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ABSTRACT

Death rate is increased in type 2 diabetes. Unraveling biomarkers of novel pathogenic pathways 

capable to identify high-risk patients is instrumental to tackle this burden. We investigated the 

association between serum metabolites and all-cause mortality in type 2 diabetes and then, whether 

the associated metabolites mediate the effect of inflammation on mortality risk and improve 

ENFORCE and RECODe, two well-established all-cause mortality prediction models in diabetes.

Two cohorts comprising 856 individuals (279 all-cause deaths) were analyzed. Serum metabolites 

(n=188) and pro- and anti-inflammatory cytokines (n=7) were measured. 

In the pooled analysis, hexanoylcarnitine, kynurenine and tryptophan were significantly and 

independently associated with mortality (HRs, [95%CIs] 1.60, [1.43-1.80]; 1.53, [1.37-1.71]; 0.71, 

[0.62-0.80] per 1SD). The kynurenine/tryptophan ratio (KTR-a proxy of indoleamine-2,3-

dioxygenase which degrades tryptophan to kynurenine and contribute to a pro-inflammatory status) 

mediated 42% of the significant association between the anti-atherogenic IL-13 and mortality. 

Adding the three metabolites improved discrimination and reclassification (all P<0.01) of both 

mortality prediction models.

In type 2 diabetes, hexanoylcarnitine, tryptophan and kynurenine are associated to and improve the 

prediction of all-cause mortality. Further studies are needed to investigate whether interventions 

aimed at reducing KTR, also reduce the risk of death especially in patients with low IL-13.
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In patients with type 2 diabetes the rate of mortality is almost twice as much that in individuals 

without diabetes (1). 

Unraveling biomarkers capable of pointing novel pathogenic pathways and identifying high-risk 

patients suitable for more aggressive management is, therefore, instrumental to tackle this heavy 

burden. 

Few studies have, so far, investigated the role of circulating biomarkers in predicting the risk of 

mortality in patients with type 2 diabetes (2-7) and even fewer have been focused on serum 

metabolites (8-11). These latter studies have been limited to only few metabolites (8, 10, 11), and/or 

have not addressed the role of associated metabolites in improving pre-existing prediction models (8-

11). In details, metabolites independently associated with mortality in type 2 diabetes are mostly 

aminoacids (8), fatty acids (10) and choline (11). In the only paper in which a larger number of 

metabolites were analyzed, also N2,N2-dimethylguanosine, dimethylguanidino valerate, 

homocitrulline, 1-methyladenosine, acylcarnitine C10:3, urobilin and hippurate were associated with 

mortality rate (9). Unfortunately, the largest metabolomic study on all-cause mortality has been 

carried out in the general population and is therefore, not usable for deriving information in the subset 

of patients with type 2 diabetes (12).

In this study, we investigated the association between a large number of circulating metabolites and 

all-cause mortality in individuals with type 2 diabetes. After unraveling and validating some 

metabolites as robustly and independently associated, we explored whether they mediate the effect 

of inflammatory cytokines on mortality risk and improve two well-established all-cause mortality 
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prediction models in diabetes: ENFORCE (EstimatioN oF mORtality risk in type2 diabetiC patiEnts), 

a validated user-friendly and freely available risk calculator based on a totale of nine variables (13, 

14) and RECODe’s (Risk Equation for Complications Of type 2 Diabetes) a well-performing tool, 

based on a total of fourteen variables which has been highly validated in several distinct sets, 

including both population based and trial cohorts (15, 16).

RESEARCH DESIGN AND METHODS

Participants

Two cohorts of patients with type 2 diabetes (diagnosed according to American Diabetes Association 

2018 criteria) from Apulia, Central-Southern Italy were analyzed.

Gargano Mortality Study 1 (GMS 1) – Discovery sample

The GMS 1 includes 1,028 patients recruited from 2000 to 2005 at the Endocrine Unit of Fondazione 

IRCCS “Casa Sollievo della Sofferenza” in San Giovanni Rotondo followed until December 2014 

and has all-cause mortality as endpoint.

Serum metabolites were assessed in 536 participants (52.1%), constituting the eligible sample for the 

present analysis.

Gargano Mortality Study 2 (GMS 2) – Replication sample

The GMS 2 includes 880 patients recruited from 2008 to 2010 at the Endocrine Unit of Fondazione 

IRCCS “Casa Sollievo della Sofferenza” in San Giovanni Rotondo followed until December 2019 
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and has all-cause mortality as endpoint. For this specific analysis, a sample comprising 321 patients 

participating an independent sub-study on the role of kidney function on mortality rate, with no 

individuals with eGFR in the range of 60-69 ml/min/1.73m2, was analyzed. 

For both studies the vital status of participants was verified by interrogating the Italian Health Card 

Database upon data anonymization (http://sistemats1.sanita.finanze.it/wps/portal/) (6). For all 

studies, the only exclusion criterion was the presence of poor life expectancy for non-diabetes-related 

diseases (6).

Metabolite Quantification and Normalization

Metabolite profiling was measured using baseline fasting serum samples that had been stored at 

−80°C since collection. Metabolite quantification was performed in the Genome Analysis Center at 

the Helmholtz Zentrum München. The targeted metabolomics approach was based on LC-ESI-

MS/MS and FIA-ESI-MS/MS measurements by AbsoluteIDQTM p180 Kit (BIOCRATES Life 

Sciences AG, Innsbruck, Austria). The assay allows simultaneous quantification of 188 metabolites 

out of 10 µL plasma, and includes free carnitine, 40 acylcarnitines (Cx:y), 21 amino acids (19 

proteinogenic + citrulline + ornithine), 21 biogenic amines, hexoses (sum of hexoses – about 90-95 

% glucose), 90 glycerophospholipids (14 lysophosphatidylcholines (lysoPC) and 76 

phosphatidylcholines (PC), and 15 sphingolipids (SMx:y). For a full list of all quality-controlled 
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metabolites, see Supplemental Table 1 in the Supplemental Data. The procedures for sample 

preparation and mass spectrometric measurements as well as the metabolite nomenclature have been 

described in detail previously (17, 18). Three quality control (QC) samples (sex-mixed human plasma 

provided by the manufacturer) and one zero sample (PBS) were included in each randomized plate. 

Data evaluation for quantification of metabolite concentrations and quality assessment was performed 

with the software MultiQuant 3.0.1 (Sciex) and the MetIDQ™ software package, which is an integral 

part of the AbsoluteIDQ™ Kit. Metabolite concentrations were calculated using internal standards 

and reported in µM. 

Measurement of Circulating Cytokines

Serum IL-1β, IL-2, IL-4, IL-6, IL-13, IFN-γ and TNF-α circulating levels were measured in 

duplicate, using a multiplex detection 27-plex kit from Bio-Rad. The median coefficient of variation 

was less than 25% for all analyzed cytokines. Data were analyzed as previously described (7).

Statistical analysis

Patients’ baseline characteristics were reported as mean ± SD or median and interquartile range and 

frequency and percentage for continuous and categorical variables, respectively. Values of serum 

metabolites below the limit of detection (LOD) values have been replaced by the LOD itself. 
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Correlations between metabolites were assessed using the Spearman correlation. All covariates with 

missing values below 5% were imputed by random forest method. Because of skewed distribution 

and for comparability between different metabolites, their concentrations were logarithmically 

transformed and then standardized. 

Time variable was defined as the time between the baseline examination and date of the event (i.e., 

all-cause mortality) or, for subjects who did not experience the event, the date of the last available 

clinical follow-up. Incidence rate for all-cause mortality was expressed as the number of events per 

100 person-years (py).

To assess the association between the detected serum metabolites levels and all-cause mortality in 

the discovery sample (i.e., GMS 1), Bonferroni adjustment for multiple comparisons was used to 

determine the significance threshold in an unadjusted Cox proportional hazard model. Because of the 

potential correlation between metabolites, we next evaluated the independent associations of 

Bonferroni-survived metabolites using a forward-backward stepwise analysis (19) in a fully adjusted 

model comprising age at recruitment, sex, smoking habit, BMI, HbA1c, eGFR, diabetes duration and 

ongoing treatments. 

Associations were then validated in an independent cohort (i.e., GMS 2), considering the fully 

adjusted model. 
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When analyses were run in the pooled sample, comprising both GMS 1 and GMS 2, they were also 

adjusted for study cohort factor considered as random effect, so as to have more robust estimates. 

Risks were reported as HRs along with their 95% CIs per 1SD increase of each single metabolite. 

Mediation analysis allowing for exposure-mediator interactions and causal interpretation was carried 

out as previously described (20). The 95% CI of the mediation effect was computed by bootstrap 

based on 1000 re-samplings with replacement. 

To examine whether the validated associated-metabolites increase the accuracy of all-cause mortality 

prediction models in type 2 diabetes, two different well-established tools were utilized: ENFORCE 

(14) and RECODe (15). Discrimination was measured by survival c statistics (21) while improvement 

in discrimination was assessed by the delta c statistics and survival version of the relative integrated 

discrimination improvement (rIDI) (22). In addition, the survival version of the category-free net 

reclassification improvement (cNRI), which examines whether the predicted probabilities of 

individuals with and without events move in the right directions (upward and downward, 

respectively) from the base to the new model, was evaluated (23). The 95% CIs for discrimination 

and reclassification measures were computed by bootstrap.

A p value < 0.05 was considered significant. 

All analyses were performed using SAS Release 9.4 (SAS Institute, Cary, NC, USA) and R software 

(R Core Team, 2021) (packages survival and coxme). 
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Data and Resource Availability

The datasets generated during and/or analyzed during the current study are available from the 

corresponding author upon reasonable request.

RESULTS

Clinical features of patients from GMS 1 and GMS 2 as well as duration of follow-up and number of 

events are summarized in Table 1. In GMS 1, during follow-up (10.0 ± 3.9 years; 5,346.2 person/year) 

198 deaths occurred. In GMS 2, during follow-up (8.6 ± 2.6 years; 2,763.9 person/year), 81 deaths 

occurred.

Of the 188 metabolites we measured, 5 (i.e., Carnosine, DOPA, Dopamine, Nitrotyrosine and cis-4-

Hydroxyproline) were excluded from the analyses because their value was below the detection limit 

in more than 80% samples. Also, creatinine data from the metabolomic assay (Supplemental Table 

1) were not analyzed because serum creatinine values from standard baseline clinical chemistry 

measurements were available and used to compute eGFR. 

In the GMS 1 49 out of the 182 metabolites analyzed were significantly associated with all-cause 

mortality after Bonferroni correction (threshold p value being 0.05/182 = 2.7x10-4) (Supplemental 

Table 2). 
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Among these metabolites, the pairwise correlation ranged from –0.20 to 0.92 (Supplemental Figure 

1). After a stepwise (forward-backward) procedure, 6 metabolites remained independently associated 

in a fully adjusted model including age at recruitment, sex, smoking habit, BMI, HbA1c, diabetes 

duration, eGFR and ongoing treatments (four with increased and two with decreased risk of all-cause 

mortality, Figure 1, panel A). Three of them, belonging to amino acid, biogenic amines and 

acylcarnitine super-families, were validated in the totally independent GMS 2 cohort (Figure 1, panel 

B). 

When data from the two independent cohorts, comprising a total of 856 individuals and 279 events, 

were meta-analyzed the three validated associations, hexanoylcarnitine (HR, 95% CI = 1.60, 1.43-

1.80) kynurenine (HR, 95% CI = 1.53, 1.37-1.71) and tryptophan (HR, 95% CI = 0.71, 0.62-0.80) 

were highly significantly associated with all-cause mortality (all p < 0.001, per 1SD increase) with 

no difference between male and female participants (p of gender heterogeneity = 0.17, 0.67 and 0.9, 

respectively). Also the kynurenine/tryptophan ratio (KTR), which has been previously associated 

with metabolic syndrome (24, 25) cardiovascular disease (26, 27) and mortality (28, 29), was 

associated with all-cause death (HR, 95% CI = 1.41, 1.21-1.64 per 1SD increase).  

Inflammatory cytokines, KTR and all-cause mortality.
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Previous findings suggest that the indoleamine 2,3-dioxygenase (IDO) enzymatic activity and its 

proxy KTR are stimulated by (30) and are likely to mediate the role on all-cause death of 

inflammatory cytokines (29). We then measured and investigated the association between several 

cytokines related to low-grade inflammation and both KTR and all-cause mortality. Five of those we 

tested (Supplemental Table 3), including IL-4, IL-6, IL-13, IFN-γ and TNF-α, were in fact associated 

with KTR (see Supplemental Table 4). Of these, four (but not IL-4) were also associated with all-

cause mortality in our fully adjusted model (Table 2, left panel). Interestingly, when also KTR was 

added into the model the associations with increased risk of death of IL-6, IFN-γ and TNF-α, were 

virtually identical, while the protective effect of IL-13 was attenuated at the point of being no longer 

significant (Table 2, right panel). Further, mediation analysis showed that a significant and non-trivial 

proportion [i.e., 42% (95% CI: 14%-199%)] of the association between IL-13 and all-cause mortality 

went through KTR (Figure 2). 

Adding metabolites to the ENFORCE and RECODe mortality prediction models

In the pooled sample, discrimination ability (c statistic) of hexanoylcarnitine, kynurenine and 

tryptophan considered together was 0.71 (0.55-0.86) (Table 3). We then tested the effect of adding 

these three metabolites on top of ENFORCE, a well-performing, validated and freely available 

(https://www.operapadrepio.it/enforce/enforce.php) prediction model for 6-year all-cause mortality 
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in patients with type 2 diabetes. To this purpose GMS 1 and GMS 2, comprising a total of 856 patients 

and 140 deaths (at 6 years) in which our ENFORCE model was applicable, were used. The addition 

of the three metabolites on top of ENFORCE resulted in a significant improvement of both c statistic 

and rIDI (Table 3). In addition, cNRI values showed a significant improvement in reclassification, 

mainly due to nonevents correctly reclassified (Table 3). 

The ability of the three metabolites in improving the prediction of all-cause death was also tested in 

RECODe, a well-performing and validated model for 10-year mortality in patients with type 2 

diabetes. To this purpose, a total of 856 patients and 230 deaths (at 10 years) from both cohorts were 

available. Also in this case, a significant improvement was observed both in discrimination (c statistic 

and rIDI) and reclassification (cNRI) measures (Table 3).

In all, these data consistently show that serum levels of hexanoylcarnitine, kynurenine and tryptophan 

improve well-established prediction models of all-cause mortality in patients with type 2 diabetes in 

terms of both discrimination and reclassification.

DISCUSSION

This study is a rigorous evaluation of the association between 182 metabolites measured through 

targeted metabolomics and all-cause mortality in 856 people with type 2 diabetes using a discovery 

and replication design. Three biologically plausible metabolites (i.e., hexanoylcarnitine, tryptophan 

and kynurenine) were independently and consistently associated with higher risk of mortality in two 

independent cohorts of patients with type 2 diabetes. Of note, taking into account eGFR, a strong 
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predictor of mortality (31), did not diminish the relationship between baseline metabolites and death. 

This indicates that the three associations are independent of renal function, a key point to be addressed 

when measuring metabolites whose serum concentration is controlled also by renal clearance (32). 

The same was noticed when BMI was taken into account, thus suggesting that adiposity does not play 

a major role on the observed associations. Given the strong relationships between the three 

metabolites and all-cause mortality, it is not surprising that when considered together these markers 

show a good discrimination ability in predicting the risk of death. More importantly, our data showing 

that the three metabolites together improve both discrimination and reclassification of two well-

established prediction models of all-cause death in type 2 diabetes (14, 15) may be of clinical impact. 

Increased levels of hexanoylcarnitine, a medium-chain acylcarnitine which is, along with other 

members of the acylcarnitines superfamily, a cardio-metabolic risk factor in type 2 diabetes (33), has 

been previously associated with all-cause mortality and cancer-related mortality in smoking men (34). 

Accumulation of medium chain acylcarnitines may be indicative of inefficient β oxidation of fatty 

acid as a consequence of altered mitochondrial metabolism, which is known to contribute to both 

insulin resistance and vascular inflammation (35, 36). Tryptophan, an essential amino acid important 

for protein synthesis (37), has been previously associated with decreased risk of mortality in patients 

with type 2 diabetes, although with a weaker effect as compared to ours (9), while its breakdown 

product, 5 methoxy-tryptophan along the serotonin pathway, is an anti-inflammatory agent with 

favorable effects on arterial vessels and renal function (38, 39) Kynurenine, a product of tryptophan 

degradation along the kynurenine pathway, has been associated with risk of cardiovascular events in 

the general population and in several additional clinical settings (27, 40). This pathway, primarily 

directed toward the production of NAD+ for energy metabolism (41), plays crucial roles on 

inflammation (41) and when dysregulated is linked to several diseases and disorders (42). 
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Given the opposite association with mortality rate of tryptophan and kynurenine, it was not surprising 

that their ratio, KTR, a marker of  mortality risk in the general population (29), was associated with 

the risk of death also in our sample.

Interestingly, KTR is a reliable marker of the IDO activity that degrades tryptophan into kynurenine 

(41), triggering the homonymous aforementioned deleterious pathway. Furthermore, an increased 

IDO activity also reduces tryptophan metabolism in the beneficial alternative serotonin pathway. 

Overall, a shift towards an unhealthy pro-inflammatory status and subsequent vascular damage is 

likely to be the final net result of the described alteration of tryptophan metabolism due to IDO over 

activity. 

IDO, is under the control of pro- and anti-inflammatory cytokines, is increased in conditions of low-

grade inflammation (30) and is coherently associated with metabolic syndrome (24, 25), 

cardiovascular disease (26, 27) and mortality in several clinical sets (28, 29). The robust association 

between KTR and all-cause mortality as well as the evidence that KTR mediates a non-trivial 

proportion of IL-13 anti-atherogenic protective effect (43) on mortality risk we here report, is 

therefore along the same line of previous findings (24-29) and support the role of KTR (as a proxy of 

IDO activity) in shaping survival probability (28, 29) also in type 2 diabetes. Interestingly, tryptophan 

supplementation directly or through lifestyle intervention (44) has been reported to prevent and treat 

cardiovascular disease (45) social behavior, mood and sleep disorders and several additional chronic 

diseases (46), possibly by priming the beneficial serotonin pathway. 

As said, the addition of hexanoylcarnitine, tryptophan and kynurenine considered together improves 

the discrimination ability of both ENFORCE (14) and RECODe (15), two established prediction 

models of all-cause mortality in patients with type 2 diabetes. Though statistically significant, the 

improvement of the c statistic is rather small, but it is worth noticing that in already well-performing 

models, as are those we used here, this index lacks sensitivity in detecting further discrimination 

improvements (47). It is also important noticing that in both models the percentage rIDI, also an index 
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of discrimination, is more than twice the threshold requested by international guidelines for adding 

new biomarkers on top of established prediction models (48). This important statistical and clinical 

improvement was further reinforced by data from reclassification measures. In fact, adding the three 

metabolites to ENFORCE and RECODe made it possible to correctly reclassify a consistent 

proportion of individuals, especially nonevents, thus reducing the risk of overestimation.

Our study has several strengths. We used a rigorous study design with discovery and replication 

cohorts prospectively analyzed with complete information, including standardized clinical 

evaluations and mortality validated by death certificates. We also used quality-controlled 

metabolomics profiling and correction for multiple comparisons. Previous studies of mortality and 

the metabolome in patients with type 2 diabetes have evaluated only few metabolites (8, 10, 11), 

and/or have not addressed the role of mortality-associated metabolites in improving pre-existing and 

established prediction models (8-11). Our study, instead, evaluated a large number of metabolites, 

and discovered new associated markers which improve two well-established and validated prediction 

models (14, 15), thus making our finding implementable in the real-life clinical set. Conversely, we 

have to recognize several limitations, including the relatively small size of the cohorts, the fact that 

they are geographically close to each other, thus limiting the generalizability of our finding and finally 

the lack of data on cause-specific mortality, which does not allow us to address the role of important 

shapers of life expectancy, including cardiovascular disease and cancer.

In conclusion, in patients with type 2 diabetes hexanoylcarnitine, tryptophan and kynurenine are 

reproducible risk factors for all-cause death and improve established, well-performing prediction 

models of mortality risk. We believe that a study like ours paves the way for different precision 

medicine approaches in type 2 diabetes, albeit with different timelines. On the precision prediction 

side (49), before our data become implementable in daily clinical work, the mortality-associated 

metabolites need to be enrolled in standard clinical chemistry assay and validated in larger and less 

homogeneous cohorts. Conversely, on the treatment side, it is still necessary to investigate whether 
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directing tryptophan metabolism towards the serotonin pathway reduces the risk of death in 

individuals with diabetes, particularly those with low IL-13 values, before a precision therapeutic 

approach can be implemented.
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Table 1. Clinical features of the two independent study cohorts
GMS 1 GMS 2
(n=535) (n=321)

Males (n) (%) 250 (46.7) 183 (57.0)
Age at recruitment (yrs) 62.9 ± 9.8 59.7 ± 10.3
Smoking habit (n) (%) 40 (7.5) 55 (17.1)
Diabetes duration (yrs) 11.0 ± 9.0 12.6 ± 9.8
BMI (kg/m2) 31.1 ± 5.8 31.5 ± 6.4
HbA1c (%); (mmol/mol) 8.7 ± 1.9; (72.0 ± 15.7) 8.2 ± 1.8; (66.0 ± 14.5)
eGFR (mL/minute/1.73 m2) 70.6 ± 21.1 83.7 ± 30.3
Anti-hypertensive therapy (n) (%) 340 (63.4) 251 (78.2)
Insulin therapy (n) (%) 226 (42.2) 137 (42.7)
Statin therapy (n) (%) 164 (30.7) 232 (72.3)
Follow-up (yrs); (py) 10.0 ± 3.9; (5,346.2) 8.6 ± 2.6; (2,763.9)
All-cause death (n) (%) 198 (37.0) 81 (25.2)
IR (n events per 100 py)*; (95% CI) 2.8 (2.4-3.3) 2.2 (1.8-2.8)

Continuous variables were reported as mean ± SD whereas categorical variables as total frequencies and percentages. 
Skewed variables are presented as median (interquartile range). GMS: Gargano Mortality Study; FMS: Foggia Mortality 
Study; GHS-prospective: Gargano Heart Study-prospective design; HbA1c: glycated hemoglobin A1c; eGFR, estimated 
glomerular filtration rate (calculated using the CKD-EPI equation (50)); IR: incidence rate of all-cause death events; py: 
person/year.
* adjusted for age and sex
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Table 2. Univariable associations between cytokines and all-cause mortality in the pooled sample (n=810; 256 events)
Associations with all-cause mortality Associations with all-cause mortality adjusted also for KTR

Cytokines HR (95%IC) P HR (95%IC) P
IL-6 1.41 (1.26-1.59) <0.0001 1.44 (1.28-1.62) <0.0001
IL-13 0.86 (0.74-0.99) 0.036 0.91 (0.79-1.05) 0.21
IFN-γ 1.53 (1.26-1.87) <0.0001 1.63 (1.33-2.00) <0.0001
TNF-α 1.41 (1.19-1.67) <0.0001 1.43 (1.20-1.70) <0.0001

HRs were estimated in Cox regression models, adjusting for age at recruitment, sex, smoking habit, BMI, HbA1c, eGFR, diabetes duration, ongoing treatments 
and study cohort. HRs reflect the risk per 1SD increase in each cytokine concentration.
KTR: kynurenine/tryptophan ratio; IL-: interleukin; IFN-: interferon; TNF-: tumor necrosis factor.
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Table 3. Prediction of all-cause mortality by metabolites and by ENFORCE and RECODe (without and with metabolites)
DISCRIMINATION RECLASSIFICATION

PREDICTION MODELS c 
statistics
(95% CI)

Δ c 
statistics
(p value)

%rIDI 
(p value)

%
½ cNRI
(p value)

% 
Events

(p value)

%
Non-events

(p value)

Hexanoylcarnitine, Tryptophan, Kynurenine
0.71

(0.55, 0.86)

ENFORCE 0.77 
(0.74, 0.80)

ENFORCE  + Hexanoylcarnitine, Tryptophan, Kynurenine 0.79 
(0.75, 0.82)

0.02 
(0.01)

14.9 
(0.001)

18 
(<0.001)

6 
(0.18)

30 
(<0.001)

RECODe 0.75
(0.72, 0.78)

RECODe + Hexanoylcarnitine, Tryptophan, Kynurenine 0.77 
(0.75, 0.80)

0.02 
(0.005)

18.6
(0.001)

14
(<0.001)

11 
(0.001)

18 
(<0.001)

All p values are referred to comparisons vs. the same base model (i.e., with no metabolites). 
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Figure legends 

Figure 1. Independent associations between metabolites and all-cause mortality 

Hazard ratios (HRs) and 95% confidence intervals (CIs) for independent associations between 

metabolites and mortality in GMS 1 (Panel A) and GMS 2 (Panel B)

HRs (per 1SD increase in each metabolite concentration) were estimated in Cox regression models, 

adjusting for age at recruitment, sex, smoking habit, BMI, HbA1c, eGFR, diabetes duration and 

ongoing treatments. 

Figure 2. Mediation model showing the role of KTR on the association between IL-13 and all-cause 

mortality in the pooled sample

Mediation analysis was carried out in a fully adjusted model, comprising study cohort, age at 

recruitment, sex, smoking habit, BMI, HbA1c, diabetes duration, eGFR and ongoing treatments. 

β = standardized coefficient of regression.
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The total effect of IL-13 (β = -0.154) on the outcome partly passes through KTR (β of the KTR-

mediated effect of IL13= -0.065). The proportion explained by the KTR is equal to 42% (14%-199%) 

(i.e., 0.065/0.154).
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Figure 1. Independent associations between metabolites and all-cause mortality. Hazard ratios (HRs) and 
95% confidence intervals (CIs) for independent associations between metabolites and mortality in GMS 1 

(Panel A) and GMS 2 (Panel B). HRs (per 1SD increase in each metabolite concentration) were estimated in 
Cox regression models, adjusting for age at recruitment, sex, smoking habit, BMI, HbA1c, eGFR, diabetes 

duration and ongoing treatments. 
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Figure 2. Mediation model showing the role of KTR on the association between IL-13 and all-cause mortality 
in the pooled sample. Mediation analysis was carried out in a fully adjusted model, comprising study cohort, 
age at recruitment, sex, smoking habit, BMI, HbA1c, diabetes duration, eGFR and ongoing treatments. β = 
standardized coefficient of regression. The total effect of IL-13 (β = -0.154) on the outcome partly passes 
through KTR (β of the KTR-mediated effect of IL13= -0.065). The proportion explained by the KTR is equal 

to 42% (14%-199%) (i.e., 0.065/0.154). 
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Supplemental Material

Supplemental Table 1: List of metabolites measured with the AbsoluteIDQ® p180 Kit 
GAC, Helmholtz Zentrum München.

Acylcarnitines (40)
C0 Carnitine C10:1 Decenoylcarnitine
C2 Acetylcarnitine C10:2 Decadienylcarnitine
C3 Propionylcarnitine C12 Dodecanoylcarnitine
C3:1 Propenoylcarnitine C12:1 Dodecenoylcarnitine
C3-OH Hydroxypropionylcarnitine C12-DC Dodecanedioylcarnitine
C4 Butyrylcarnitine C14 Tetradecanoylcarnitine
C4:1 Butenoylcarnitine C14:1 Tetradecenoylcarnitine
C4-OH (C3-DC) Hydroxybutyrylcarnitine C14:1-OH Hydroxytetradecenoylcarnitine
C5 Valerylcarnitine C14:2 Tetradecadienylcarnitine
C5:1 Tiglylcarnitine C14:2-OH Hydroxytetradecadienylcarnitine
C5:1-DC Glutaconylcarnitine C16 Hexadecanoylcarnitine

C5-DC (C6-OH) Glutarylcarnitine 
(Hydroxyhexanoylcarnitine) C16:1 Hexadecenoylcarnitine

C5-M-DC Methylglutarylcarnitine C16:1-OH Hydroxyhexadecenoylcarnitine

C5-OH (C3-DC-M) Hydroxyvalerylcarnitine 
(Methylmalonylcarnitine) C16:2 Hexadecadienylcarnitine

C6 (C4:1-DC) Hexanoylcarnitine 
(Fumarylcarnitine)

C16:2-OH Hydroxyhexadecadienylcarnitine

C6:1 Hexenoylcarnitine C16-OH Hydroxyhexadecanoylcarnitine
C7-DC Pimelylcarnitine C18 Octadecanoylcarnitine
C8 Octanoylcarnitine C18:1 Octadecenoylcarnitine
C9 Nonanoylcarnitine C18:1-OH Hydroxyoctadecenoylcarnitine
C10 Decanoylcarnitine C18:2 Octadecadienylcarnitine

Amino Acids (21)
Ala Alanine Lys Lysine
Arg Arginine Met Methionine
Asn Asparagine Orn Ornithine
Asp Aspartate Phe Phenylalanine
Cit Citrulline Pro Proline
Gln Glutamine Ser Serine
Glu Glutamate Thr Threonine
Gly Glycine Trp Tryptophan
His Histidine Tyr Tyrosine
Ile Isoleucine Val Valine
Leu Leucine

Monosaccharides (1)
Sum of Hexoses (including Glucose)

Glycerophospholipids (90)
lysoPC a C14:0 PC aa C34:1 PC aa C42:0 PC ae C38:2
lysoPC a C16:0 PC aa C34:2 PC aa C42:1 PC ae C38:3
lysoPC a C16:1 PC aa C34:3 PC aa C42:2 PC ae C38:4
lysoPC a C17:0 PC aa C34:4 PC aa C42:4 PC ae C38:5
lysoPC a C18:0 PC aa C36:0 PC aa C42:5 PC ae C38:6
lysoPC a C18:1 PC aa C36:1 PC aa C42:6 PC ae C40:1
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lysoPC a C18:2 PC aa C36:2 PC ae C30:0 PC ae C40:2
lysoPC a C20:3 PC aa C36:3 PC ae C30:1 PC ae C40:3
lysoPC a C20:4 PC aa C36:4 PC ae C30:2 PC ae C40:4
lysoPC a C24:0 PC aa C36:5 PC ae C32:1 PC ae C40:5
lysoPC a C26:0 PC aa C36:6 PC ae C32:2 PC ae C40:6
lysoPC a C26:1 PC aa C38:0 PC ae C34:0 PC ae C42:0
lysoPC a C28:0 PC aa C38:1 PC ae C34:1 PC ae C42:1
lysoPC a C28:1 PC aa C38:3 PC ae C34:2 PC ae C42:2
PC aa C24:0 PC aa C38:4 PC ae C34:3 PC ae C42:3
PC aa C26:0 PC aa C38:5 PC ae C36:0 PC ae C42:4
PC aa C28:1 PC aa C38:6 PC ae C36:1 PC ae C42:5
PC aa C30:0 PC aa C40:1 PC ae C36:2 PC ae C44:3
PC aa C30:2 PC aa C40:2 PC ae C36:3 PC ae C44:4
PC aa C32:0 PC aa C40:3 PC ae C36:4 PC ae C44:5
PC aa C32:1 PC aa C40:4 PC ae C36:5 PC ae C44:6
PC aa C32:2 PC aa C40:5 PC ae C38:0
PC aa C32:3 PC aa C40:6 PC ae C38:1

Sphingolipids (15)
SM (OH) C14:1 SM C18:0 SM (OH) C22:1 SM (OH) C24:1
SM C16:0 SM C18:1 SM (OH) C22:2 SM C26:0
SM C16:1 SM C20:2 SM C24:0 SM C26:1
SM (OH) C16:1 SM C22:3 SM C24:1

Biogenic Amines (21)
Ac-Orn Acetylornithine PEA Phenylethylamine
ADMA Asymmetric dimethylarginine *cis-OH-Pro *cis-4-Hydroxyproline
alpha-AAA alpha-Aminoadipic acid trans-OH-Pro trans-4-Hydroxyproline
*Carnosine *Carnosine Putrescine Putrescine
**Creatinine Creatinine SDMA Symmetric dimethylarginine
*DOPA *DOPA Serotonin Serotonin
*Dopamine *Dopamine Spermidine Spermidine
Histamine Histamine Spermine Spermine
Kynurenine Kynurenine Taurine Taurine
Met-SO Methionine sulfoxide total DMA Total dimethylarginine
*Nitro-Tyr *Nitrotyrosine
* Metabolites excluded from the analyses because more than 80% of the samples had values below the 
detection limit. **Creatinine excluded from the analyses because serum creatinine values from standard 
baseline clinical chemistry measurements were already available.
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Supplemental Table 2. Associated metabolites in unadjusted model after Bonferroni correction 
in the Gargano Mortality Study 1

95% CIN Family Metabolite HR LB UB p

1 Biogenic Amines SDMA Symmetric dimethylarginine 2.01 1.74 2.32 9.1x10-22

2 Biogenic Amines total DMA Total dimethylarginine 1.91 1.67 2.19 1.3x10-20

3 Acylcarnitines C5-DC (C6-OH) Glutarylcarnitine 
(Hydroxyhexanoylcarnitine) 1.83 1.61 2.09 1.7x10-20

4 Acylcarnitines C5-M-DC Methylglutarylcarnitine 1.57 1.42 1.73 2.7x10-18

5 Amino acids Cit Citrulline 1.82 1.57 2.10 4.3x10-16

6 Acylcarnitines C4 Butyrylcarnitine 1.68 1.46 1.92 7.0x10-14

7 Acylcarnitines C5-OH (C3-DC-M) Hydroxyvalerylcarnitine 
(Methylmalonylcarnitine) 1.64 1.43 1.87 5.7x10-13

8 Acylcarnitines C6 (C4:1-DC) Hexanoylcarnitine 1.85 1.56 2.19 1.4x10-12

9 Glycerophospholipids PC aa C34:4 PC aa C34:4 0.62 0.54 0.72 2.1x10-11

10 Acylcarnitines C5:1-DC Glutaconylcarnitine 1.60 1.39 1.84 2.2x10-11

11 Biogenic Amines Kynurenine Kynurenine 1.56 1.37 1.77 3.1x10-11

12 Biogenic Amines Putrescine Putrescine 1.53 1.35 1.74 3.7x10-11

13 Acylcarnitines C5:1 Tiglylcarnitine 1.63 1.40 1.89 1.5x10-10

14 Glycerophospholipids PC aa C32:2 PC aa C32:2 0.66 0.57 0.75 1.9x10-9

15 Biogenic Amines trans-OH-Pro trans-4-Hydroxyproline 1.52 1.33 1.75 2.1x10-9

16 Biogenic Amines Ac-Orn Acetylornithine 1.57 1.35 1.82 2.8x10-9

17 Sphingolipids SM (OH) C22:1 SM (OH) C22:1 0.67 0.58 0.77 9.2x10-9

18 Acylcarnitines C2 Acetylcarnitine 1.55 1.33 1.79 1.0x10-8

19 Acylcarnitines C5 Valerylcarnitine 1.46 1.28 1.67 1.3x10-8

20 Acylcarnitines C4-OH (C3-DC) Hydroxybutyrylcarnitine 1.39 1.23 1.57 8.6x10-8

21 Acylcarnitines C10:2 Decadienylcarnitine 1.32 1.19 1.47 3.9x10-7

22 Acylcarnitines C16:1 Hexadecenoylcarnitine 1.40 1.22 1.60 1.3x10-6

23 Acylcarnitines C0 Carnitine 1.38 1.20 1.58 2.9x10-6

24 Acylcarnitines C12:1 Dodecenoylcarnitine 1.36 1.19 1.55 3.5x10-6

25 Acylcarnitines C18:1 Octadecenoylcarnitine 1.33 1.18 1.51 4.6x10-6

26 Acylcarnitines C3 Propionylcarnitine 1.35 1.19 1.54 4.6x10-6

27 Biogenic Amines ADMA Asymmetric dimethylarginine 1.37 1.20 1.57 5.4x10-6

28 Acylcarnitines C14:1-OH Hydroxytetradecenoylcarnitine 1.33 1.17 1.51 7.7x10-6

29 Acylcarnitines C14:1 Tetradecenoylcarnitine 1.35 1.18 1.54 8.3x10-6

30 Acylcarnitines C7-DC Pimelylcarnitine 1.37 1.19 1.57 8.3x10-6

31 Amino acids Asp Aspartate 1.38 1.20 1.60 9.2x10-6

32 Glycerophospholipids PC aa C36:4 PC aa C36:4 0.72 0.62 0.83 9.8x10-6

33 Sphingolipids SM C24:0 SM C24:0 0.72 0.62 0.83 1.0x10-5

34 Glycerophospholipids PC aa C36:6 PC aa C36:6 0.72 0.62 0.84 1.3x10-5

35 Acylcarnitines C9 Nonanoylcarnitine 1.30 1.15 1.47 2.1x10-5

36 Glycerophospholipids PC aa C36:5 PC aa C36:5 0.72 0.62 0.84 2.4x10-5

37 Biogenic Amines Met-SO Methionine sulfoxide 1.45 1.22 1.73 2.4x10-5

38 Amino acids Trp Tryptophan 0.73 0.63 0.85 4.1x10-5

39 Glycerophospholipids lysoPC a C18:2 lysoPC a C18:2 0.76 0.66 0.87 4.5x10-5

40 Sphingolipids SM (OH) C24:1 SM (OH) C24:1 0.77 0.67 0.87 5.0x10-5

41 Glycerophospholipids PC aa C38:5 PC aa C38:5 0.75 0.65 0.86 6.0x10-5

42 Glycerophospholipids PC aa C34:3 PC aa C34:3 0.76 0.66 0.87 6.8x10-5

43 Glycerophospholipids lysoPC a C14:0 lysoPC a C14:0 0.75 0.65 0.87 9.5x10-5

44 Biogenic Amines Spermidine Spermidine 1.28 1.13 1.45 1.1x10-4

45 Acylcarnitines C14 Tetradecanoylcarnitine 1.27 1.12 1.44 1.3x10-4

46 Biogenic Amines Spermine Spermine 1.25 1.12 1.41 1.3x10-4

47 Acylcarnitines C12 Dodecanoylcarnitine 1.28 1.13 1.45 1.3x10-4

48 Amino acids Glu Glutamate 1.32 1.14 1.52 1.6x10-4
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49 Acylcarnitines C14:2 Tetradecadienylcarnitine 1.30 1.13 1.48 1.6x10-4

Supplemental Table 3: KTR and cytokines values in the 2 study cohorts
GMS1 GMS2

(n=489) (n=321)
KTR 0.04 (0.03–0.05) 0.04 (0.03–0.06)
IL-1 β (pg/mL) 6.6 (4.4–10.9) 8.4 (7.2–9.8)
IL-2 (pg/mL) 26.1 (22.6–32.9) 21.5 (17.8–26.0)
IL-4 (pg/mL) 7.0 (5.2–10.9) 12.5 (9.7–16.7)
IL-6 (pg/mL) 10.3 (7.1–17.6) 12.6 (9.9–17.0)
IL-13 (pg/mL) 7.5 (11.0–29.8) 4.1 (3.3–5.6)
IFNγ (pg/mL) 10.0 (7.3–15.5) 14.6 (11.6–16.8)
TNF-α (pg/mL) 22 (17.9–28.3) 37.1 (17.0–55.0)
Variables are presented as median (interquartile range). GMS: Gargano Mortality Study; KTR: kynurenine/tryptophan 
ratio; IL-: interleukin; IFN: interferon; TNF-: tumor necrosis factor.

Page 31 of 33

For Peer Review Only

Diabetes
D

ow
nloaded from

 http://diabetesjournals.org/diabetes/article-pdf/doi/10.2337/db22-0095/672677/db220095.pdf by H
ELM

H
O

LTZ ZEN
TR

U
M

 M
U

EN
C

H
EN

 user on 09 M
ay 2022



Supplemental Table 4. Correlation between cytokines and KTR in the pooled sample (n = 810; 
256 events)
Cytokines β (SE) P
IL-1β 0.06 (0.03) 0.08
IL-2 0.04 (0.03) 0.22
IL-4 -0.13 (0.04) 0.0003
IL-6 0.14 (0.03) <0.0001
IL-13 -0.25 (0.05) <0.0001
IFN-γ 0.17 (0.05) 0.001
TNF-α 0.31 (0.06) <0.0001
All analyses are adjusted for study cohort. Correlations are given as β (SE).
KTR: kynurenine/tryptophan ratio; IL: interleukin; IFN- : interferon; TNF-: tumour necrosis factor.
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Supplemental Figure 1. Spearman correlation plot between the 49 associated-metabolites in the 

discovery sample (Gargano Mortality Study 1) 
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The areas of circles show the absolute value of corresponding correlation coefficients. The stronger the correlation, the 
more intense the color of the circle. Insignificant correlations are plotted as blank squares.
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