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The synergism of spatial metabolomics and morphometry improves machine learning based renal tumour subtype classification
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Formalin fixed paraffin embedded (FFPE) renal tumour samples comprising 552 clear cell renal cell carcinoma (ccRCC), 122 papillary renal cell carcinoma (pRCC), 108 chromophobe renal cell carcinoma (chRCC) and 71 renal oncocytoma (RO) were collected from the archives of the Department of Pathology and Molecular Pathology of the University Hospital Zurich (1993-2013) and of the Technical University of Munich (1996-2014). Tissue microarrays (TMAs) were constructed as described [1,2]. Tissue cylinders with 0.6 mm (Zurich) and 1.0 mm (Munich) diameter were punched from morphologically representative regions of paraffin donor blocks.
The study was approved by the Cantonal Ethics Committee of Zurich (BASEC-No_2019-01959) and the Ethics Committee of the Technical University of Munich (384/13) in accordance with the Swiss/German Human Research Act and with the Declaration of Helsinki.

MALDI mass spectrometry imaging
Tissue preparation steps for the high mass resolution matrix-assisted laser desorption/ionization (MALDI) fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometry imaging analysis was performed as previously described [3,4]. In brief, FFPE TMAs were sectioned with 4 µm (Microm, HM340E, Thermo Fisher Scientific, USA) and mounted onto indium-tin-oxide (ITO)-coated glass slides (Bruker Daltonik, Bremen, Germany) pretreated with 1:1 poly-L-lysine (Sigma Aldrich, Munich, Germany) and 0.1% Nonidet P-40 (Sigma-Aldrich). Prior to MALDI matrix application, 10 mg/ml 9-aminoacridine hydrochloride monohydrate matrix (Sigma-Aldrich) in 70% methanol, FFPE sections were adhered by incubating the slide for 1 h at 70°C, deparaffinized in xylene (2 x 8 min), and air-dried. Spray-coating of the matrix was conducted using the SunCollectTM sprayer (Sunchrom, Friedrichsdorf, Germany) in eight passes (ascending flow rates 10 µl/min, 20 µl/min, 30 µl/min for layers 1-3, and layers 4-8 with 40 µl/min), utilizing 2 mm line distance and a spray velocity of 900 mm/min. 
Metabolites were detected in negative-ion mode on a 7 T Solarix XR FT-ICR mass spectrometer (Bruker Daltonik) equipped with a dual ESI-MALDI source and a SmartBeam-II Nd: YAG (355 nm) laser. Data acquisition parameters were specified in ftmsControl software 2.2 and flexImaging (v. 5.0) (Bruker Daltonik). Mass spectra were acquired in negative-ion mode covering m/z 75-1,000. For internal mass calibration, the 9-AA matrix ion signal (m/z 193.0771) was used as lock mass minimizing scan-to-scan (pixel-to-pixel) variations during the MALDI measurement. The laser operated at a frequency of 1,000 Hz utilizing 200 laser shots per pixel with a pixel resolution of 60 µm. External calibration of the instrument was performed with L-Arginine in the ESI mode.
MALDI mass spectra were root mean square normalized with SCiLS (v. 2020b Pro) and picked peaks were exported as imzML files for further data processing and subsequent analysis with the SPACiAL pipeline [5]. Hematoxylin & eosin (H&E) stainings of the same tissue sections were registered to the MALDI data and regions of interest (tumour) were annotated based on these stainings. The MALDI mass spectra were then root mean square normalized with SCiLS (v. 2020b Pro) and exported. Peak picking and image co-registration was performed pixel-wise as previously described [5]. Briefly, for peak picking, the Bruker software SCiLS (v. 2020b Pro) was used to export all root mean square normalized mass spectra as processed imzML files. Pixel-wise and parallelized peak picking were performed and resampled with an in-house python 3 pipeline. Noise levels were estimated for windows of 10 Da, and all peaks falling below their respective noise level were filtered. Finally, peaks within each spectrum were merged and aligned. For image co-registration, the imzML file of picked peaks was used to create a master image of the MALDI measurement region (imzML-grid), allowing an exact integration and correlation of molecular MALDI data with morphology data. The integration of mass spectra and image data is done by co-registering the subsequently scanned tissue to MALDI imaging mass spectrometry and mapping the matrix ablation marks to the imzML-grid. For classifier training and evaluation, regions of interest (tumour) were annotated based on H&E stainings. Mean peak intensities of tumour regions were calculated for each patient and used for classifier training. Peak annotation was performed using HMDB [6] and KEGG [7] databases, while allowing M-H, M-H2O, M+K-2H, M+Na-2H, and M+Cl as negative adducts with a mass tolerance of 4 ppm. 

Morphometrics analysis
Consecutive H&E stained tissue sections were scanned with an AxioScan.Z1 digital slide scanner (Zeiss, Jena, Germany) equipped with a 20x magnification objective. Images were morphometrically evaluated using the image analysis software Definiens Developer XD 2 (Definiens AG, Munich, Germany) following a previously published procedure [2]. A description of the morphometric attributes for tissue or cell compartment colour, shape, size etc. is shown in Supplementary Table 1.

Classifier training and evaluation
Morphometric (n = 110) and metabolomic features (n = 2111) were used for classifier training. While training the classifiers, it was ensured that the validation sets remained completely independent from the training data. In 200 repetitions, the patients were randomly split into a training (2/3) and an independent validation set (1/3). In each repetition, the data was normalized for training and validation set, separately. Feature selection was done by calculating a Kruskal-Wallis test with subsequent Benjamini-Hochberg correction (Python 3.7, ‘scipy’ v.1.5.2 and ‘statsmodels’ v.0.11.1, P < 0.01) on the training sets. Similarly, parameter optimization techniques on each training set separately were tested but not applied in the final training, since they did not improve the performance of the classifier, but instead led to overfitting. The random forest classifier itself was trained using the Python 3.7 ‘sklearn’ (v. 0.22.1) package.
The performance of the classifiers was compared by calculating the mean accuracy, as well as the precision, recall and F1-score. Precision is calculated by dividing the number of true positives by the sum of the true positives and false positives. Recall (i.e. sensitivity) is calculated by dividing the number of true positives by the sum of the true positives and false negatives. The F1-score is the harmonic mean of the precision and recall. All values were multiplied with 100 to represent percentages. Finally, the importance of a feature is computed as the (normalized) total reduction of the criterion brought by that feature (Gini importance).
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Supplementary Table 1: Morphometric features describing density, area, colour, shape or compactness of regions of interest. Segments 1 and 2 are regions of interest created by the Definiens software based on colour channels.
	identifier
	feature type
	description

	morph_1
	density
	cell density

	morph_2
	area
	avg. cell area

	morph_3
	colour
	avg. brownness (cell)

	morph_4
	colour
	avg. brownness (cytoplasm)

	morph_5

	colour

	avg. nucleus brownness / avg. cytoplasm brownness

	morph_6
	area
	avg. area (nucleus)

	morph_7
	area
	std. dev. area (nucleus)

	morph_8
	shape
	avg. roundness (nucleus)

	morph_9
	shape
	std. dev. roundness (nucleus)

	morph_10
	compactness
	avg. compactness (nucleus)

	morph_11
	compactness
	std. dev. compactness (nucleus)

	morph_12
	shape
	avg. shape index (nucleus)

	morph_13
	shape
	std. dev. shape index (nucleus)

	morph_14
	colour
	avg. layer 1 - red (nucleus)

	morph_15
	colour
	std. dev. layer 1 - red (nucleus)

	morph_16
	colour
	avg. layer  -green (nucleus)

	morph_17
	colour
	std. dev. layer 1 - green (nucleus)

	morph_18
	colour
	avg. layer 1 - blue (nucleus)

	morph_19
	colour
	std. dev. layer 1 - blue (nucleus)

	morph_20
	shape
	avg. length/width (nucleus)

	morph_21
	shape
	std. dev. length/width (nucleus)

	morph_22
	density
	avg. density (nucleus)

	morph_23
	density
	std. dev. density (nucleus)

	morph_24
	shape
	avg. elliptic fit (nucleus)

	morph_25
	shape
	std. dev. elliptic Fit (nucleus)

	morph_26
	colour
	avg. brownness (nucleus)

	morph_27
	colour
	std. dev. brownness (nucleus)

	morph_28
	colour
	avg. hematoxylin intensity (nucleus)

	morph_29
	colour
	std. dev. hematoxylin intensity (nucleus)

	morph_30
	density
	avg. optical density (nucleus)

	morph_31
	density
	std. dev. optical density (nucleus)

	morph_32
	shape
	avg. circularity (nucleus)

	morph_33
	shape
	std. dev. circularity (nucleus)

	morph_34
	shape
	avg. ellipticity (nucleus)

	morph_35
	shape
	std. dev. ellipticity (nucleus)

	morph_36
	colour
	avg. layer 1 - red (cytoplasm)

	morph_37
	colour
	std. dev. layer 1 - red (cytoplasm)

	morph_38
	colour
	avg. layer  - green (cytoplasm)

	morph_39
	colour
	std. dev. layer 1 - green (cytoplasm)

	morph_40
	colour
	avg. layer 1 - blue (cytoplasm)

	morph_41
	colour
	std. dev. layer 1 - blue (cytoplasm)

	morph_42
	colour
	avg. brownness (cytoplasm)

	morph_43
	colour
	std. dev. brownness (cytoplasm)

	morph_44
	colour
	avg. hematoxylin intensity (cytoplasm)

	morph_45
	colour
	std. dev. hematoxylin intensity (cytoplasm)

	morph_46
	density
	avg. optical density (cytoplasm)

	morph_47
	density
	std. dev. optical density (cytoplasm)

	morph_48
	area
	avg. area  (segment 1)

	morph_49
	area
	std. dev. area  (segment 1)

	morph_50
	shape
	avg. roundness  (segment 1)

	morph_51
	shape
	std. dev. roundness  (segment 1)

	morph_52
	compactness
	avg. compactness  (segment 1)

	morph_53
	compactness
	std. dev. compactness  (segment 1)

	morph_54
	shape
	avg. shape index  (segment 1)

	morph_55
	shape
	std. dev. shape index (segment 1)

	morph_56
	colour
	avg. layer 1 - red (segment 1)

	morph_57
	colour
	std. dev. layer 1 - red (segment 1)

	morph_58
	colour
	avg. layer - green (segment 1)

	morph_59
	colour
	std. dev. layer 1 - green (segment 1)

	morph_60
	colour
	avg. layer 1 - blue (segment 1)

	morph_61
	colour
	std. dev. layer 1 - blue (segment 1)

	morph_62
	shape
	avg. length/width (segment 1)

	morph_63
	shape
	std. dev. length/width (segment 1)

	morph_64
	density
	avg. density (segment 1)

	morph_65
	density
	std. dev. density (segment 1)

	morph_66
	shape
	avg. elliptic fit (segment 1)

	morph_67
	shape
	std. dev. Elliptic fit (segment 1)

	morph_68
	colour
	avg. brownness (segment 1)

	morph_69
	colour
	std. dev. brownness (segment 1)

	morph_70
	colour
	avg. hematoxylin intensity (segment 1)

	morph_71
	colour
	std. dev. hematoxylin intensity (segment 1)

	morph_72
	density
	avg. optical density (segment 1)

	morph_73
	density
	std. dev. optical density (segment 1)

	morph_74
	shape
	avg. circularity (segment 1)

	morph_75
	shape
	std. dev. circularity (segment 1)

	morph_76
	shape
	avg. ellipticity (segment 1)

	morph_77
	shape
	std. dev. ellipticity (segment 1)

	morph_78
	area
	avg. area (segment 2)

	morph_79
	area
	std. dev. area (segment 2)

	morph_80
	shape
	avg. roundness (segment 2)

	morph_81
	shape
	std. dev. roundness (segment 2)

	morph_82
	compactness
	avg. compactness (segment 2)

	morph_83
	compactness
	std. dev. compactness (segment 2)

	morph_84
	shape
	avg. shape index (segment 2)

	morph_85
	shape
	std. dev. shape index (segment 2)

	morph_86
	colour
	avg. layer 1 - red (segment 2)

	morph_87
	colour
	std. dev. layer 1 - red (segment 2)

	morph_88
	colour
	avg. layer - green (segment 2)

	morph_89
	colour
	std. dev. layer 1 - green (segment 2)

	morph_90
	colour
	avg. layer 1 - blue (segment 2)

	morph_91
	colour
	std. dev. layer 1 - blue (segment 2)

	morph_92
	shape
	avg. length/width (segment 2)

	morph_93
	shape
	std. dev. length/width (segment 2)

	morph_94
	density
	avg. density (segment 2)

	morph_95
	density
	std. dev. density (segment 2)

	morph_96
	shape
	avg. elliptic fit (segment 2)

	morph_97
	shape
	std. dev. elliptic fit (segment 2)

	morph_98
	colour
	avg. brownness (segment 2)

	morph_99
	colour
	std. dev. brownness (segment 2)

	morph_100
	colour
	avg. hematoxylin intensity (segment 2)

	morph_101
	colour
	std. dev. hematoxylin intensity (segment 2)

	morph_102
	density
	avg. optical density (segment 2)

	morph_103
	density
	std. dev. optical density (segment 2)

	morph_104
	shape
	avg. circularity (segment 2)

	morph_105
	shape
	std. dev. circularity (segment 2)

	morph_106
	shape
	avg. ellipticity (segment 2)

	morph_107
	shape
	std. dev. ellipticity (segment 2)

	morph_116
	colour
	avg. brownness (ROI)

	morph_117
	colour
	avg. hematoxylin intensity (ROI)

	morph_118
	density
	avg. optical density (ROI)











Supplementary Figure 1: Example ion images of the top features in the classifier. A. glycerol 3-phosphate (m/z 152.9957), B. Hexose phosphate (m/z 259.0224), C. Oleic acid (m/z 281.2487). Each column indicates mean with standard error. P values are corresponding to the Kruskal–Wallis test.
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