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ABSTRACT

Introduction - Fusion of histology and MRI is frequently demanded in biomedical research to study in wvitro
tissue properties in an in vivo reference space. Distortions and artifacts caused by cutting and staining of
histological slices as well as differences in spatial resolution make even the rigid fusion a difficult task. State-
of-the-art methods start with a mono-modal restacking yielding a histological pseudo-3D volume. The 3D
information of the MRI reference is considered subsequently. However, consistency of the histology volume and
consistency due to the corresponding MRI seem to be diametral goals. Therefore, we propose a novel fusion
framework optimizing histology/histology and histology/MRI consistency at the same time finding a balance
between both goals.

Method - Direct slice-to-slice correspondence even in irregularly-spaced cutting sequences is achieved by
registration-based interpolation of the MRI. Introducing a weighted multi-image mutual information metric
(WI), adjacent histology and corresponding MRI are taken into account at the same time. Therefore, the
reconstruction of the histological volume as well as the fusion with the MRI is done in a single step.

Results - Based on two data sets with more than 110 single registrations in all, the results are evaluated
quantitatively based on Tanimoto overlap measures and qualitatively showing the fused volumes. In comparison
to other multi-image metrics, the reconstruction based on WI is significantly improved. We evaluated different
parameter settings with emphasis on the weighting term steering the balance between intra- and inter-modality
consistency.

Keywords: registration, Mutual Information, multi-modal image fusion

1. INTRODUCTION

In biomedical research small animal models are frequently used applying in vivo as well as in vitro imaging
techniques. While in wvivo approaches like MRI and PET yield consistent 3D volumes, they lack in spatial
resolution compared to high resolution in vitro images. Histology and autoradiographs have high in plane
resolution but as they are based on cut slices they lose their 3D relationship. They are further affected by
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artifacts like tears, missing parts or nonlinear distortions caused by cutting and staining. To study in vitro tissue
properties in an individual in vivo anatomical reference space and allow for 3D shape characterisation of brain
structures, consistent fusion of multi-modality data is mandatory.

In this paper, we focus on the fusion of rat brain histology and MRI, which is a two-step problem. First,
histology images are rigidly registered with corresponding MRI slices resulting in a histology volume. Secondly,
pre-registered histologies are non-rigidly registered to MRI slices to correct at least distortions while ignoring
artifacts. Here, we present our solution for the first step as a prerequisite for the second one.

Most of the automatic methods for 3D reconstruction of a series of 2D slices make no use of a 3D reference
(see e.g. Nikou et al.,' Ourselin et al.? and Pietryzk et al.?). They base either on extrinsic fiducial markers,*
intrinsic features like landmarks and contours®® principal axes” or image intensities.’>? Only the intensity-based
approaches are relevant for this application, since artifacts like missing parts and frayed out borders render other
approaches impractical.

However, only a 3D reference ensures general shape correctness of the resulting volume. Solutions refering
to such an in wvivo reference are proposed with application to human basal ganglia® and more recently for
autoradiography/MRI of monkey brains and for histology/MRI of mouse brains.? 19

All three approaches start without using the reference volume by restacking the in vitro slices mono-modally.
This holds the problem of error propagation, i.e. misregistration of one image causes all subsequent images
to be misregistered as well. These misregistrations are corrected by changing parameters and rerunning the
registration process for misregistered images.” A graph-based reconstruction is also proposed to eliminate slices
which cause large registration errors.'® Subsequently, a 3D registration of the pseudo-in wvitro volume and the
in vivo volume is applied, first rigidly then affine to correct for different cutting planes.’>'® However, stopping
there ignores the curved shape of biological objects in 3D.°

To make use of the 3D structure of the genuine 3D volume, a sequence of 2D registrations is performed
with an in vitro image as source and a corresponding in vivo slice as target. To avoid losing the coherence that
has already been achieved between adjacent in wvitro images, the transformations induced by the multi-modal
registrations are smoothed in the Z-direction.?>° This framework of 3D registration, 2D multi-modal registration
and transformation smoothing is iterated in a fusion loop.?

We learn from these approaches, that mono-modal restacking of histologic images is highly error-prone and
that there is a gap between coherence of adjacent histologic slices and coherence between histology and MRI.
Therefore, we propose to fuse both of these steps together: the mono-modal registration (adjacent histological
slices) step and the multi-modal registration (histology/MRI slices) step. For this, we introduce a weighted
multi-image similarity metric based on mutual information. The term multi-image is used in the sense of multi-
target-image. In our case, for each histological image two target images are at hand: the corresponding MRI
slice and the adjacent histological image. A weighting factor controls the impact of histology or MRI information
and, hence, the impact of the associated coherence goals.

2. IMAGE MATERIAL

The images used in this work are part of an ongoing study, where a cerebral abscess in two CDF Fisher rat brains
was artificially induced. The MRI scan was performed using a small animal research scanner with a UnityInova
console (Varian, Palo Alto, USA), 9.4 Tesla magnet, 21lcm core bore size, surface coil and a gradient magnitude
of 270mT/m. The T2 weighted spin-echo sequence (TE=24ms) resulted in 40 slices of 256 x 256 pixels with a
resolution of 0.117 x 0.117 x 0.5mm for each data set.

After sacrificing the rat, the brain was removed and frozen in —50 °C isopentan. Then, it was cut into 20um
thick coronal slices using a cryostat microtome. To allow high throughput not all histological slices are processed
further. Instead, on average every 10th slice was placed on a glass plate for subsequent staining with toluidin
blue. However, if a slice to be imaged had been distorted too much, it was discarded and the next suitable slice
was used in its place. Therefore, in general the histology stack shows non-equidistant gaps with an average gap
size of 180um varying between 140um and 260um. In total, 89 slices for the first and and 28 for the second data
set were captured using a stereo microscope neolumar (Zeiss, Jena, Germany) with a connected color camera
(Canon, Tokyo, Japan) resulting in a spatial resolution of 3072 x 2304 pixels of 6um? size.
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3. FUSION OF HISTOLOGY AND MRI

At first sight the registration between histology section and MRI would appear to be rather straightforward
with a large number of potential solutions available in the literature (see e.g. Pluim et al.!'). Looking closer,
however, there are many problems to be resolved even in the rigid body case: Precise image correspondence is
hard to achieve due to the large difference in slice thickness between histology and MRI, differing by a factor of
ten, and additionally non-equidistant gaps within the histology stack (see Sec. 2). The spatial image resolution
of histologies exceeds those of MRI approximately by a factor of 20 resulting in less partial volume effects.
Histogram-based similarity measures like mutual information face the problem of poor statistics due to the low
number of corresponding MRI voxels. The image content of histologies differ from MRIs as a result of the
removal of the skull and the subsequent staining process. Although in principle both modalities can be seen as
slice-based, the cutting plane may vary.

We propose the following fusion framework to solve these issues. First, the high sampling of histology in the
Z-direction is simulated for the MRI data by applying registration-based interpolation.'? Then, the irregularity
of the sampling gaps within the histology sequence is propagated to the MRI volume yielding a slice-to-slice
correspondence of both data sets (Figs. 1, 2). Secondly, histology and MRI are registered slice-by-slice using
the corresponding MRI slice and the preregistered adjacent histological image as targets simultaneously (Fig. 3).
The supplementory information of both modalities smooths the feature space yielding improving robustness. The
implementation of the novel weighted multi-image mutual information is based on B-spline Parzen windows to
enhance the statistics for entropy estimation. To deal with different spatial resolutions of the two target images,
we sample target and source images using a Halton sequence.'® As in Malandain et al.,” an affine 3D registration
with histology as target follows if necessary to correct for different cutting planes.

3.1 Upsampling of MRI in the Z-direction

Obviously, effective registration depends heavily on the amount of similar image content. Due to a low MRI
sampling rate in Z, in some regions morphology changes significantly from one slice to another. Therefore, the
MRI volume is upsampled in Z (Fig. 1a) using a registration-based interpolation technique.'?

In summary, a non-rigid voxel-based registration algorithm is applied to two adjacent anchor slices. In an
ideal scenario, the registration is aligning these slices perfectly yielding a dense deformation field to describe the
transformation. Subsequently, a parallel plane between target and source image is introduced being intersected
by the deformation vectors. These intersections determine the intensities of the interpolated image at the plane
position.'?

Target resolution after upsampling equals the maximum possible Z-resolution of the histological sections.
Assuming a common starting slice for both modalities and preserving the original MRI slices of 500um thickness,
gaps of 480um size are filled with 24 interpolated slices of virtual thickness of 20um (Fig. 2).

(@) (b)

Figure 1. Registration-based interpolation of MRI data (a) to simulate high resolution in the Z-direction. The known
gaps of the histological slices are introduced into the MRI data ending up with a one-to-one correspondence of histological
and MRI slice.

Proc. of SPIE Vol. 6914 69140M-3

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



(a) (b)

Figure 2. Sagittal (a) and horizontal view (b) for original (left) and interpolated MRI (right) after irregular sampling.

For the fusion procedure, only slices are needed which correspond to a histology. The histological images are
numbered consecutively, starting with the olfactorial bulb as distinct reference. This allow adjustment of the MRI
volume in the Z-direction and propagation of the irregular gaps (Fig. 1b) yielding an irregularly supersampled
volume MR,,,0 < n < N with MR,, being a coronal MRI slice and N the number of slices.

3.2 Registration of Histology and MRI

Let HI,, be the histological images which define the selection of MR,,. Adapting the notation given in Malandain
et al.,” a rigid transformation Thr,. Mg, describes the mapping of points in MR,, to points in HI,. The
application of Tu1, —mr, to HI,, HI, o Tur, MR, , yields a registered histology HI,, in MR geometry. A multi-

image registration HI, o T} involves not only MR,, but also the previously registered I—fIvIn,l as

L, —MR,,,HI,
target. Choosing R = |N/2| as number of the global reference slice and starting with a multi-modal but
mono-(target)-image registration (Fig. 3a), a series of multi-image registrations follows up and down the stack

(Fig. 3b-d):
HI,, o THIn<—MRn,ITIn,1’ if R<n<N,
HI, = { HI, o Th1, MR, if n=R, (1)
HI,, o T, if 0<n<R.

HI,,«—MR,, ,HI, 11’

3.2.1 Weighted Multi-Image Mutual Information

Mutual information is a well established similarity measure for registration of multi-modal medical images.!*
For two images A and B, optimizing mutual information I(A, B) tends to minimize the joint entropy H(A, B)
while maximizing both image entropies, H(A) and H(B): I(A,B) = H(A)+ H(B) — H(A, B). There are several
possibilities to generalize mutual information for more than two images.!! In our application, both target images

have a unified geometry due to previous registration. Therefore, the following definition is appropriate:'4
I(A,B,C) = H(A,B)+H(C)-H(A, B,C) (2)
p(a,b,c)
= p(a, b, c)log ————
2 plab.)log o

where p(a, b, c) denotes the joint probability for intensities a € A, b € B and ¢ € C, p(a,b) and p(c) analogue.
The source C' corresponds to HI,,, the targets A and B to MR,, and I-’IvIn,l, respectively, for the first case in (1).
According to (3), A and B are treated as a single union target image. The major drawback of this approach is
that the contribution of each target image to the final measure cannot be scaled. Particularly with regard to
histology restacking, there is one target image with large differences (MRI) due to differing modalities and one
target image with much smaller differences (histology) due to morphological changes. This means I(A, B, C)
effectively forces C' to be more similar to B than to A. This effect is so huge, that we end up with a metric which
is very similar to I(B,C) for pure mono-modal restacking. To overcome this problem, weighted multi-image
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Figure 3. Schematic view of the registration framework using two targets at the same time. After initialisation registering
one histological slice to the correspondent MRI slice (a) the procedure moves down (b, ¢) and up (d) the stack taking the

MRI slice and the adjacent histology into account. The sketch shows the source image striped and the target images with
a bold line.

mutual information WI with weight o € [0 : 1] is introduced here:

WI(A,B,C) = aH(A)+(1—a)H(B)+ H(C)
—aH(A,C)— (1-a)H(B,C) (3)
N b g PER(.0)
= e e bl
p(b,c)

Note, that WI(A, B,C) = I(A,C) is true for « = 1 and WI(A, B,C) = I(B,C) for a = 0. The main advantage
of WI is the individual scalability of the contributions of each target to the final measure.

3.2.2 Halton Sampling

Despite the differing resolutions of both targets, for p(a,b,c) common samples are needed. WI can be imple-
mented with joint or separate sampling of both targets. Since the histological image is physically much smaller,
joint sampling implicates a masking of the MRI. To allow for uniform joint target sampling, a Halton sequence
7y, is utilized.'® Briefly, for one dimension and for a prime basis B a sequence of rational numbers 7}, with

L—1 L-1
re=B""Y by B, k=) bB', L=1+loggkl
1=0 1=0
by € {0,1,...,B — 1}, is constructed given a consecutive number of positive integers k. This sequence is

characterised as low-discrepancy, i.e. it is able to cover the image domain uniformly. A further advantage
is removal of the well known grid effect of mutual information, because the samples neither are dependent on
the target nor on the source grid. Details and effects of this kind of sampling on registration can be found in
Thevenaz et al.'3
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Table 1. Experimental results for different metrics and parameter settings.

Method Data set 1 Data set 2

Metric Init. NoS Joint? Qopy  Intra  Inter Qopy Intra  Inter
I IC 2 yes - 0.859 0.782 - 0.970 0.911
CoG 2 yes - 0.857 0.791 - 0970 0.914

CoG 4 yes - 0.855 0.769 - 0.969 0.915

CoG 8 yes - 0.860 0.785 - 0.970 0.913

wIi 1C 2 no 0.8 0.792 0.741 0.9 0.955 0.806
1C. 2 yes 0.8 0.854 0.794 0.9 0.956 0.889

CoG 2 yes 0.8 0.878 0.810 0.9 0.967 0.913

CoG 4 yes 0.8 0.879 0.809 0.9 0.967 0.919

CoG 8 yes 0.8 0.883 0.810 0.9 0.967 0.918

In the case of 2D multi-image mutual information, Halton sampling helps to maintain different spatial resolu-
tions of two target images and, thus, preserving all information. Both target images are evaluated at the sample
positions by means of cubic B-spline interpolation. The joint histogram is filled applying cubic B-spline Parzen
windows in all directions.!3

4. EXPERIMENTS AND RESULTS

To evaluate the novel fusion strategy using WI(A, B,C'), we set up several exeriments for different parameters
and compare the results to using I(A, B, (') based on two data sets. The first data set covers the whole rat brain
including the cerebellum. The slices of the second data set are located only in the mid-brain, where distortions
are less probable and, thus, the restacking itself is much easier.

All experiments have in common a bin size of five and ten for histograms involving MRI and histological
images, respectively. The feature space is optimized using an evolutionary optimization strategy.'® Beside the
general comparison of both similarity measures in question, our experiments include different kinds of initial-
ization like image centre (Image Centre (IC) in Tab. 1) or centre of gravity given by the spatial distribution of
image intensities (Centre of Gravity (CoG) in Tab. 1). The effect of joint or separate sampling of target images
(Joint? yes/no in Tab. 1), number of samples (NoS x10000 in Tab. 1) and weighting factor o are studied. For
I only joint sampling is possible and no optimal cwpt is specified. Note, that with oo = 0, the very first step of
mono-modal restacking” 1° is approximated.

Quantitative results are calculated by the Tanimoto overlap measure.!® After manual labeling of the brain
tissue in both modalities and comparing pairwise adjacent histologies, the mean over the whole stack yields a

0.9
0.85r
o 0.8
°
© p
>
Q0751
0.7 1 —=— Intra-Modality Overlap 7 —=— Intra-Modality Overlap
—+-- Inter-Modality Overlap e Inter-Modality Overlap
i
0-65, 0.2 04 0.6 0.8 1 085 0.2 0.4 0.6 0.8 1
(04 (04

Figure 4. a-curves for intra- and inter-modality Tanimoto overlap of first (left) and second (right) data set.
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Figure 5. Sagittal (first row), horizontal (second row) and coronal view of two different slices (third and last row) for
a = 0.8 of first data set (see Tab. 1) sliding between both fused data sets.

measure of intra-modality coherence (Intra in Tab. 1). Comparing pairwise corresponding labels of histology and
MRI slices, the corresponding mean provides an inter-modality coherence value (Inter in Tab. 1).

Table 1 shows the results of different experiments, which vary less regarding the second data set in comparison
to the first. The reason is the differing coverage of the brain with only mid-brain parts of the second and the
whole rat brain of the first data set. Taking joint sampling of both target images and initialization due to CoG
rather than IC into account improved coherence values are recognisable. By increasing the numbers of samples
from 20000 to 80000 the results of data set one show a small rise in intra-modality overlap and a constant or
slightly falling inter-modality overlap. For data set two the intra-modality coherence is nearly constant for all
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experiments, the inter-modality overlap rises. The optimum number of samples is 80000 for data set one and
40000 for data set two. « was determined empirically given the intra- and inter-modality overlap curves for
80000 joint samples and CoG initialization (Fig. 4). As « is increased the intra-modality overlap rises slightly
for the first data set and staying nearly constant for the second one, but falls down rapidly reaching o = 1.0.
The inter-modality overlap curve rises more steeply and reaches an optimum at o = 0.8 for the first and at
a = 0.9 for the second data set. The best result of the first data set is visualised in Fig. 5 showing very accurate
registration even in cases of distortions for which one coronal example is given (Fig. 5, last row).

5. DISCUSSION AND CONCLUSION

In this work, a fusion framework given a histological image stack and a MRI volume is proposed. It deals with
irregular gaps between adjacent histologies by upsampling the MRI in the Z-direction using registration-based
interpolation yielding virtual slices of 20pum thickness. However, since the anchor slices have in fact a thickness of
500um, they suffer from partial volume effects which are not eliminated by the interpolation but carried forward
to the interpolated slices. The registration is performed using a novel weighted multi-image mutual information
measure allowing the adjustment of intra- and inter-modality coherence within one registration step. Therefore,
parts of the complex application of a fusion loop? can be avoided. An affine adjustment of differing cutting
planes may follow, but was not necessary for our data.

By taking the corresponding MRI slice as well as the already registered adjacent histology into account at the
same time, robustness of the fusion process increases because of complementary information of the two targets.
To use low as well as high resolution targets simultaneously, Halton sampling decouples pixels and samples. The
optimum coherence was achieved using a number of samples which is much higher than the number of pixels in
a MRI image. Nevertheless, the improvement is small and computation time increases linearly with the number
of samples.

Despite of distortions or missing parts, the histology is very accurately fused with the MRI volume for a
proper adjustment of the weighting factor «. « determines the influence of one target image against the other.
This was necessary, because assuming perfect registration of all three target images involved, the remaining joint
entropy of histology source and MRI target is much higher than that of histology source and adjacent histology
target due to the differing imaging modalities. Therefore, a plays the role of adjusting these differing baselines
and the need of overweighting the MRI with o > 0.5 could be expected. After empirical determination here, we
intend to evaluate new data from this ongoing study in particular to determine the optimum « from the data
directly.

ACKNOWLEDGMENTS

For this work, Christoph Palm was supported by the German Research Foundation (DFG), grant PA1595/1-1.
We also thank Dagmar Salber and Anca Oros-Peusgens (Research Centre Juelich, Germany) for providing the
stained rat brain histologies and MRIs, respectively.

REFERENCES

1. C. Nikou, F. Heitz, A. Nehling, I. Namer, and J.-P. Armspach, “A robust statistics-based global energy func-
tion for the alignment of serially acquired autoradiographic sections,” Journal Neuroscience Methods 124,
pp. 93-102, 2003.

2. S. Ourselin, A. Roche, G. Subsol, X. Pennec, and N. Ayache, “Reconstructing a 3D structure form serial
histologic sections,” Image Vision Computing 19, pp. 25-31, 2000.

3. U. Pietrzyk, D. Bauer, A. Vieten, A. Bauer, K.-J. Langen, K. Zilles, and C. Palm, “Creating consistent 3D
multi-modality data sets from autoradiographic and histological images of the rat brain,” in IEEE Nuclear
Science Symposium Conference Record, 6, pp. 4001-4003, 2004.

4. J. L. Humm, R. M. Macklis, X. Q. Lu, Y. Yang, K. Bump, B. Beresford, and L. M. Chin, “The spatial
accuracy of cellular dose estimates obtained from 3D reconstructed serial tissue autoradiographs,” Physics
Medicine Biology , pp. 163-180, 1995.

Proc. of SPIE Vol. 6914 69140M-8

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



10.

11.

12.

13.

14.

15.

16.

S. Krinidis, C. Nikou, and I. Pitas, “Reconstruction of serially acquired slices using physics-based modeling,”
IEEE Transactions Information Techniques and Biomedicine 7(4), pp. 394-403, 2003.

A. Rangarajan, H. Chui, S. Pappu, L. Davachi, P. S. Goldman-Rakic, and J. S. Duncan, “A robust point
matching algorithm for autoradiographic alignment,” Medical Image Analysis 4(1), pp. 379-398, 1997.

O. Schmitt, J. Modersitzki, S. Heldmann, S. Wirtz, and B. Fischer, “Image registration of sectioned brains,”
International Journal of Computer Vision 73, pp. 5-39, June 2007.

S. Ourselin, E. Bardinet, D. Dormont, G. Malandain, A. Roche, N. Ayache, D. Tandé, K. Parain, and
J. Yelnik, “Fusion of histological sections and MR images: Towards the construction of an atlas of the
human basal ganglia,” in MICCAI 2001, W. Niessen and M. Viergever, eds., pp. 743-751, Springer, 2001.
G. Malandain, E. Bardinet, K. Nelissen, and W. Vanduffel, “Fusion of autoradiographs with an MR volume
using 2D and 3D linear transformations,” Neurolmage 23, pp. 111-127, 2004.

P. A. Yushkevich, B. B. Avants, L. Ng, M. Hawrylycz, P. D. Burstein, H. Zhang, and J. C. Gee, “3D
mouse brain reconstruction from histology using a coarse-to-fine approach,” in WBIR 2006, J. P. W. Pluim,
B. Likar, and F. A. Gerritsen, eds., pp. 230-237, Springer, 2006.

J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever, “Mutual-information-based registration of medical
images: A survey,” IEEE Transactions Medical Imaging 22, pp. 986-1004, Aug. 2003.

G. P. Penney, J. A. Schnabel, D. Rueckert, M. A. Viergever, and W. J. Niessen, “Registration-based
interpolation,” IEEE Transactions Medical Imaging 23, pp. 922-926, July 2004.

P. Thévenaz, M. Bierlaire, and M. Unser, “Halton sampling for image registration based on mutual infor-
mation,” Sampling Theory in Signal and Image Processing, in press , 2008.

C. Studholme, D. L. G. Hill, and D. J. Hawkes, “Incorporating connected region labelling into automated
image registration using mutual information,” in IEEE Proceedings MMBIA 96, pp. 23-31, 1996.

M. Styner, C. Brechbtihler, G. Székely, and G. Gerig, “Parametric estimate of intensity inhomogeneities
applied to MRI,” IEEFE Transactions Medical Imaging 19, pp. 153-165, March 2000.

W. R. Crum, O. Camara, and D. Hill, “Generalized overlap measures for evaluation and validation in
medical image analysis,” IFEE Transactions Medical Imaging 25, pp. 1451-1461, Nov. 2006.

Proc. of SPIE Vol. 6914 69140M-9

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 25 May 2022
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



