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Abstract

Developmental and epileptic encephalopathy 35 (DEE 35) is a severe neurological

condition caused by biallelic variants in ITPA, encoding inosine triphosphate pyr-

ophosphatase, an essential enzyme in purine metabolism. We delineate the geno-

typic and phenotypic spectrum of DEE 35, analyzing possible predictors for adverse

clinical outcomes. We investigated a cohort of 28 new patients and reviewed pre-

viously described cases, providing a comprehensive characterization of 40 subjects.

Exome sequencing was performed to identify underlying ITPA pathogenic variants.

Brain MRI (magnetic resonance imaging) scans were systematically analyzed to de-

lineate the neuroradiological spectrum. Survival curves according to the

Kaplan–Meier method and log‐rank test were used to investigate outcome pre-

dictors in different subgroups of patients. We identified 18 distinct ITPA pathogenic

variants, including 14 novel variants, and two deletions. All subjects showed pro-

found developmental delay, microcephaly, and refractory epilepsy followed by

neurodevelopmental regression. Brain MRI revision revealed a recurrent pattern of

delayed myelination and restricted diffusion of early myelinating structures. Con-

genital microcephaly and cardiac involvement were statistically significant novel

clinical predictors of adverse outcomes. We refined the molecular, clinical, and

neuroradiological characterization of ITPase deficiency, and identified new clinical

predictors which may have a potentially important impact on diagnosis, counseling,

and follow‐up of affected individuals.

K E YWORD S

congenital microcephaly, developmental and epileptic encephalopathy 35, heart disease, ITPA,
ITPase, white matter abnormalities

1 | INTRODUCTION

Developmental and epileptic encephalopathy 35 (DEE 35; MIM#

616647) is a rare neurodegenerative condition characterized by

developmental delay (DD), microcephaly, feeding difficulties,

early‐onset refractory seizures (often within the first 6 months of life)

followed by psychomotor stagnation/regression, and lethality in early

childhood (Handley et al., 2019; Kaur et al., 2019; Kevelam et al.,

2015). Cardiac and ocular involvement is frequently observed. White

matter involvement is typical and consists of peculiar region‐specific
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abnormalities, predominantly involving early myelinating structures

and suggestive of a neuronal degenerative process (Kevelam

et al., 2015).

Biallelic variants in inosine triphosphate pyrophosphohydrolase

(ITPA; MIM# 147520) have been first associated with DEE 35 in

seven patients from four unrelated families by Kevelam et al. (2015).

More recently, a few additional affected individuals have been re-

ported (Bierau et al., 2007; Burgess et al., 2019; Burgis, 2016;

Handley et al., 2019; Kaur et al., 2019; Rochtus et al., 2020;

Sakamoto et al., 2020). Inosine triphosphate pyrophosphatase

(ITPase), is an essential enzyme that removes the spontaneously

arising noncanonical nucleotides inosine triphosphate (ITP) and

deoxy‐inosine triphosphate (dITP) from the cellular nucleotide pool,

playing a pivotal role in purine metabolism and cell function (Galperin

et al., 2006; Holmes et al., 1979).

We report 28 unpublished individuals with DEE 35 from 23 un-

related families of different ancestry and review 12 previously reported

cases. This clinical and neuroradiological characterization of a large cohort

of 40 individuals allows a refined phenotypic description of ITPase defi-

ciency. We further systematically investigate possible clinical predictors

for adverse outcomes in this rare condition.

2 | MATERIALS AND METHODS

2.1 | Editorial policies and ethical considerations

This study adheres to the principles set out in the Declaration of

Helsinki and was locally approved by the local Ethics Committees of

the involved Institutions: Mayo Clinic, Rochester, 16‐004682; King

Faisal Specialist Hospital and Research Centre, (2121053, 2120022,

and 2161245); Technische Universitaet Muenchen, 5360/12

S; University College London, project ID: 07/N018, REC Ref:

07/Q0512/26). No IRB approval was necessary for retrospective

data analysis of a single patient for the following Institutions: Alberta

Children's Hospital, Calgary, Canada; Al‐Jawhara Centre for Mole-

cular Medicine, Kingdom of Bahrain; Center for Neurogenomics and

Cognitive Research, VU University, The Netherlands; Children's

Hospital, Cantonal Hospital Lucerne, Switzerland; Dr. Sami Ulus

Training and Research Hospital for Maternity and Children; Emma

Children's Hospital, Amsterdam Leukodystrophy Center, The

Netherlands; The Children's Memorial Health Institute, Poland. The

authors obtained and archived written informed consents from par-

ents or legal guardians of the enrolled subjects to publish genetic and

clinical data, including brain magnetic resonance imaging (MRI) ima-

ges (P1 and P3).

2.2 | Patient enrolment

We ascertained the genotype and phenotype information for 28 novel

subjects with severe epileptic encephalopathy. Patients were recruited

through international collaboration, also using Genematcher (Sobreira

et al., 2015), from several clinical and research centers in Europe, Africa,

Middle East, North America, and New Zealand (for details see the Sup-

porting Information Material). Written informed consent was obtained

from the parents or legal guardians of all enrolled subjects. Phenotypes of

two of these individuals (P9 and P14), who were partially described

previously, have been extensively reported and updated (Bierau et al.,

2007; Muthusamy et al., 2021).

2.3 | Previously reported cases assessment

All articles indexed in PubMed (https://pubmed.ncbi.nlm.nih.gov/?term=

itpa) between October 2015, when ITPA variants were first associated

with DEE 35 by Kevelam et al. (2015), and March 2021 were retrieved

using the terms “ITPA,” “ITPase deficiency,” and “epileptic encephalo-

pathy 35.” All the articles were thoroughly reviewed concerning the

molecular, clinical, and neuroradiological spectrum associated with DEE

35. Inclusion criteria for previously published patients were: availability of

clinical data (with a focus on epilepsy, developmental, neuro‐, cardio‐ and

ophthalmological findings), identification of (likely) pathogenic ITPA var-

iants, lack of duplication from other previous reports. Exclusion criteria

were: ambiguous clinical presentation not consistent with DEE 35 and

inconclusive genetic testing.

2.4 | Variant identification and analysis

Next‐generation sequencing panel for epileptic encephalopathies (P5

and P9) or exome sequencing (P1‐4, P6‐8, P10‐28) was performed on

genomic DNA extracted from peripheral blood leukocytes (P1–15

and P17–28) or ORAcollect buccal swab (OCR‐100; DNA Genotek)

(P16) using standard local protocols (Supporting Information

Material). Chromosomal microarray analysis was performed in P2, P3,

P26, and P27 according to standard methods (Shaw‐Smith et al.,

2004). The identified variants were filtered according to minor allele

frequency ≤0.001 in genomic databases (Genome Aggregation

Database—gnomAD, Lek et al., 2016); Iranome, in‐house database of

16,000 control exomes, the Munich in‐house database (https://

github.com/mri‐ihg/EVAdb), Great Middle Eastern Variome Project—

GME), conservation (Genomic Evolutionary Rate Profiling—GERP,

http://mendel.stanford.edu/SidowLab/downloads/gerp/), and pre-

dicted effect on protein structure and function. In silico prediction

tools were used for the interpretation of candidate variants, including

Combined Annotation Dependent Depletion (CADD; https://cadd.gs.

washington.edu), Mutation Taster (http://www.mutationtaster.org),

Sorting Intolerant From Tolerant (SIFT; https://sift.bii.a‐star.edu.sg),

and Polyphen‐2 (http://genetics.bwh.harvard.edu/pph2/). Candidate

variants were eventually classified according to the American College

of Medical Genetics and Genomics and the Association for Molecular

Pathology (ACMG/AMP) guidelines (Richards et al., 2015). Sanger

sequencing was performed for validation and segregation analysis. All

ITPA variants are reported according to RefSeq NM_033453.3,

GenBank NC_000020.11. The change in protein stability was
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calculated with PyRosetta for the variants presented herein and the

presumed neutral variants present in gnomAD (https://gnomad.

broadinstitute.org/) (Chaudhury et al., 2010; Karczewski et al., 2020).

All novel variants reported were deposited in the Leiden Open Var-

iation Database (LOVD, https://www.lovd.nl) with the following ac-

cession numbers: #0000831814, #0000831817, #0000831819,

#0000831820, #0000831821, #0000831822, #0000831823,

#0000831824, #0000831825, #0000831826, #0000831827,

#0000831828, #0000831829, and #0000831830. Further details

are available in Supporting Information Material.

2.5 | Neuroimaging analysis

Brain MRI scans were locally performed during routine patient care. Of

these, 28 scans of 19 individuals were collected and analyzed in detail at

the Amsterdam Leukodystrophy Center (The Netherlands). MRI scans of

adequate quality, at least comprising T1‐weighted and transverse

T2‐weighted images were systematically scored according to a previously

published protocol by two independent authors (MDS and MSvdK) (van

der Knaap et al., 1999). Additional sequences, such as diffusion‐weighted

imaging (DWI), magnetic resonance spectroscopy, and contrast‐enhanced

images were also evaluated, when available. MRIs were divided into four

age groups (≤2, 2 to ≤4, 4 to ≤8, and >8 months) and neuroimaging

features were systematically analyzed in each group of patients.

2.6 | Statistical analysis

Descriptive statistics were performed first. Categorical variables were

reported as absolute frequencies and percentages, and quantitative

variables as median values and first and third quartiles (1st and 3rd q). For

comparison of frequencies (e.g., frequency of deaths among males vs.

females), the χ2 test or Fisher's Exact test (in case of expected frequencies

<5) was used. Survival curves according to the Kaplan–Meier method

were drawn for sociodemographic (sex and age at presentation) and

clinical variables (e.g., number of presenting signs, congenital micro-

cephaly, cardiac involvement). Death was considered the event of inter-

est. The log‐rank test was used to compare different survival curves.

Incidence rates of events were calculated for each category defined by

demographic and clinical variables and reported with their 95% con-

fidence intervals. All statistical tests were two‐sided and a p< .05 was

considered statistically significant. Statistica (release 9.1; StatSoft Cor-

poration) was used for all the bivariate analyses. Stata (release 11.0) was

used for the Fisher's exact test and to calculate incidence rates and their

95% confidence intervals.

3 | RESULTS

We identified 28 new patients harboring biallelic ITPA variants

(Table S1) and reviewed 12 previously reported subjects with DEE 35

from four peer‐reviewed articles (Bierau et al., 2007; Burgess et al.,

2019; Burgis, 2016; Handley et al., 2019; Kaur et al., 2019; Kevelam

et al., 2015; Rochtus et al., 2020; Sakamoto et al., 2020), for a total

cohort of 40 affected individuals.

3.1 | ITPA Variants

Eighteen pathogenic or likely pathogenic variants in ITPA were detected

in the studied cohort (Table 1). In addition to previously reported variants,

14 novel ITPA variants were detected in our cohort, including six missense

(Figure 1a; https://michelanglo.sgc.ox.ac.uk/r/itpa) and eight loss‐of‐

function (LoF) variants. All these variants were absent in homozygous

state from gnomAD, had a low allele frequency in heterozygous state

(ranging from 0 to 0.00003551), affected conserved residues, and were

predicted to be damaging by several in silico tools (Table 1). In particular, a

significant structural destabilization could be predicted for the tested

missense variants identified in our cohort as compared to variants fre-

quently found in the healthy population in gnomAD v3.1 (Figure S1). P2

and P3 had a large heterozygous 1.1‐Mb deletion, encompassing ITPA

(hg19, chr20: 2,816,108–3,955,033), whereas an intragenic deletion,

encompassing exons 1–5 (hg19, chr20: 3,189,364–3,196,608) was de-

tected in P27 (Supporting Information Material). Seventeen subjects

carried homozygous ITPA variants, whereas compound heterozygous

variants were found in the remaining individuals. Sanger sequencing

confirmed a carrier status for all the parents and showed concordant

segregation of the variants with the clinical phenotype.

3.2 | Clinical delineation of DEE 35

The phenotype observed in the studied cohort was consistent with

severe DEE (Figure 1b). The age range (current age) was 1–72

months, with a median age at presentation of 3 months, the median

age at last follow‐up of 42 months, and a male‐to‐female sex ratio of

0.69. Severe DD in the first few months of life was diagnosed in

19/40 (47.5%) patients, whereas developmental stagnation/arrest

after seizure onset was present in all subjects (Table 2). A variable

number (1–4) of presenting signs was observed (Table 2). In parti-

cular, congenital microcephaly was diagnosed in 30% of cases.

Interestingly, poor neonatal adaptation was only occasionally ob-

served (P2 and P3). Approximately one‐fifth of subjects were born

small for gestational age (SGA) and significant swallowing difficulties

were very common from birth onwards (92.9%), leading to failure to

thrive in all cases. The age at first seizure ranged from 2 days to

7 months, with a median age of 4 months. Febrile seizures were only

observed in one case (P15), at the age of 4 months. All affected

individuals had epilepsy, with refractory seizures in 68% of patients

(Figure 1c). Clonic/myoclonic, tonic, and tonic‐clonic seizures were

observed, occasionally leading to status epilepticus in two patients

(P4 and P9). Electroencephalographic abnormalities were variable

and included focal, multifocal, and diffuse/generalized discharges

often within a slow and disorganized background, consistent with the

underlying encephalopathy (Table S1).
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Progressive microcephaly and axial hypotonia were common,

occurring in 100% and 97.3% of patients, respectively. Additional

relevant neurological findings included appendicular spasticity with

hyperreflexia (60%) and hyperkinetic movement disorders (33%) (e.g.,

tremors, choreoathetoid movements, dystonia, and dyskinesia).

Extraneurological manifestations were frequent and consisted of

variable ocular disorders in 83% of cases and cardiomyopathy and/or

rhythm disturbances in 29% of patients. Mild dysmorphic features

were present in 39% of subjects, but a definite facial gestalt is absent.

Early death occurred in 53% of cases, with a median age at death of

24 months. Causes of death included cardiac dysfunction in subjects

with heart disease and seizure‐related apnoea (P2 and P24) or as-

piration pneumonia (P17 and P18) in those without cardiac

involvement.

3.3 | Neuroradiological phenotype

Twenty brain MRI scans (of 13 patients) were of sufficient quality to

be analyzed in detail (Figure 1d). MRI characteristics per age group

are reported in Table 3. In patients younger than 2 months (three

scans in three patients), brain MRI revealed very few abnormalities. In

particular, myelination was normal and no cerebral or cerebellar

atrophy or other brain lesions were observed. The posterior limb of

the internal capsule (PLIC) did not show the normal low T2 signal in

one scan, but no focal lesion was present. DWI was available in two

MRI scans and one showed restricted diffusion of specific structures

(Table S2). In patients aged between 2 and 4 months (four scans in

three patients), only one scan showed slightly delayed myelination.

The PLIC contained a T2‐hyperintense focal lesion in two scans. In-

itial cerebral atrophy could be observed in all scans and cerebellar

atrophy was present in one scan. DWI was available in three MRI

scans and restricted diffusion of specific structures was present in

two (Table S2). In patients aged between 4 and 8 months (7 scans in

7 patients), variably delayed myelination was present in six scans. The

PLIC contained a T2‐hyperintense lesion in six scans. Mild‐to‐

moderate cerebral atrophy was seen in five scans, typically associated

with a thin corpus callosum, while no cerebellar atrophy was ob-

served. In all scans, there was restricted diffusion of specific struc-

tures (Table S3). In patients older than 8 months (six scans in four

patients), all scans showed moderately to severely delayed myelina-

tion (Table S4). The PLIC contained a T2‐hyperintense lesion in three

scans. The thalamus was atrophic in two scans. There was mild‐to‐

severe cerebral atrophy with a thin corpus callosum in all, and mild‐

to‐moderate cerebellar atrophy in four scans. Restricted diffusion of

specific structures was present in three patients (Table S4).

Diffusion restriction was separately reviewed. Commonly in-

volved structures were globus pallidus, PLIC, pyramidal tracts in the

brain stem, cerebellar white matter, hilus of the dentate nucleus,

superior cerebellar peduncles, decussation of the superior cerebellar

peduncles, middle cerebellar peduncles, optic radiation, brachium of

the inferior colliculus, and central tegmental tracts in the midbrain,

pons, and medulla. In older patients, restricted diffusion could also be

observed in the anterior limb of the internal capsule, corpus callosum,

and cerebral hemispheric white matter.

Two patients had sequential MRI scans. In one case, restricted

diffusion was absent at 2.5 months but present in specific structures

at 4 months. The other patient had four MRI scans (at 6 months,

1 year, 1.7 years, and 2.8 years). Restricted diffusion of specific

structures and a T2‐hyperintense lesion of the PLIC were present at

6 months and 1 year but were not observed at 1.7 and 2.8 years.

Cerebral and cerebellar atrophy increased over time.

3.4 | Predictors of early mortality in DEE 35

Epidemiologic and clinical parameters were considered for the in-

vestigation of outcome predictors through the analysis of number/per-

centage and incidence of death events (Table 4). The studied categories

included sex, age at presentation, age at first seizure, number of pre-

senting signs, congenital microcephaly, DD, seizures, hypotonia, SGA

status, spasticity, ocular involvement, and cardiac involvement. Among

these, congenital microcephaly and cardiac disorders were significantly

associated with poor disease outcomes (p= .004) (Figure 2). In fact, 10/12

(83%) patients with congenital microcephaly prematurely deceased ver-

sus 11/28 (39.3%) subjects with normal occipitofrontal circumference

(OFC) at birth. The Incidence Rate (IR) of subjects with congenital mi-

crocephaly was 4.032 (95% CI =2.17–7.494) per 100 person‐months,

while it was 1.279 (95% CI = 0.708−2.31) in those with normal OFC at

birth. The Hazard Ratio (HR) was 3.427 (95% CI =1.402−8.373). This

supports a positive relationship (p= .004) between the presence of this

clinical feature and premature death. Similarly, early lethality was ob-

served in 10/10 (100%) subjects with some type of cardiac involvement

versus 9/25 (36%) lacking cardiac abnormalities. The IR among subjects

with cardiac manifestations was 4.049; (95% CI = 2.178−7.525) versus

1.155 (95% CI =0.601−2.220) in those lacking cardiac involvement. The

HR was 3.509 (95% CI = 1.394−8.834). These findings are suggestive of a

higher mortality rate among affected individuals with cardiac disorders

(p= .004). No other statistically significant associations were detected for

the remaining variables (Table 4).

4 | DISCUSSION

This is the largest study involving subjects with DEE 35 harboring

(likely) pathogenic variants in ITPA, allowing to delineate the mole-

cular spectrum, determine the clinical phenotype, identify the neu-

roimaging patterns, and eventually establish prognostic factors in this

rare and severe neurological condition.

4.1 | ITPase deficiency

ITPase is a pyrophosphohydrolase catalyzing the conversion of

noncanonical purines (NCPs) into the corresponding nucleoside

monophosphate (Simone et al., 2013). The 45‐kDa enzyme has a
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homodimeric structure composed of two globular 194‐aminoacid α/β

structural elements supported by a central elongated mixed β‐sheet

(Behmanesh et al., 2009; Holmes et al., 1979). The ITP‐binding cleft is

located between the dimerization and the N‐terminal lobes, whereas

the Mg2+‐dependent and pH‐sensitive catalytic activity lie in a region

of the N‐terminal lobe close to the dimer interface (Behmanesh et al.,

2009; Holmes et al., 1979). NCPs may spontaneously originate from

the purine biosynthesis pathway or the deamination of nucleosides

and nucleotides containing adenine or guanine (Abolhassani et al.,

2010; Galperin et al., 2006). The increased sensitivity to NCPs caused

by ITPase deficiency may lead to delayed cell cycle progression, in-

creased mutation rate, and DNA damage, supporting a pivotal role of

ITPase‐mediated genomic instability limitation in cellular homeostasis

(Abolhassani et al., 2010; Holmes et al., 1979). An involvement of

ITPase in immunity and drug metabolism has also been reported

(Nakauchi et al., 2016; Shipkova et al., 2011).

ITPA is highly expressed in the central nervous system (especially

in neurons) and the heart (Holmes et al., 1979). The accumulation of

NCPs resulting from ITPase deficiency can cause direct cellular

toxicity, eventually leading to neuronal apoptosis (Kevelam et al.,

2015). Additionally, the NPCs excess may negatively affect the

function of enzymes utilizing adenosine triphosphate (ATP) or gua-

nosine triphosphate, representing an indirect mechanism of neuronal

toxicity. Indeed, the alteration of G‐protein signal transduction leads

to the inappropriate regulation of critical neuronal processes (e.g.,

neurotransmitter release, neuronal plasticity, and glucose metabo-

lism) (Kevelam et al., 2015). Accordingly, ITPase deficiency resulting

from biallelic ITPA pathogenic variants cause a severe DEE with

progressive disease course and neuroimaging abnormalities.

4.2 | Spectrum of ITPA variants

Hitherto, 24 distinct ITPA variants are known to be associated with

DEE 35, including 19 single‐nucleotide variants (SNVs), three in-

tragenic deletions, one intragenic duplication, and one whole gene

deletion within a larger chromosomal rearrangement. In our cohort,

four out of the eight previously reported pathogenic variants were

detected: c.264‐1G>A; p.(Ile88Metfs*59) (Sakamoto et al., 2020),

c.359_366dup; p.(Gly123Serfs*104) (Kevelam et al., 2015),

c.452G>A;p.Trp151* (Kevelam et al., 2015), c.489‐1G>A (Sakamoto

et al., 2020). We additionally identified 14 novel SNVs, all rare (allele

frequency < 0.001), affecting conserved residues (GERP score range

5.32–5.82), and predicted damaging by in silico tools (CADD score

range 26.4–46, ΔΔG all greater than 5 kcal/mol) (Table 1). Splicing

and frameshift variants likely lead to truncated transcripts or

nonsense‐mediated decay. Missense variants are predicted to alter

the structure of the ITP‐binding cleft, interfere with the Mg2+‐

dependent catalytic activity, and/or impair dimerization, eventually

leading to a deficient enzymatic function. A loss of function me-

chanism is also expected in patients harboring partial or whole gene

deletions. This is in line with what is usually observed in several

epileptic disorders due to underlying metabolic deficiency and offers

the possibility of an etiology‐specific treatment (Assi et al., 2017;

Rahman et al., 2013; Sharma & Prasad, 2017).

We detected a multiexon deletion (P27) involving exons 1–5 of ITPA

and a whole gene deletion (P2 and P3) in the context of a 1.1‐Mb de-

letion, additionally involving AVP,DDRGK1, PANK2, and SLC4A11. Biallelic

variants in DDRGK1, PANK2, and SLC4A11 cause variable clinical condi-

tions (Supporting Information Results), whereas AVP (MIM# 192340) and

SLC4A11 (MIM# 610206) haploinsufficiency is associated with autosomal

dominant neurohypophyseal diabetes insipidus (MIM# 125700) and

corneal dystrophy (Fuchs endothelial, type 4; MIM# 613268)

(Christensen et al., 2004; Vithana et al., 2008). However, the two subjects

harboring the deletion did not display features suggestive of these con-

ditions. In line with these observations, all the detected ITPA are predicted

to result in ITPase deficiency, supporting an underlying LoF pathogenic

model in DEE 35.

4.3 | Phenotypic spectrum of DEE 35

Affected individuals present with a severe DEE, in which the underlying

metabolic defect is responsible for the absence of development and the

uncontrolled epileptic activity additionally contributes to worsen the

cognitive impairment (Kevelam et al., 2015; McTague et al., 2016). Al-

though only a portion of patients presents with DD before seizure onset

(48%), microcephaly (congenital, 30%), and seizures (67.5%) in the earliest

stages of the disorder (Table 2), most will develop the neurological hall-

marks of DEE as the disease progresses. The cardinal clinical features of

DEE 35, reported in >90% of cases, include progressive microcephaly

(100%), epilepsy (100%), developmental stagnation after seizure onset

(97.4%), progressive hypotonia (97.3%), and spasticity (60%). Interestingly,

the perinatal period and birth weight are normal in most subjects,

whereas neurological involvement and failure to thrive become evident in

the first few months of life. Extraneurological manifestations are parti-

cularly relevant in, as emerged from the systematic analysis of new cases

and the review of previously published patients. A significant subset of

subjects presents with ocular and cardiac involvement, which should be

considered in all respects as part of the core clinical phenotype and

assessed in all cases. Ophthalmic manifestations are present in a large

number of affected individuals (83%), including cataract, visual impair-

ment, optic atrophy, and retinal cone dysplasia. Although cardiac dis-

orders are less common (29%), when present they suggest an unfavorable

outcome (Figure 2) and primarily contribute to the increased likelihood of

early lethality (53% of cases). Accordingly, cardiac involvement was ab-

sent in the subjects who survived at 48‐60 months (P1, P4, P5, P6, P13,

P15, P19, and P21), although these patients did not show any peculiar

genetic or clinical feature as compared to the rest of the cohort

(Table S1).

4.4 | Epileptic phenotype

Epilepsy is the cardinal feature of DEE 35, being observed in all af-

fected individuals (Table 2). The epileptic phenotype mainly consists
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of focal and multifocal clonic/myoclonic seizures, generalized tonic

seizures, and generalized tonic‐clonic seizures. Patients suffer from

both afebrile and, less often, febrile seizures. Status epilepticus may

also occur (such as in P4 and P9). EEG usually shows focal or

multifocal epileptiform discharges in the context of a slowing and

disorganization of the background cerebral activity, consistent with

the underlying encephalopathy. Several different ASMs have been

employed alone or in combination (e.g., clonazepam, levetiracetam,

F IGURE 1 Genetic, clinical, and neuroradiological aspects of DEE 35. (a) Structure model of human ITPA protein showing the localization of
the residues affected by ITPA missense variants in relation to the ITP‐binding cleft and Mg2+ binding site. (b) Bar graph illustrating the
distribution of core clinical features of DEE 35, from the most to the less common. Blue bars indicate the number of patients in whom a specific
feature is present whereas grey bars indicate the number of subjects in whom that feature was ascertained but it was absent. Ocular
involvement includes cataract, visual impairment, optic atrophy, and retinal cone dysplasia. Cardiac involvement consists of dilated
cardiomyopathy and rhythm disturbances. Movement disorders include tremors, dystonia, choreoathetoid movements, and dyskinesia.
Dysmorphic features were observed in absence of a distinctive facial gestalt. (c) Pie charts illustrating the percent distribution of specific
neurological and extra‐neurological manifestations of DEE 35. Rhythm disturbances include tachycardia and long QT syndrome. (d) MRI findings.
MRI of P3 at age 6 days (A, B, C). T2‐weighted image (A) shows no atrophy and no signal abnormalities. There is no restricted diffusion (B,C) on
diffusion‐weighted imaging (DWI, apparent‐diffusion coefficient maps not shown). MRI of P1 at age 6 months (D, E, F) shows no atrophy, but
moderately delayed myelination and T2‐hyperintensity of the posterior limb of the internal capsule (PLIC; D). Restricted diffusion is seen in the
optic radiation, PLIC (E), and decussation of the superior cerebellar peduncles (F). Mild diffusion restriction is seen in the globus pallidus (E). MRI
of P1 at age 2 years and 8 months (G, H, I) shows seriously deficient myelination and severe cerebral atrophy (G). Restricted diffusion is no
longer present (H, I). DEE 35, developmental and epileptic encephalopathy 35; ITP, inosine triphosphate; MRI, magnetic resonance imaging.
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topiramate, phenytoin, phenobarbitone, vigabatrin, and clobazam),

but the response to therapy is usually poor, and refractory seizures

occur in more than two‐thirds of cases.

Ketogenic diet (KD), a low‐carbohydrate dietary regimen redu-

cing neuronal excitability, has proven to be effective in the man-

agement of refractory epilepsy in children with DEEs (Jagadish et al.,

2019; Martin et al., 2016; Wells et al., 2020). More specifically,

through several mechanisms working in concert (anti‐inflammatory

activity, epigenetic function, restoration of bioenergetics, synaptic

dysfunction, and impaired redox homeostasis) KD has been suc-

cessfully used in many epileptic disorders caused by an underlying

metabolic deficiency (Gavrilovici & Rho, 2021; Lin Lin Lee et al.,

2018). Among these, KD proved beneficial in metabolic epilepsies

involving dysfunctional energy utilization (e.g., glucose transporter

type 1 deficiency syndrome (GLUT1‐DS) and pyruvate dehy-

drogenase complex deficiency) or abnormal neurotransmitter de-

gradation (succinic semialdehyde dehydrogenase deficiency and non‐

ketotic hyperglycinemia), as well as in mitochondrial epilepsies (e.g.,

POLG‐related disorders and Leigh syndrome) (Gavrilovici & Rho,

2021; Lin Lin Lee et al., 2018). In our cohort, KD was administered in

four cases (P2, P4, P9, and P12). Although this approach was ap-

parently ineffective in P2, a better seizure control (decreased seizure

frequency) was temporarily achieved in P9 and P12, whereas the

efficacy is still under investigation in P4. Interestingly, KD may di-

rectly increase ATP and adenosine levels, both recognized as crucial

modulators of epileptogenic activity (Boison, 2017; Gavrilovici & Rho,

2021; Masino et al., 2010). In principle, this effect might prove useful

in the biochemical context of ITPase deficiency (Burgis, 2016; Masino

et al., 2010). However, further dedicated studies are necessary to

confirm this hypothesis and investigate whether KD may be con-

sidered a potential treatment option in DEE 35.

4.5 | Neuroimaging spectrum

In the very early stages of the disease, MRI may not reveal ab-

normalities. The most typical feature of DEE 35, which appears after

a few months, is a narrow, short segment of T2 hyperintensity in the

PLIC, which disappears after several months (Table 3). Over time,

delayed myelination becomes progressively more evident. DWI is

most useful, revealing the involvement of structures that are not T2

hyperintense. The involved structures are those that typically mye-

linate early. Only in older patients, diffusion restriction in the anterior

limb of the internal capsule and cerebral hemispheric white matter is

observed, structures that myelinate later than the PLIC, brain stem,

cerebellar white matter, and optic radiation. The globus pallidus and

thalamus are the gray matter structures with the highest myelin

content and they are the only gray matter structures showing ab-

normalities. Atrophy is a relatively late finding and increases over

time. Cerebral atrophy is earlier and more pronounced than cere-

bellar atrophy. These peculiar aspects are suggestive of a primary

neuronal degeneration associated with Wallerian degeneration of

white matter tracts, active Wallerian degeneration being

TABLE 2 Clinical features of DEE 35 patients

n/N (%)

Characteristics at clinical presentation

Sex

Male 12/38 (31.6)

Female 26/38 (68.4)

Age at presentation (months), median [1st–3rd quartile] 3 [1 − 4]

Age at first seizure (months), median [1st–3rd quartile] 4 [2 − 5]

No. of presenting signsa

1 15/40 (37.5)

2 20/40 (50.0)

3 3/40 (7.5)

4 2/40 (5.0)

Congenital microcephaly 12/40 (30.0)

Developmental delay 19/40 (47.5)

Seizures 27/40 (67.5)

Small for gestational age 7/34 (20.6)

Clinical features

Progressive microcephaly 36/36 (100)

Epilepsy 39/39 (100)

Refractory seizures 19/28 (67.9)

Developmental arrest after seizure onset 37/38 (97.4)

Feeding difficulties 26/28 (92.9)

Progressive hypotonia 36/37 (97.3)

Spasticity 21/35 (60.0)

Movement disorder 8/24 (33.3)

Ocular involvement 29/35 (82.9)

Cataract 16/28 (57.1)

Visual impairment 5/28 (17.9)

Optic atrophy 2/28 (7.1)

Retinal cone dysplasia 2/28 (7.1)

Otherb 3/28 (10.7)

Cardiac involvement 10/35 (28.6)

Dilated cardiomyopathy 5/10 (50.0)

Rhythm disturbances 4/10 (40.0)

Both 1/10 (10.0)

Dysmorphic features 10/26 (38.5)

Hearing impairment 3/24 (12.5)

Life status

Alive 19/40 (47.5)

Death 21/40 (52.5)

Abbreviations: DEE 35, developmental and epileptic encephalopathy 35; N,
number.
aIncluding microcephaly, psychomotor delay, seizures, hypotonia,
movement disorder.
bStrabismus and refractive errors.
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TABLE 4 Number and percentage of events and incidence rates
of deaths by different clinical categories

No. of deaths

/No. of

patients (%) p

Incidence rate × 100

persons‐month

(95% CI)

p

(Log‐rank
test)

All patients 21/38 (55.3) 1.895 (1.236−2.907)

Sex

Male 4/12 (33.3) .16* 1.031 (0.387−2.747) .27

Female 15/26 (57.7) 2.137 (1.288−3.544)

Age at presentation (months)

<3 6/17 (35.3) .10* 1.382 (0.621−3.077) .38

≥3 12/19 (63.2) 2.19 (1.244−3.856)

Age at first seizures (months)

<4 7/15 (46.7) .85* 1.877 (0.895−3.937) .54

≥4 8/16 (50) 1.509 (0.755−3.018)

No. of presenting signs

1 6/15 (40) .38** 1.307 (0.587−2.909) .19

2 11/20 (55) 2 (1.108−3.611)

3–4 4/5 (80) 4.04 (0.516−0.765)

Congenital microcephaly

Yes 10/12 (83.3) .011* 4.032 (2.17−7.494) .004

No 11/28 (39.3) 1.279 (0.708−2.3)

Developmental delay

Yes 12/19 (63.2) .20* 2.065 (1.173−3.637) .71

No 9/21 (42.9) 1.708 (0.889−3.282)

Seizures

Yes 14/27 (51.9) 1.00** 1.889 (1.119−3.19) .95

No 7/13 (53.8) 1.907 (0.909−4)

Hypotonia

Yes 2/6 (33.3) .40** 2.439 (0.61−9.752) .60

No 19/34 (55.9) 1.851 (1.181−2.903)

Small for gestational age

Yes 3/7 (42.9) .68** 1.714 (0.553−5.315) .95

No 15/27 (55.6) 1.923 (1.159−3.19)

Spasticity

Yes 12/21 (57.1) .10* 2.194 (1.246−3.863) .13

No 4/14 (28.6) 0.926 (0.348−2.467)

Ocular involvement

Yes 17/29 (58.6) .63** 1.959 (1.218−3.151) .96

No 2/6 (33.3) 1.835 (0.459−7.336)

Cardiac involvement

Yes 10/10 (100) .001** 4.049 (2.178−7.525) .004

No 9/25 (36) 1.155 (0.601−2.22)

Note: 95% CI is the 95% confidence interval of the incidence rate.

*p Fisher's exact test.; **p Pearson's χ2.
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characterized by diffusion restriction (Kevelam et al., 2015). Since

early‐myelinating white matter structures are the first to become

functionally active, they are precociously involved in the course of

the disease (Kevelam et al., 2015). Although this sequence of MRI

characteristics is characteristic of DEE 35, the first MRI abnormalities

may occur after the clinical presentation and therefore MRI may in-

itially not be informative. If present, the typical lesions in the pos-

terior limb of the internal capsule and the pattern of structures with

diffusion restriction are suggestive for DEE 35 diagnosis and may

help differentiate this condition from RABGAP2‐related phenotypes

(e.g., diffuse brain atrophy, frontotemporal polymicrogyria, and cor-

pus callosum hypoplasia) (Sakamoto et al., 2020).

4.6 | Cardiac involvement in patients with
pathogenic ITPA variants

The excess of ITP in cardiac sarcomeres favors the abnormal acto-

myosin binding of ITP instead of ATP and the accumulation of

deoxyinosine monophosphate in nucleic acids (Behmanesh et al.,

2009; Burton et al., 2005). These events eventually lead to cardiac

toxicity as a result of disorganization of the sarcomeric structure in

the developing heart, increased DNA damage, nonfunctional RNAs,

delayed cell cycle progression, and impaired cardiac protein function

(Behmanesh et al., 2009; Burton et al., 2005). Cardiac involvement is

of particular interest in DEE 35 individuals. Lethal infantile‐onset

dilated cardiomyopathy was recently reported in two subjects with

Martsolf‐like syndrome harboring homozygous null ITPA variants

(Handley et al., 2019). In this study, cardiomyopathy (5/10 subjects),

rhythm disturbances (4/10 subjects), or both (1/10 subjects) were

observed in 29% of patients (Table 2), making cardiac involvement a

key clinical issue in ITPase deficiency. Although there is still limited

direct evidence to unveil the potential mechanisms underlying car-

diac dysfunction in human subjects with ITPase deficiency, it is

tempting to speculate that the restoration of the enzymatic activity

might positively impact on cardiac function in these patients (Burgis,

2016; Handley et al., 2019).

5 | CONCLUSIONS

Early diagnosis and timely antiepileptic treatment may favorably im-

pact the management and developmental outcomes of patients with

DEEs. Obtaining a genetic diagnosis is especially crucial for parental

counseling and beneficial in terms of knowledge of the natural course

of the specific disorder. We reported a comprehensive analysis of

40 patients with DEE 35, expanding and refining the molecular and

phenotypic spectrum of this severe condition. In addition to a severe,

progressive encephalopathy which typically presents during the first

months of life, affected individuals show a high prevalence of ocular

and cardiac manifestations and an increased risk of premature death.

Congenital microcephaly and cardiac involvement are independent

clinical predictors of poor outcomes. Taken together, these findings

may have a large impact on diagnosis, counseling, and follow‐up of

subjects with DEE 35.
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