine levels and leukocyte subpopulations) and no 
significant changes in systemic immune cell populations 
could be detected [11]. Contrastingly, the CalRes micro-
biota induced significant alterations in memory cell sub-
sets and attenuated immune senescence in gnotobiotic 
recipients maintained on a chow diet. We hypothesize 
that obesity-induced immunologic changes, e.g., T cell 
senescence, in adipose tissues could have a long-stand-
ing effect that may be hard to overcome by short-term 
caloric restriction-induced weight loss. Taken together, 
caloric restriction has the potential to reduce obesity-
associated microbial taxa that are linked with systemic 
inflammation, cancer development and metabolic disease 
and subsequently attenuate immune senescence and low-
grade inflammation.

Our study has several limitations. First, since the 
human donor samples were derived from a single indi-
vidual, the results may not be generalizable to other 

(See figure on next page.)
Fig. 6 Immunologic changes correlate with gut microbial alterations. Heatmaps show latent correlation matrices between abundances of 
amplicon sequence variants (ASVs) detected in stool samples and all immune parameters analyzed in colon (A) and spleen (B) of mice 21 days 
after inoculation with AdLib and CalRes human gut microbiota. Immune parameters are expressed as frequencies, i.e., percent of parent, except 
those labeled # which were quantified as absolute cell counts. Heatmaps were ordered according to rows and columns first principal components 
to highlight cross‑correlation structures. Asterisks indicate variables that were selected in L1‑penalized sparse canonical correlation analysis (CCA). 
Circular chord plots display latent correlation between frequencies of manually defined immune subsets and L1‑selected ASVs including the top 
ten taxa that either positively (upper) or negatively (lower) associate with the immunological dataset. Blue to red color scale in heatmaps and 
chords indicates negative and positive correlation values. Color of row‑legend bar and species labels denotes the phylum level. Colors of column 
legend bars indicate parental lineage and differentiation level (antigen‑experience) of lymphocyte subsets, respectively. Boxplot insets show how 
experimental groups as a latent variable are explained by the canonical covariate
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individuals. Thus, immune responses of recipient hosts 
may vary with regard to individual variation of donor 
microbial community dynamics undergoing weight 
loss with VLCD, specifically if the diets vary in caloric 
content, macro- and/or micronutrient composition. 
To address this limitation, we compared the diversity 
dynamics of our donor samples to the original study 
cohort from which this donor was selected undergo-
ing the same intervention with the same diet regime 
as previously reported [34]. Compared to other obese/
overweight individuals in this cohort, diversity distance 
metrics revealed the baseline (AdLib) and diet sam-
ples (CalRes) of our individual donor (MMSP50) were 
representative of subjects on the diet regime. None-
theless, the variability of host immune response to the 
CalRes microbiome of several individuals on cohort 
level remains to be determined but is limited to the 
constraints of the gnotobiotic experimental setting. 
Together with corresponding taxonomic changes during 
weight loss in the literature as stated above, the observed 
taxonomic changes during caloric restriction are fairly 
representative regarding known weight loss-associated 
community dynamics. Further, the limited transfer rate 
from humans to mice specifically in the Firmicutes clade 
[34, 77], allows only limited interpretation comparing 
taxonomic changes of the donor and recipients. Sec-
ond, since we have used a translational approach from 
humans to GF mice, we can only provide indirect evi-
dence regarding the immune response, which may be 
different in the human host. Whereas correlation analy-
ses revealed significant associations between taxa that 
were dominant in the CalRes microbiota with naïve B 
and T cell subsets, only monocolonization of GF mice 
with specific bacterial species followed by systematic 
analyzation of host immunologic adaptation to coloni-
zation would provide a causal evaluation of the effect 
of individual bacterial species on the composition and 
activation of innate and adaptive immune cells [27]. 
Third, mice were not singly housed but in groups of 
two to four mice per cage (three cages per experimental 
group, respectively). We observed a skewed abundance 
distribution for a few taxa as shown by leaflet numbers 
in Fig. 1C (Colidextribacter, Lachnospiraceae NK4A136 
group, and Coprococcus comes were more abundant in 
cage 1 of the CalRes groups, Lachnospiraceae were more 
abundant in cages 2 and 3 of the AdLib group) which 
needs to be taken into consideration for interpretation 
of the data. However, the abundance distribution of the 
most taxa was even between cages of each experimen-
tal group. Another caveat is that amplicon sequencing 
frequently lacks the resolution to resolve species and 
strains which may be phenotypically diverse in their 
host-microbe interactions [78].

Key questions regarding the mechanisms that are 
mediating the crosstalk between microbial communi-
ties, tissue immune cell composition, and metabolism 
in both mice and humans, and the underlying immune 
signaling pathways remain open. Nevertheless, this work 
extends previous important findings on the microbiota-
host immune system crosstalk [26, 27], by studying the 
interaction of the obesity- and caloric restriction-associ-
ated human gut microbiota on immune responses in sev-
eral murine tissues via multiparameter mass cytometry. 
We validated the computational unbiased analysis of our 
multidimensional mass cytometry data by manual gating 
and were able to show that both methods led to similar 
results, as shown before [43]. Additionally, future stud-
ies should address the question whether these effects are 
long-lasting or highly dependent on immediate changes 
in the diet. Another critical question is if diet-induced 
changes within the microbiome of children may exert 
similar or divergent effects on immune cell maturation.

Conclusion
Taken together, we provide first data for a better under-
standing of the host immune system-microbiota inter-
action in the context of caloric restriction which may 
impact metabolic diseases such as obesity and type 2 
diabetes.

Abbreviations
Ad Lib: Before 8‑week caloric restriction program; CalRes: After 8‑week caloric 
restriction program; FMT: Fecal microbiota transfer; GF: Germ‑free; GLMM: 
Generalized linear mixed‑effects model; IL‑6: Interleukin‑6; Th1: CD4+‑type 1 
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Additional file 1: Supplementary Figure 1. Related to Fig. 1. MMSP50 
is a representative donor of the weight loss cohort. A Examination of 
baseline alpha diversity demonstrates that MMSP50 is at the  54th ranked 
percentile for baseline diversity after VLCD. B Their baseline microbiota 
composition (principal coordinates analysis of Bray‑Curtis Dissimilarity) is 
well within the 95% confidence interval of baseline composition for the 
cohort (dotted line) and C their change in community structure is the 
 19th percentile for change in composition. Supplementary Figure 2. 
Related to Fig. 2. No significant changes in energy loss or fecal content 
after microbial colonization. Metabolic analysis of germ‑free (GF) mice 
and mice inoculated with the AdLib and CalRes human gut microbiota. 
A‑D Energy loss (A), fecal energy content (B), food consumption (C), 
and energy absorption (D) were measured using bomb calorimetry in 
GF and colonized mice. E Body weights in g. ** P < 0.01, *** P < 0.001 as 
determined using 2‑way ANOVA with Bonferonni’s post‑test correction 
for multiple comparisons. error bars = SEM. Supplementary Figure 3. 
Related to Fig. 3. Differential expression of surface markers in different 
colonic immune cell clusters of germ‑free and colonized mice. A The 
heatmap shows differentially distributed colonic immune cell phenotypes 
quantified by PhenoGraph clustering. The distribution of each cell cluster 
(rows) is shown for each murine sample (columns). B The heatmap shows 
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the distribution of colonic immune lineages based on the expression of 
canonical lineage markers by t‑SNE on all colonic viable  CD45+ leuko‑
cytes. The differential expression of each selected surface marker (rows) 
is shown for each immune cell cluster (columns). The significance levels 
of the comparison between the groups for each immune cell cluster are 
depicted by semi‑supervised hierarchical clustering. The top bubbles 
denote clusters with significantly different abundances between the 
groups. Bubble colors indicate the one of the two groups being compared 
with higher average cellular frequencies; bubble size indicates the ‑log2 
FDR‑adjusted p‑values. Visualization of all colonic viable  CD45+ leukocytes 
by t‑SNE. Overlayed colors represent Phenograph clusters as defined in 
heatmap. C‑G Absolute numbers of colonic leukocytes (C),  CD4+ T cells 
(D),  CD8+ T cells (E), B cells (F), and NK cells (G) defined by manual gating 
of mass cytometry data, from germ‑free (GF) mice and mice colonized 
with the AdLib and CalRes human gut microbiota from the top weight 
loser of an 8‑week weight loss intervention study (n=9 or more mice per 
group). * P<0.05, ANOVA with Bonferonni’s post‑test correction for multi‑
ple comparison. Supplementary Figure 4. Related to Fig. 4. Differential 
expression of surface markers in different splenic immune cell clusters of 
germ‑free and colonized mice. A The heatmap shows differentially distrib‑
uted splenic immune cell phenotypes quantified by PhenoGraph cluster‑
ing. The distribution of each cell cluster (rows) is shown for each murine 
sample (columns). B The heatmap shows the distribution of splenic 
immune lineages based on the expression of canonical lineage markers 
by t‑SNE on all colonic viable  CD45+ leukocytes. The differential expres‑
sion of each selected surface marker (rows) is shown for each immune 
cell cluster (columns). The significance levels of the comparison between 
the groups for each immune cell cluster are depicted by semi‑supervised 
hierarchical clustering. The top bubbles denote clusters with significantly 
different abundances between the groups. Bubble colors indicate the one 
of the two groups being compared with higher average cellular frequen‑
cies; bubble size indicates the ‑log2 FDR‑adjusted p‑values. Visualization of 
all splenic viable  CD45+ leukocytes by t‑SNE. Overlayed colors represent 
Phenograph clusters as defined in heatmap. C‑G Absolute numbers of 
splenic leukocytes (C),  CD4+ T cells (D),  CD8+ T cells (E), B cells (F), and 
NK cells (G) defined by manual gating of mass cytometry data, from 
germ‑free (GF) mice and mice colonized with the AdLib and CalRes 
human gut microbiota from the top weight loser of an 8‑week weight loss 
intervention study (n=9 or more mice per group). * P<0.05, ANOVA with 
Bonferonni’s post‑test correction for multiple comparison. Supplemen‑
tary Figure 5. Related to Fig. 5. Differential expression of surface markers 
in different hepatic immune cell clusters of germ‑free and colonized 
mice. A The heatmap shows differentially distributed hepatic immune 
cell phenotypes quantified by PhenoGraph clustering. The distribution of 
each cell cluster (rows) is shown for each murine sample (columns). B The 
heatmap shows the distribution of hepatic immune lineages based on 
the expression of canonical lineage markers by t‑SNE on all colonic viable 
 CD45+ leukocytes. The differential expression of each selected surface 
marker (rows) is shown for each immune cell cluster (columns). The signifi‑
cance levels of the comparison between the groups for each immune cell 
cluster are depicted by semi‑supervised hierarchical clustering. The top 
bubbles denote clusters with significantly different abundances between 
the groups. Bubble colors indicate the one of the two groups being 
compared with higher average cellular frequencies; bubble size indicates 
the ‑log2 FDR‑adjusted p‑values. Visualization of all hepatic viable  CD45+ 
leukocytes by t‑SNE. Overlayed colors represent Phenograph clusters as 
defined in heatmap. C‑G Absolute numbers of hepatic leukocytes (C), 
 CD4+ T cells (D),  CD8+ T cells (E), B cells (F), and NK cells (G) defined by 
manual gating of mass cytometry data, from germ‑free (GF) mice and 
mice colonized with the AdLib and CalRes human gut microbiota from 
the top weight loser of an 8‑week weight loss intervention study (n=9 
or more mice per group). ANOVA with Bonferonni’s post‑test correction 
for multiple comparison. Supplementary Figure 6. Related to Fig. 6. Gut 
microbial community structure slightly affects composition and activa‑
tion of liver immune cells. The heatmap shows latent correlation matrix 
between abundances of amplicon sequence variants (ASVs) detected 
in stool samples and all immune parameters analyzed in liver of mice 
21 days after inoculation with AdLib and CalRes human gut microbiota. 
Immune parameters are expressed as frequencies, i.e., percent of parent, 

except those labeled # which were quantified as absolute cell counts. 
Heatmap was ordered according to rows and columns first principal 
components to highlight the cross‑correlation structure. Asterisks indicate 
variables that were selected in L1‑penalized sparse canonical correlation 
analysis (CCA). Circular chord plots display latent correlation between 
frequencies of manually defined immune subsets and L1‑selected ASVs 
including the top ten taxa that either positively or negatively associate 
with the immunological dataset. Blue to red colour scale in heatmap and 
chords indicates negative and positive correlation values. Color of row‑
legend bar and species labels denotes the phylum level. Colors of column 
legend bars indicate parental lineage and differentiation level (antigen‑
experience) of lymphocyte subsets, respectively. The boxplot inset shows 
how experimental groups as a latent variable are not well‑explained by 
the sparse canonical covariate.

Additional file 2. The three supplementary Excel files, for colon (colon_
cca_xlsx), spleen (spleen_cca_xlsx), and liver(liver_cca_xlsx), comprise 
each four spreadsheets: The sheets “corr.matrix” and “corr.fdr” contain esti‑
mated coefficients of the latent cross‑correlation matrix (as shown in Fig. 6 
and Supplementary Figure 5 heatmaps) and corresponding FDR‑adjusted 
P‑values, respectively. The sheet “asv.cca” contains for all ASVs (with the 
same order as in the correlation matrix) FDR‑adjusted P‑values and log‑
fold change values (columns C, D) from DESeq2 differential abundance 
testing (as shown in heatmap Fig. 1 C), the corresponding taxonomy 
table including seven taxonomic ranks (columns E‑K), taxa labels used 
for heatmaps (column L) and two columns indicating the top (upper and 
lower) ASVs that were highlighted in correlation heatmap and circular 
chord diagrams (column M) and that were selected by sparse canonical 
correlation analysis using the Bayesian information criterion (column N), 
with sparse coefficients’ weights provided in column O. The sheet “imm.
cca” contains for all immunological parameters (with the same order as in 
the correlation matrix) that were assessed in a given organ, FDR‑adjusted 
P‑values from GLMM and non‑parametric (Wilcoxon‑Mann‑Whitney) 
differential abundance testing (columns C, D) between AdLib and CalRes 
groups. Columns E indicates type of parameter, i.e., whether absolute cell 
counts, or cell frequencies were determined. Column F denotes which 
cell population served as input for cluster‑based analyses or was manually 
gated. Columns G – I provide cell subset IDs including prepended cluster 
numbers, manually annotated population names, and differentiation state. 
Columns J – L contain labels as displayed in correlation heatmap and 
circular chord diagrams for subset name, differentiation/antigen‑experi‑
ence, and lineage membership, respectively. Columns M – O indicate the 
top left and right immune parameters in the correlation heatmap, those 
selected by sparse canonical correlation analysis using the Bayesian infor‑
mation criterion, and sparse coefficients’ weights, respectively.
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