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Abstract
The paradigm that permafrost-affected soils show restricted mineral nitrogen (N) cycling in favor
of organic N compounds is based on the observation that net N mineralization rates in these cold
climates are negligible. However, we find here that this perception is wrong. By synthesizing
published data on N cycling in the plant-soil-microbe system of permafrost ecosystems we show
that gross ammonification and nitrification rates in active layers were of similar magnitude and
showed a similar dependence on soil organic carbon (C) and total N concentrations as observed in
temperate and tropical systems. Moreover, high protein depolymerization rates and only marginal
effects of C:N stoichiometry on gross N turnover provided little evidence for N limitation. Instead,
the rather short period when soils are not frozen is the single main factor limiting N turnover. High
gross rates of mineral N cycling are thus facilitated by released protection of organic matter in
active layers with nitrification gaining particular importance in N-rich soils, such as organic soils
without vegetation. Our finding that permafrost-affected soils show vigorous N cycling activity is
confirmed by the rich functional microbial community which can be found both in active and
permafrost layers. The high rates of N cycling and soil N availability are supported by biological N
fixation, while atmospheric N deposition in the Arctic still is marginal except for fire-affected areas.
In line with high soil mineral N production, recent plant physiological research indicates a higher
importance of mineral plant N nutrition than previously thought. Our synthesis shows that
mineral N production and turnover rates in active layers of permafrost-affected soils do not
generally differ from those observed in temperate or tropical soils. We therefore suggest to adjust
the permafrost N cycle paradigm, assigning a generally important role to mineral N cycling. This
new paradigm suggests larger permafrost N climate feedbacks than assumed previously.
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1. Introduction—are permafrost-affected
soils characterized by organic N cycling
only?

Over the last decades, the nitrogen (N) cycle of
permafrost-affected soils has been perceived to
involve mostly organic N compounds with little
importance of the production and turnover of min-
eral N (see figure 1(a)). This paradigm has been
established since the landmark paper of Schimel
and Bennett (2004) which postulates that in cold
ecosystems—in contrast to temperate and tropical
systems—a strong temperature limitation of protein
depolymerization limits the availability of dissolved
organic N compounds (DON, e.g. amino acids).
Consequently, DON would be exposed to intense
plant-microbe competition so that microbes would
remain N-limited but not carbon-limited, which
forces them to use the assimilatedN for growth rather
than for performing ammonification (Regina et al
1996, Schimel and Bennett 2004). Because ammoni-
fication is the first step of mineral N production and
turnover, it provides the substrate for other min-
eral N cycling processes in the plant-soil-microbe
system. Hence, impaired ammonification suppresses
the entire mineral N cycle, i.e. subsequent nitrifica-
tion (the microbial oxidation of ammonium (NH4

+)
and ammonia (NH3) to nitrite (NO2

−) and nitrate
(NO3

−)), denitrification (the reduction of NO3
−

or NO2
− to gaseous N such as the greenhouse gas

(GHG) nitrous oxide (N2O) and inert dinitrogen
gas (N2)), and microbial immobilization of NH4

+

and NO3
− (figure 1(a)). Such a ‘short’ N-conserving

cycle is characterized by high N limitation and effi-
cient ecosystem N retention, but by little importance
of mineral N turnover such as ammonification and
nitrification that leads to gaseous or hydrological N
losses from the ecosystem. A wide range of studies
has emphasized the prevalence of organic N over
mineral N forms to be characteristic for N-limited
arctic ecosystems (Kielland 1995, Jones and Kielland
2002, Weintraub and Schimel 2005, Weedon et al
2012, Wild et al 2018). As a consequence of the pre-
dominance of organic N cycling there would be no
significant emissions of microbially produced N2O
and other N gases, while carbon (C) mineralization
still facilitates production and emission of the GHGs
carbon dioxide (CO2) and methane (CH4).

Based on these assumptions, together with the
large amounts of C stored in permafrost-affected soils
(Hugelius et al 2014), permafrost research interests
during the last decades have focused on climate feed-
backs of the C cycle via emission of the GHGs
CO2 and CH4. The total gaseous C release result-
ing from permafrost degradation might be as high
as 92 ± 17 Pg C within this century, with an estim-
ated contribution by CO2 and CH4 of 97.7% and
2.3%, respectively (Schuur et al 2015). These GHG
emissions fromwarming permafrost-affected soils are

thought to be large enough to significantly contrib-
ute to the global temperature increase in the 21st cen-
tury (Schuur et al 2013).What is less known, however,
is that permafrost-affected soils store and potentially
emit large—though less well constrained—amounts
of N (Harden et al 2012, Ramm et al 2020, Voigt
et al 2020). Particularly N2O is of major concern as
it is a long-lived GHG with a 100 year global warm-
ing potential exceeding those of CO2 and CH4 by
265 and 9.5 times, respectively (IPCC 2014). Further-
more, N2O plays a dominant role in stratospheric
ozone destruction in the 21st century (Ravishankara
et al 2009).

PermafrostNpools and associated soil N turnover
processes (protein depolymerization, ammonifica-
tion, nitrification) started to receive increasing atten-
tion only 1–2 decades ago. A current search in
the Web of Science and Scopus (March 2021)
indicated several hundred studies on ‘permafrost/
arctic C turnover’, around 100 studies on ‘permafrost/
arctic N turnover’ and only about ten studies on ‘per-
mafrost/arctic gross N turnover’. Thus, the general
observation that understanding of N cycling is lag-
ging behind relevant work on C cycling for decades
(Schlesinger 2009) is particularly true for permafrost-
affected ecosystems. Deficits in knowledge on eco-
system N cycling compared to C cycling persist—
not only concerning permafrost ecosystems—due to
a range of severe methodological problems to accur-
ately quantify the complex N cycling in the plant-soil-
microbe system (Groffman et al 2006, Rennenberg
et al 2009, Butterbach-Bahl et al 2013).

However, a series of arguments and recent obser-
vations question the old paradigm (figure 1(a)) of a
predominance of organic N cycling in permafrost-
affected soils with little importance of mineral N
cycling.

(a) First, increasing evidence shows that emissions
of the potent GHG N2O are more import-
ant for permafrost-affected soils than previously
thought (Voigt et al 2020). Since about a dec-
ade, large N2O emissions have been reported
from awide range of permafrost-affected ecosys-
tems (Repo et al 2009, Elberling et al 2010, Voigt
et al 2020). As N2O emissions are largely origin-
ating from various nitrification and denitrific-
ation pathways as well as chemical decomposi-
tion of nitrification intermediate products such
as hydroxylamine (Butterbach-Bahl et al 2013),
this observation points to a larger importance of
mineral N cycling in permafrost-affected soils.

(b) Second, several studies showed high annual gross
ammonification and nitrification at relatively
low annual temperatures (e.g. in continental
steppe of Inner Mongolia; Wu et al 2012), with
freeze-thaw events being a hot moment for N
mineralization and emissions of N gases (Wolf
et al 2010, Wu et al 2012, Wagner-Riddle et al
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Figure 1. Nitrogen (N) cycling in permafrost-affected soils according to the old paradigm with a very low importance of mineral
N cycling (a) and according to the revised paradigm with a much higher importance of mineral N cycling (b). Gray shows
negligible turnover processes. Present organic N pools are shown in orange, active organic N turnover processes in yellow, present
mineral N pools in light blue, active mineral N turnover processes in blue, uptake processes in green (dashed lines indicate
negligible uptake processes), N deposition in black, leaching in purple, gaseous losses in red. Arrow widths indicate importance
according to reviewed data. Plus signs contain reasons for enhanced cycling. EPSs= extracellular polymeric substances,
SON= soil organic nitrogen, DON= dissolved organic nitrogen, NH4

+ = ammonium, NO3
− = nitrate, N2 = dinitrogen,

N2O= nitrous oxide, OM= organic matter, PF= permafrost.

2017, Wu et al 2020). A study conducted in
the German Alps even showed the occurrence
of large gross ammonification and nitrification

rates in frozen montane grassland soil, both
based on measurements of gross N turnover and
molecular analysis of functional N cycle genes
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(Wang et al 2016). Consequently, the temper-
ature conditions in permafrost-affected soils do
not per se exclude significant mineral N pro-
duction and turnover. Meanwhile, also studies
on gross N turnover in permafrost-affected soils
were published, but the information is scattered
and has not yet been synthesized.

(c) Third, the paradigm that ammonification is
largely insignificant in the C- and N-rich
permafrost-affected soils contradicts our gen-
eral understanding of ecosystem controls apart
from permafrost-related studies, i.e. a positive
correlation of soil organic carbon (SOC) and
total nitrogen (TN) concentrations with gross
ammonification (Booth et al 2005). Further-
more, Wild et al (2015) did not detect a decrease
in microbial N limitation along a latitudinal
transect ranging from arctic to temperate eco-
systems. Instead, N limitation seems to decrease
with soil depth (Meyer et al 2006, Wild et al
2015).

(d) Fourth, it is well known that biological N fix-
ation (BNF) can significantly contribute to N
availability in permafrost ecosystems (Henry
and Svoboda 1986, Hobara et al 2006, Stew-
art et al 2013). Given the large BNF rates
of cyanobacterial associations in permafrost-
affected soils (0.1–25.8 kg N ha−1 yr−1; table 2),
this additional N input could lift N limitation for
microbes, thereby facilitating gross ammonifica-
tion (Stewart et al 2014).

(e) Fifth, atmospheric N deposition might still be
generally low in the northern circumpolar per-
mafrost region, but is expected to rise due
to increased emissions from global and local
sources (Lamarque et al 2005, Dentener et al
2006). Especially the increasing frequency of
severe fires in the Arctic (Holloway et al 2020)
could increase atmospheric N loads in this
region at large scales, as was recently reported for
tropical regions of Central Africa (Bauters et al
2018).

(f) Sixth, the Arctic is warming rapidly and climate
change related disturbances are becoming more
common (Biskaborn et al 2019, IPCC 2019).
Ammonium/nitrate content is usually an order
of magnitude higher in the permafrost than in
the active layer (Keuper et al 2012, Beermann
et al 2017, Fouché et al 2020). Warming of
permafrost regions and subsequent permafrost
thaw may promote N availability through C
and N substrate release from formerly pro-
tected permafrost. Such increased N availabil-
ity, together with increased CO2 concentrations
in the atmosphere, might increase vegetation
cover in permafrost ecosystems and associated
rhizodeposition of labile C and N compounds
that again—via priming of soil organic matter

(SOM) decomposition—could enhance mineral
N cycling.

These points indicate that mineral N cyc-
ling in permafrost-affected soils has possibly been
underestimated. Hence, here we attempt to assess
and quantify the role mineral N cycling plays in
permafrost-affected soils. In order to reflect on
the validity of the classical permafrost N cycling
paradigm, we synthesize existing data on gross and
netN turnover rates in the plant-soil-microbe system,
as well as N input and output processes. Overall, our
objective is to characterize the significance of perma-
frost mineral N cycling and to identify research gaps
that hamper understanding permafrost ecosystem N
cycling under current and future climate.

2. Methods

We conducted a meta-analysis to synthesize current
knowledge on gross and net N turnover rates in
permafrost-affected soils. This was accompanied by
literature reviews on soil organic N properties, N
inputs by BNF and atmospheric N deposition, on the
importance of mineral versus organic N in plant N
nutrition, and on gaseous/hydrologicalN losses. Peer-
reviewed papers referring to net and gross N turnover
rates (net DONproduction/gross protein depolymer-
ization, net/gross ammonification, net/gross nitrific-
ation) under field and laboratory conditions were
collected from the Web of Science using specific
search terms (for more details on literature survey,
data extraction and assembly please see supplement-
ary material 1 available online at stacks.iop.org/ERL/
17/013004/mmedia). Additional studies were found
from links to other publications and based on the
expert knowledge of the authors. In total 16 studies
were suitable for our analysis of gross N rates and
33 studies for our analysis of net N rates (see meta-
analysis references, supplementary material 1). From
that we extracted 81 datasets concerning gross rates
and 163 datasets concerning net rates (often more
than one turnover process was measured). The data
were extracted from tables or graphs (using GetData
Graph Digitizer 2013). In the following, we refer to
net changes of DON and amino acids as net DON
production. Soils were classified as organic or min-
eral as reported in the papers or based on C and N
concentrations and C:N ratios (if possible). Further
data on climate and soil properties were extracted
(see supplementary material 1) to analyze potential
controls of N transformation rates. Graphs and lin-
ear regressions were produced in Origin Version 2016
(OriginLab Corporation 2016). The regression lines
do not account for standard errors as this might bias
the data due to only few available standard errors. Rel-
ative importance of environmental factors controlling
gross N turnover rates were assessed using stepwise
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multiple linear regression analysis which was conduc-
ted in SPSS 8.0 (SPSS Inc 1998) and a tool for propor-
tional marginal variance decomposition which was
performed in R v3.2.6. (R Core Team 2019) using
the R package relaimpo (see Grömping 2021). Stat-
istical significance was given at 95% confidence inter-
val. Gross rates of N turnover in permafrost-affected
soils were compared with respective data of temper-
ate/tropical systems by use of the gross N turnover
datasets published byBooth et al (2005) andElrys et al
(2021a, 2021b). For this purpose, also data contained
in graphs of Booth et al (2005) were digitized and data
from Elrys et al were obtained via personal commu-
nication.

BNF rates reported for mosses/lichens/cyanobac-
teria and alders in permafrost systems were extrac-
ted from the Web of Science and based on scientific
expertise of the authors. If expressed in other units,
the rates were converted to kg N ha−1 yr−1 (or per
season) since this is the common unit in the scientific
field, notwithstanding that the observed areal cover-
age of N2-fixing vegetation communities of mosses/
lichens/cyanobacteria is often patchy and they vary at
much smaller scales than one hectare.

All mentioned processes are driven by micro-
bial activities. Despite much is known about drivers
for microbiomes in temperate systems and factors
determining their activities, it is unclear if the avail-
able data can be used to improve our understanding
on N turnover in permafrost-affected soils, mainly
as the keystone species for the different processes
might differ, with different ecophysiologies compared
to those microorganisms which we are already well
aware off. This also relates tomicrobial network form-
ation and interaction patterns, which are essential
mainly for nitrification but to a smaller extent also for
other processes. We used the small amount of liter-
ature available where phylogeny of functional groups
was described and linked these data to known prop-
erties of the described taxa also from other cold
environments.

3. How important is microbial mineral N
production in permafrost-affected soils?

The perception that N cycling in permafrost-affected
soils is largely based on organic N forms has been
promoted by many studies quantifying soil dissolved
organic and mineral N concentrations and/or net
rates of N turnover. This is because dissolved N con-
centrations and net rates of N turnover are relatively
simple to determine and therefore preferably ana-
lyzed in arctic environments compared to gross rates
of N turnover, which require elaborate stable iso-
tope studies. While gross rates reveal rates of single
N turnover processes, net rates reflect the balance of
production and consumption of an N compound,
thereby integrating several gross processes.

3.1. A synthesis of published rates of gross and net
N turnover in permafrost-affected soils
Meta-analysis of N turnover rates published for
permafrost-affected soils (mg N kg sdw−1 d−1; net
rates N = 247 observations, gross rates N = 132
observations) in field or laboratory studies revealed
strikingly different patterns in net and gross trans-
formation rates. Net DON production rates (only
available for six organic soils with mean of −9.4 and
median of −2.9 mg N kg sdw−1 d−1) were negat-
ive while mean and median net rates of ammonific-
ation, nitrification and N mineralization were either
slightly negative or close to zero with no signific-
ant differences between organic and mineral soil
horizons (figure 2(a)). The mean net DON pro-
duction of all reviewed studies, including those that
could not be categorized as organic or mineral, was
−5.1 mg N kg sdw−1 d−1 (median: 0.02; N = 11)
(figure S1). The mean net N mineralization was
0.8 mg N kg sdw−1 d−1 (median: 0.1; N = 127)
(figure S1), which appears to confirm the absence of
significant mineral N cycling in permafrost-affected
soils. To compare, Liu et al (2017) summarized the
average net mineralization over North and South
America, Europe, Africa, Asia and Oceania across dif-
ferent ecosystems to be 2.4± 0.2 mgN kg sdw−1 d−1.
Shrub ecosystems showed the lowest net N min-
eralization rates (0.4 ± 0.1 mg N kg sdw−1 d−1)
and wetlands the highest net mineralization rates
(6.1 ± 1.7 mg N kg sdw−1 d−1). Under the tradi-
tional plant-nutrition-oriented view of net rates as a
measure of the N ‘left over’ by microbes for plant N
uptake, the lownetmineralization in permafrost areas
would confirm that plants need to rely on organic N
sources. However, the negative net DON production
rates also suggest high microbial immobilization of
DON (figure 1(a)) and thus a very strong and success-
ful microbial competition for DON against plants.

While the hardly detectable net rates tell that
mineral N production in permafrost-affected soils
might be generally negligible, the gross rates show
that this is clearly a misconception (figure 2(b)).
Mean gross protein depolymerization in permafrost-
affected soils as obtained from published studies was
69.6mgN kg sdw−1 d−1 (median: 8.7; N= 30), mean
gross ammonification was 13.8 mg N kg sdw−1 d−1

(median: 3.1; N = 65) and mean gross nitrifica-
tion 6.6 mg N kg sdw−1 d−1 (median: 1.9; N = 51)
(figure S2), with organic soils showing considerably
larger rates than mineral soils (figure 2(b)). Gross
N turnover rates did not significantly differ between
field and laboratory studies (figure S3).

Hence, our synthesis of N turnover data clearly
shows significant gross ammonification and nitrific-
ation activity in permafrost-affected soils, which is
not at all reflected by the negligible rates of net N
turnover. Also for other N-limited systems, such mis-
matches of net and gross rates were highlighted. For
instance, Wu et al (2012) showed that an annual
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Figure 2. Net rates (a) and gross rates (b) of DON production/protein depolymerization, ammonification, nitrification in
permafrost-affected soils. Net N mineralization as the sum of net ammonification and net nitrification includes the studies that
differentiate between the two processes as well as the many studies that only show the sum of these processes. Data are shown
separately for organic (red) and mineral (blue) horizons including different geographical locations and ecosystems as boxplots.
Open circles indicate the mean which is also given in numbers to the right of the boxes. The number of observations is shown in
brackets beneath the boxplots. There was no study reporting net DON production in mineral soils. For comparison, global means
of gross ammonification and nitrification reported for other soils as obtained from Elrys et al (2021a, 2021b) are provided in
squared brackets.

dataset of net rates of N turnover in continental semi-
arid steppe soils of Inner Mongolia did neither reflect
plant N availability nor the enormousmagnitude and
seasonal dynamics of gross inorganic N production
rates. All of this is explained by the fact that net rates
integrate all producing and consuming processes, e.g.
of NH4

+ or NO3
− (usually in absence of plants using

non-intact soil cores). Thus, net rates do not reflect
rates and dynamics ofmineralization-immobilization
turnover and ignore major plant-soil-microbe inter-
actions, which is not in line with a modern percep-
tion of profound plant impacts on N turnover via
successful competition for N also in N-limited sys-
tems (Rennenberg et al 2009, and references therein).
Based on our synthesis we conclude that net rates of

N turnover are of comparably little use to provide
insight into N cycling in permafrost-affected soils.

Only Wild et al (2013, 2015, 2017, 2018) repor-
ted gross protein depolymerization for permafrost-
affected soils, while for temperate and tropical
systems, hardly any depolymerization data are avail-
able. The available data on gross protein depoly-
merization in permafrost-affected soils, derived from
Greenland, Sweden and Siberia, indicate that gross
protein depolymerization exceeded gross ammon-
ification on average by approximately an order
of magnitude in organic soils, i.e. only a minor
fraction of the produced DON was further min-
eralized to NH4

+, however, at still notable rates
(figure 2(b)). To compare, in temperate soil beech
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litter (in Austria) gross protein depolymerization
rates (131–497 mg N kg sdw−1 d−1) exceeded gross
ammonification 8.6–34.8-fold and gross nitrification
8.5–32.7-fold (Wanek et al 2010). Also Jones and
Kielland (2002) observed for Alaskan black spruce
taiga that ammonification was slower than depoly-
merization. Such findings suggest that the bottle-
neck of N mineralization in permafrost areas is not
the transformation of high-molecular-weight DON
to low-molecular-weight DON, but the transforma-
tion of low-molecular-weight DON to NH4

+. This
means that microbes invest relatively much in the
depolymerization of N-rich polymers (N mining)
via extracellular enzymes in order to overcome N
limitation. Generally, information on gross protein
depolymerization comes with the caveats that only
few data have been published and that the high pub-
lished rates suggest a possibly questionable, very low
mean residence time of depolymerized soil organic
N (SON; the difference between TN and inorganic
N) of only weeks to months. The underlying meth-
odology of isotopic dilution of 15N-labeled amino
acids has been simplified recently (Noll et al 2019)
so that more data might become available in near
future to shed further light on the quantitative role of
depolymerization in permafrost-affected soils. Based
on the available data, we conclude that the repor-
ted very high gross protein depolymerization rates
in permafrost-affected soils contradict two major N
cycle paradigms, i.e. the assumptions that (a) depoly-
merization is the limiting ‘bottleneck’ of the N cycle
and (b) that depolymerization in permafrost-affected
soils is strongly limited by temperature (Schimel and
Bennett 2004). These high rates challenge the per-
ception of ubiquitous N limitation in northern soils
(Wild et al 2015), but suggest a rapid turnover of at
least part of polymeric organic matter. Nonetheless,
the extent to which either the transformation of pro-
teins to amino acids or of amino acids to NH4

+ con-
trolN availability in permafrost-affected soils remains
severely understudied.

Our meta-analysis data on gross N turnover rates
in permafrost areas refer to the active layer of a per-
mafrost ecosystem except for one study. Mao et al
(2020) compared an active layer (0–10 cm) to a per-
mafrost layer (215–265 cm) on the Tibetan Plateau
with the permafrost layer being analyzed for gross N
turnover shortly after thawing. They found that gross
ammonification (0.5± 0.04mgN kg sdw−1 d−1) and
nitrification rates (0.1 ± 0.00 mg N kg sdw−1 d−1)
were lower in the permafrost layer than in the active
layer (3.5± 0.16 and 0.6± 0.03 mg N kg sdw−1 d−1,
respectively), but still detectable, indicating
substantial mineralization activity immediately
after permafrost thaw (supplementary mater-
ial 2). However, to our knowledge no pub-
lished study to date has successfully determined
gross N turnover under frozen permafrost soil
conditions.

Permafrost gross ammonification and nitrifica-
tion rates from themeta-analysis were comparedwith
other systems using the comprehensive synthesis of
gross N turnover by Booth et al (2005) who presen-
ted a wide range of gross N turnover rates measured
in temperate, tropical, semiarid and arctic/montane
ecosystems (only ca. 4% in arctic/montane sys-
tems). Since the original data were not available,
we digitized data from Booth et al (2005) and
found mean gross ammonification from organic
and mineral soils to be 13.5 mg N kg sdw−1 d−1

(median: 4.7; N = 158), while mean gross nitrific-
ation was 3.0 mg N kg sdw−1 d−1 (median: 1.2;
N= 158). Thus, mean permafrost gross ammonifica-
tion (13.8mgN kg sdw−1 d−1) turned out to be com-
parable to and mean permafrost gross nitrification
(6.6 mg N kg sdw−1 d−1) even tended to be higher
than in non-permafrost ecosystems. More recently,
Elrys et al (2021a, 2021b) provided a global synthesis
of gross ammonification and nitrification across cli-
matic zones, thereby distinguishing between organic
and mineral soils. Interestingly, the very recent global
mean values of gross rates provided by Elrys et al do
not significantly differ from synthesized data of Booth
et al (2005). Elrys et al (2021a) reported mean global
ammonification of 30.2 and 4.3 mg N kg sdw−1 d−1

for organic and mineral soils, respectively, which is
well comparable to the permafrost data of this study
(24.1 and 2.4mgNkg sdw−1 d−1; figure 2(b)). Global
gross nitrification was 8.8 and 3.5mgN kg sdw−1 d−1

in organic and mineral soils, respectively (Elrys
et al 2021b), which is also comparable to the rates
obtained for permafrost soils in this study (12.7 and
1.7 mg N kg sdw−1 d−1; figure 2(b)).

When comparing gross ammonification rates of
permafrost-affected soils collected within this study
with those of other ecosystems presented by Booth
et al (2005), it becomes evident that gross ammonific-
ation rates in permafrost-affected soils show not only
a comparable magnitude, but also almost the same
dependency on SOC and TN concentrations com-
pared to rates in other ecosystems (figure 3). Specific-
ally, gross ammonification increases at the same rate
depending on SOC concentrations in permafrost-
affected soils as in soils of other ecosystems (tem-
perate/tropical/montane) (figure 3(a)). The depend-
ency of gross ammonification and TN concentrations
for permafrost-affected soils even shows a slightly
steeper slope compared to data for other ecosystems
(figure 3(b)).

This comparison suffers from the problem that
published gross N turnover rates almost exclusively
origin from snapshot studies that are mostly limited
to a single or few sampling dates in the growing sea-
son. This caveat however does not only apply for per-
mafrost studies. Hitherto, only few studies provided
annual gross N turnover rates based on monthly or
even more frequent sampling over an entire year
(Wang et al 2016, and references therein). Hence,
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Figure 3. Comparison of gross ammonification rates and their dependency on SOC (a) and TN (b) concentrations for
permafrost-affected soils (in pink) and other soils (synthesized by Booth et al, part of figure 1). Symbol shapes of Booth et al’s
data (in black): triangle= woody, circle= grass, star= agricultural. The permafrost gross rate studies include laboratory
incubations (59%). The mean gross ammonification rates from Booth et al and from this review do not differ significantly.
Booth et al (2005), John Wiley & Sons.

also the Booth et al (2005) dataset largely contains
snapshot measurements mainly obtained during the
warm season, as is the case for permafrost studies.
Gross N turnover in winter remains a research gap in
permafrost-affected as well as in other soils. This is
particularly problematic as recent work suggests that
both frozen soil and freeze-thaw events can be hot
moments of N turnover (Wang et al 2016, Wu et al
2020). High dissolved mineral N concentrations in
permafrost (Elberling et al 2010, Keuper et al 2012,
Beermann et al 2017, Salmon et al 2018, Fouché et al
2020) could thus indeed indicate significant N min-
eralization, but no experimental evidence is available
to support this.

A mean gross ammonification rate of
13.8 mg N kg sdw−1 d−1 (figure S2) at a soil depth
of 0.1 m and a bulk density of 0.4 g cm−3 would
in 100 d translate into a seasonal ammonification
estimate of 552 kg N ha−1, thereby exceeding the
annual N demand of most temperate forests sever-
alfold (Rennenberg and Dannenmann 2015). This
rough but very conservative estimate of the average
growing season potential of gross ammonification in
permafrost systems suggests that, according to pub-
lished rates, gross ammonification indeed can allow
for significant mineral N nutrition of plants.

While gross nitrification on average accounts for
about half of ammonification in permafrost-affected
soils (figure 4), it is notable that gross nitrification is
extensive in the organic layers in several ecosystems,
even exceeding gross ammonification by orders of

magnitude in tundra soils of Greenland and Siberia
(figure 4; supplementary material 2). These results
point at a significant contribution of heterotrophic
nitrification to the formation ofNO3

−, i.e. via a direct
oxidation of organic N compounds to NO3

− (Chen
et al 2015). Furthermore, the results indicate a sur-
prisingly high importance of autotrophic nitrifica-
tion as fate of produced NH4

+ in permafrost-affected
soils, which is similar to or even higher than in other
soils (figure 4). Since under N limitation, NH4

+ is
rather immobilized by heterotrophic microbes than
nitrified (Butterbach-Bahl and Dannenmann 2012),
the high relative importance of nitrification also con-
tradicts the paradigm of strong N limitation.

3.2. Controls of gross N turnover
in permafrost-affected soils
To identify and characterize controls of N transform-
ation rates in permafrost-affected soils, we compared
the N turnover rates with reported environmental,
soil and vegetation parameters (supplementary
material 2). Unfortunately, we could not consider soil
temperature as the data were widely not reported. A
parameterization of gross N turnover in permafrost-
affected soils under different temperatures is among
the most pressing research needs.

Stepwise linear regression (using sub-datasets
of overlapping data on gross rates and potential
controls, see included variables in table 1) with
log-transformed data showed that gross protein
depolymerization expressed on soil dry weight
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Figure 4. The gross nitrification: gross ammonification ratio published for mineral soils in agricultural (agric), grass and woody
ecosystems across different latitudes (synthesized by Booth et al 2005, part of figure 8) as compared to the same ratios in organic
(red) and mineral (blue) permafrost-affected soils (PF) reviewed here. Data are shown as boxplots. Open circles indicate the
mean. To the right of the boxplot the median as well as upper and lower quartiles are given in numbers. Using a t-test, thereby
considering non-equal variance, the gross nitrification: gross ammonification ratio tends to be higher in permafrost systems
compared to other systems at p= 0.07.

Table 1. Stepwise linear regressions for gross protein depolymerization, ammonification and nitrification.

Gross N turnover Included variables Equation p-value R2

Protein
depolymerization

SOC, TN, C:N ratio 1.1× LOG10 (SOC) 0.000 0.673
+0.1 0.417

Ammonification Gross protein depolymerization,
SOC, TN, C:N ratio, DON

0.9× LOG10 (gross protein
depolymerization)

0.000 0.608

−0.7× LOG10 (TN) 0.018
−1.2 0.000

Nitrification Gross ammonification, SOC, TN,
C:N ratio, DON, NH4

+
0.9× LOG10 (NH4

+) 0.000 0.592
−0.4 0.005

basis was mainly dependent on SOC concentra-
tion (table 1). Gross ammonification in turn was
mainly controlled by gross protein depolymeriz-
ation and TN concentration, with gross protein
depolymerization explaining around 85% of gross
ammonification (figure S4). Surprisingly, TN was
correlated negatively with gross ammonification,
suggesting that not TN, but only the active N frac-
tion thereof (which can be easily decomposed) is
important for gross ammonification. Gross nitri-
fication was limited by NH4

+ in the sub-dataset
(table 1).

Analyzing the entire dataset of gross rates of
N turnover and SOC/TN concentrations revealed
that gross protein depolymerization, gross ammon-
ification and gross nitrification rates were strongly
positively correlated with SOC and TN concentra-
tions (with the exception of gross nitrification versus
SOC concentration) (figure 5). Our meta-analysis
for permafrost-affected soils thus highlights SOC
and TN concentrations as major controls of gross
ammonification and nitrification which is in line

with the global synthesis by Booth et al (2005). Also
Elrys et al (2021a) identified SOC and TN as positive
controls of gross ammonification, besides a positive
influence by increasing microbial biomass, increasing
precipitation, decreasing bulk density and decreas-
ing soil pH. This resembles results for potential net
ammonification (Li et al 2019, 2020). Gross nitrifica-
tion was influenced by TN, C:N ratio, microbial bio-
mass, precipitation, temperature, soil pH and eco-
system types, which differed between heterotrophic
and autotrophic nitrification (Elrys et al 2021b).
These results show the importance of testing those
factors again once there aremore data for permafrost-
affected soils.

Gross ammonification also was closely related
to DON concentrations, indicating the relationship
to its substrate (figure S5). Though suffering from
limited data availability, the relationship between
SOC concentrations and gross nitrification was best
described by a polynomial function with mineral
soils showing increasing nitrification with more
SOC, but organic soils possibly showing decreasing
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Figure 5. Gross protein depolymerization (a) and (b), gross ammonification (c) and (d) and gross nitrification (e) and (f) (mg
N kg sdw−1 d−1) versus SOC and TN concentration (%). Logarithmic scale (except for gross nitrification) and one common
regression line for organic and mineral (pink). The dotted line shows a polynomial dependence which is considered to be
speculative.

nitrification with more SOC (figure 5(e)). This might
be explained by the autotrophic metabolism of many
nitrifiers so that they do not rely on a C source.
Furthermore, extremely high SOC concentrations in
permafrost systems represent largely flooded peat-
land systems, where anaerobic processes dominate
andnitrificationmight be inhibited by the lack of oxy-
gen. The positive relationship of TN with gross nitri-
fication (figure 5(f))might reflect thatwith increasing
N availability, NH4

+ partitioning is increasingly
directed in favor of autotrophic nitrification and
at the expense of heterotrophic microbial NH4

+

immobilization (Butterbach-Bahl and Dannenmann
2012).

The SOC:TN ratio (soil C:N ratio), has fre-
quently been used as an indicator of N availability
and to characterize N cycling, with high C:N ratios
indicating low ammonification and nitrification but
high microbial N immobilization and retention
(Borken and Matzner 2004, Rennenberg et al 2009,
Butterbach-Bahl and Dannenmann 2012). While the
relationships mentioned above confirm a certain role
of C:N stoichiometry in the regulation of ammoni-
fication and nitrification in permafrost-affected soils
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as well, the influence of SOC and TN concentrations
on gross N turnover prevails so that overall gross pro-
tein depolymerization and ammonification increased
with increasing C:N ratios (figures S6 and S7) due
to the correlation of SOC concentrations with C:N
ratios. Also gross nitrification showed no negative
relationship to C:N ratio (figure S8). Consequently,
the C:N ratio was a poor indicator of gross N turnover
in permafrost-affected soils. A prevalence of SOCover
C:N ratios as dominant control of gross N turnover
is however typical for across-ecosystem comparis-
ons not only in permafrost ecosystems (Booth et al
2005). Notwithstanding this, at given C availability
(especially dissolved organic carbon;DOC), changing
N availability possibly can strongly influence gross
N turnover. However, the use of DOC:DON ratios,
i.e. a C:N index more related to bioavailability, did
not indicate that for our dataset (figure S9). Also
for net rates only an insignificant trend of organic
soils towards larger net nitrification with lower C:N
ratios was found (figure S10). In summary, based on
the collected data it appears that C:N stoichiometry
is—in contrast to expectations—not a decisive factor
in explaining different N turnover across different
permafrost-affected soils. In contrast, N mineraliza-
tion in active layers seems to be much more related to
absolute SOM content.

4. How available is SON in
permafrost-affected soils for N
mineralization?

With SOC and TN content being the main con-
trol, the tremendous amounts of SOM in permafrost-
affected soils of the northern hemisphere (Tarnocai
et al 2009, Hugelius et al 2014) facilitate high rates of
gross N turnover upon thaw. High SOC and TN con-
centrations originate from long-term organic mat-
ter incorporation over millennia. The SOM accrual is
thought to be further enhanced by reducedmineraliz-
ation due to low temperatures and oxygen limitation,
and in particular by physical protection of SOM from
microbial attack in frozen soil (Harden et al 2012,
Mueller et al 2015). Consequently, increased bioavail-
ability of SOM due to reduced environmental con-
straints (e.g. higher temperatures, reduced perma-
frost) in active layers (Oechel et al 1995, 2000, Schuur
et al 2008, 2015) supports and explains high gross N
turnover rates as outlined in figure 2(b).

Focusing on the prominent mechanisms that sta-
bilize SOM in permafrost-affected soils, (a) the satur-
ation and stabilization due to freezing of SOMand (b)
the translocation of plant-derived SOM into deeper
soil horizons by cryoturbation, Harden et al (2012)
reported modelled N stocks to 3 m soil depth ran-
ging from 4.6 kgNm−2 in cryosols with low or absent
cryoturbation to 7.5 kg N m−2 in C-rich permafrost-
affected peat soils with strong cryoturbation. The

differences in N stocks due to cryoturbation clearly
point to the high relevance of the depth distribution
of organic N forms within the soil profile. A burial
of rather fresh litter-derived SOM by cryoturbation
leads to the accrual of SOM with higher C:N ratios
at greater soil depth (Treat et al 2016a). The SOM
in such cryoturbated pockets contains high amounts
of rather undecomposed plant residues (particulate
organic matter; POM) (Diochon et al 2013, Mueller
et al 2015). This might be caused by a slowed-down
protein depolymerization of SOM translocated to
greater soil depths possibly due to low abundance of
fungi, as reported by Wild et al (2013) for cryosols in
Siberia.

Heterotrophic N turnover processes such as
ammonification, immobilization and denitrification
are depending on the availability of DOC as a labile
substrate for microorganisms. This appears relev-
ant for permafrost-affected soils as well—as indic-
ated by a positive correlation between DOC and gross
ammonification in our meta-analysis dataset (figure
S11). TheDOC that leaches fromplant residues is rich
in rather labile, easily bioavailable SOM compounds
(rich in carbohydrates, low in aromatic/aliphatic C)
(Surey et al 2020). Thus, the large storage of POM
in the form of plant residues as well as of mineral-
associated organic matter in permafrost-affected soils
(Gentsch et al 2015, Mueller et al 2015) might explain
the substantial gross mineral N turnover revealed by
our synthetic analysis. The release of soluble and,
thus, more bioavailable SOM and SON is also dir-
ectly affected by physical factors like the frequency
of freeze-thaw cycles that have been shown to dir-
ectly lead to an increased release of DOC and thus
increased microbial activity including N2O losses
(Cui et al 2016, Yang et al 2016, 2018).

Especially DON released from SOM depolymer-
ization at greater permafrost soil depth will have con-
siderable implications, as it is hardly reached by plant
roots and thus rather prone to ammonification and
losses via denitrification or leaching (Koven et al
2015). With receding permafrost, the release of N
by the decomposition of SOM will on the one hand
occur in surface soils that are rich in organic matter
(i.e. in the active layer where microbial communities
are present) due to higher temperatures, and on the
other hand in deep-soil N-rich SOM due to increased
decomposition (Salmon et al 2018). With ongoing
permafrost collapse and the alteration of intact per-
mafrost landforms into water-logged sites (e.g. from
permafrost peatland to permafrost-free fen), releas-
ing previously stored SOM (Patzner et al 2020), the
newly available N from SOM decomposition will
also become more plant-available due to shifting
vegetation and increasing rooting depth (Finger et al
2016, Blume-Werry et al 2019, Hewitt et al 2019,
Pedersen et al 2020). In a warmer future, fostered
root growth and elevated CO2 mixing ratios might
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further promote rhizodeposition of both labile C and
N compounds, which could through priming of nat-
ive SOM decomposition lead to further release of soil
C andN (Rousk et al 2016a, Blume-Werry et al 2019).

Moreover, the availability of phosphorus (P) is
of ample importance for the fate of SOM and the
release of N by microbial activity, as microorganisms
have a constrained C:N:P stoichiometric demand
(Mooshammer et al 2014). It was demonstrated that P
availability, which differs greatly between arctic eco-
systems (Giesler et al 2012, Wild et al 2013), appears
to be a co-limiting factor for the microbial utilization
of SOM in theArctic. In awarmingArctic with greater
thaw depths and increased plant growth, P availabil-
ity might have a stronger effect than N on the storage
and decomposition of SOC, while there will be a net
shift of nutrients fromSOM into the vegetation (Jiang
et al 2016).

The C:N ratios in permafrost-affected soils are
considerably lower with increased intermixing of
mineral material and thus with increasing soil depth
from the organic peaty topsoils to mineral subsoils
(Kuhry and Vitt 1996, Mueller et al 2015), with very
lowC:N values in deepermineral-rich permafrost lay-
ers like Yedoma deposits (Strauss et al 2015), reflect-
ing the decomposition degree of the stored SOM and
possible degradation of SOM prior to sedimentation
(e.g. Yedoma). It is well known for soils of the temper-
ate zone that a decrease in C:N ratios with progress-
ing decomposition demonstrates the enrichment in
microbially immobilized N (Lehmann and Kleber
2015, Kallenbach et al 2016, Kopittke et al 2018,
2020), and this can also be assumed for permafrost-
affected soils with low C:N ratios. High C:N ratios
are known to indicate lower decomposability of fresh
SOM due to the nutrient demand of decomposers,
while with progressing decomposition C:N ratios
become lower due to the loss of C and the micro-
bial retention of N (Schädel et al 2014). Our data syn-
thesis supports the occurrence of high depolymeriz-
ation and ammonification under conditions of high
SOC and TN concentrations that go along with high
C:N ratios. Thismight reflect the high need formicro-
bial N mining in arctic organic topsoils with high
C:N ratios (Lavoie et al 2011, Sistla et al 2012). For
permafrost-affected soils with rather low C:N ratios
of the Tibetan Plateau an increase inN availability was
demonstrated to lead to a lowering of the microbial
priming of SOM decomposition due to a decreased
need for N mining (Chen et al 2018). While the C:N
ratios of permafrost-affected soils have been known
to be strongly positively correlated with the release of
SOC at accelerated permafrost retreat (Schädel et al
2014, Kuhry et al 2020), our data suggest SOC con-
centration to be a major predictor of the vulnerab-
ility of permafrost SOM to N mineralization as well,
possibly due to the close link of depolymerization and
ammonification.

5. The microbiome of permafrost-affected
soils and its role in mineral N cycling

The production and turnover of mineral N in
permafrost-affected soils requires a microbial com-
munity which is capable to survive and even grow
under the psychrophilic conditions of permafrost-
affected soils. Microbes developed a number of
unique properties during evolution, which helped
them to tolerate cold temperatures. The lower limit of
microbial activities is −20 ◦C (D’Amico et al 2006),
although survival of most spores etc is also possible
below that temperature. So even at soil temperat-
ures below −4 ◦C, which are typically occurring in
soils affected by continuous permafrost, microbial
activities are obvious. At such temperatures,microbes
depend on small amounts of unfrozen water present
in the particular environments and require physiolo-
gical adaptations (D’Amico et al 2006, Mackelprang
et al 2017). Microbial communities involved in min-
eral nutrient cycling are abundant in permafrost-
affected soils both in the active (e.g. Yergeau et al
2010, Lamb et al 2011, Alves et al 2013) and perma-
frost layers (e.g. Hultman et al 2015). In the face of
the diverse needs for adaptation of microbiota to sur-
vive in permafrost-affected soils, the high diversity
of microbiota found in such environments (Pikuta
et al 2005, Vishnivetskaya et al 2006, Nicholson et al
2013, Frank-Fahle et al 2014, Frey et al 2016,Monteux
et al 2018, Ivanova et al 2020) is surprising but in
line with our synthesis of significant gross rates of
mineral N turnover. Qi et al (2017) analyzed samples
from an altitude gradient along the Tibetan Plateau
and showed that microbial functional diversity and
the number of unique genes increased with elevation.
However, it must be taken into account that possibly
not all deoxyribonucleic acid (DNA) in the frozen
soil has been derived from living microbiota, as DNA
fromdeadmicroorganismsmight be highly persistent
in such environments and thus themolecular analysis
might include also a history of microbes which have
been present at the respective sites in the past together
with ones being dormant or actually active (Burkert
et al 2019).

Most of the genera obtained by cultivation by
Vishnivetskaya et al (2006) were capable of denitri-
fication as proven by whole genome sequences. This
observation was confirmed by a microcosm study
which analyzed the effects of cryoturbation in an
artic peatland soil using molecular tools (Palmer et al
2012). Quantitative polymerase chain reaction (PCR)
revealed a higher abundance of bacteria harboring
the nitrate reductase narG in cryoturbated than in
unturbated peat soil. Bacteria capable to perform
nitrite reduction (based on the abundance of the nirS
and nirK genes) were also increased in the crypoturb-
ated settings. Interestingly, always the bacteria har-
boring the nirS gene dominated over those carrying
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the nirK gene. The importance of nirS-type denitri-
fiers in permafrost-affected soils was confirmed in a
number of studies from different natural permafrost-
affected soils in the northern hemisphere and in
alpine soils (Andert et al 2012, Palmer andHorn 2015,
Chen et al 2019). Global warming may even increase
the abundance of nirS-type denitrifiers, mainly in the
rhizosphere of shrubs and other plant species (Song
et al 2021). In the study of Palmer et al (2012), num-
bers of bacteria capable to transform N2O into N2

were significantly lower compared to nitrite redu-
cers, which also explains the strong increase of N2O
emissions in the cryoturbated soils after NO3

− addi-
tion. However it must be considered that in the men-
tioned study only those bacteria were assessed which
belong to the clade 1 of nosZ, and not those which
harbor the nosZ genes of clade 2, due to the selec-
tion of the primers for analysis (Yoon et al 2016).
Calderoli et al (2018) demonstrated the importance
of clade 2 of the nosZ gene for N2O reduction in
permafrost-affected soils. The authors analyzed sedi-
ments fromUshuaia Bay, a subantarctic environment,
and found that the majority of nosZ genes identified
belong to clade 2 and could be assigned to differ-
ent bacterial lineages. The analysis of a fosmid meta-
genomic library from the same site showed that the
genomic context of clade 2 variants of nosZ variants
was variable, and was accompanied by distinct regu-
latory elements, suggesting the evolution of differen-
tial ecophysiological roles. In a recent study by Hetz
and Horn (2021) this observation was confirmed and
a strong co-occurrence between Rhodanobacter spp.
and taxa of the Burkholdericaceae was found. The
authors considered Burkholderiaceae which harbor
nosZ genes of clade 2 as key acetate assimilators dur-
ing complete denitrification in acidic cryoturbated
peat of the arctic tundra mainly at pH levels <4.
Taking these observations together, it is obvious that
the potential for denitrification is well-presented in
permafrost-affected soils and functional redundancy
for the different groups is high, which strongly con-
tributes to the resilience.

Also the presence of nitrifiers in permafrost-
affected soils is well-documented not only by
turnover data but also by abundance measurements
of the ammonia- and nitrite-oxidizing microbiota.
Based on a recent study from Sanders et al (2019)
in which permafrost-affected soils from Siberia were
studied, nitrifiers represent 0.6%–6.2% of the total
microbial community, as shown by 16S ribosomal
ribonucleic acid (rRNA) amplicon sequencing. These
numbers are significantly higher compared to what
has been described for soils from temperate or trop-
ical regions (Mukhtar et al 2019). Based on the ana-
lysis of the ammonia monooxygenase gene (amoA),
ammonia-oxidizing bacteria (AOB) were found in
nearly all soil types, whereas ammonia-oxidizing
archaea (AOA) were only detected in soils with low
SOM (Sanders et al 2019). This finding contradicts

a number of other studies, where the importance of
AOA was proven under certain settings. For example,
a recent study shows that only a few AOA species
closely related with CandidatusNitrosocosmicus spp.
are fueling nitrification in acidic permafrost peat
soils across several arctic sites (Siljanen et al 2019).
Laanbroek et al (2018) could demonstrate that AOA
were significantly more abundant in Brown than in
Histic Andosols, while the opposite was observed
for AOB when freshly sampled Icelandic Andosols
affected by permafrost were analyzed. However, only
the numbers of AOB but not the numbers of AOA
correlated significantly and positively with potential
NH3 oxidation activities. Also, Alves et al (2013) who
investigated arctic soils demonstrated that AOA were
the only ammonia oxidizers detected in five out of
eleven soils and that they outnumbered AOB in four
of the remaining six. Banerjee and Siciliano (2012)
observed strong spatial heterogeneities of AOA and
AOB which they could relate to differences in SOC
and moisture.

These findings may explain much of the con-
trasting data published on the abundance pattern
of both redundant functional groups of ammonia
oxidizers. All studies were in line with the finding
that despite high abundance of ammonia oxidizers
in permafrost-affected soils, their diversity is low,
indicating a need for a special adaptation of AOA
and AOB to psychrophilic environments. This was
also confirmed by Hayashi et al (2020) who sampled
soils from Langhovde, East Antarctica, and identi-
fied only six and ten operational taxonomic units for
AOB and AOA, respectively. AOB were dominated by
Nitrosospira, which is in line with data from Sanders
et al (2019); Nitrososphaera and Nitrosocosmicus
were the two dominant clusters of AOA. Two recent
benchmark studies gave a first insight into the gen-
omes of major ammonia oxidizers which are adap-
ted to permafrost environments. Alves et al (2019)
described the new species Ca. Nitrosocosmicus arc-
ticus, a novel thaumarchaeon which was enriched
from arctic soils. Genomic analyses show that this
organism harbors all genes involved in NH3 oxida-
tion and in C fixation via the 3-hydroxypropionate/
4-hydroxybutyrate cycle, characteristic of all AOA,
as well as the capability for urea utilization and
potentially also for heterotrophic metabolism. Inter-
estingly, the authors observed faster growth rates
(based on marker gene counts) at lower temperat-
ures (4 ◦C–8 ◦C) but without detectable NO2

− pro-
duction. Sanders et al (2019) were able to enrich
Nitrosospira-like AOB which made up to 50% of
the diversity observed in their studies of permafrost-
affected soils, and could confirm growth at lower tem-
peratures.

Nitrifiers compete for NH4
+ with plants in

permafrost-affected soils. Indeed it has been shown
that in vegetated permafrost peat activity of nitri-
fiers is limited by the competition for N with
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vegetation, while the bare peat surfaces without veget-
ation have high nitrification activity (Repo et al
2009, Marushchak et al 2011, Voigt et al 2017a).
But there is also strong competition for NH4

+

with anammox bacteria, which utilize NH3 under
anoxic conditions. Zhao et al (2018) investigated the
diversity, community composition, and abundance
of anammox bacteria along an altitudinal gradient
on the Qinghai-Tibet Plateau. A molecular detection
revealed the presence of anammox bacteria mainly
in samples which were more affected by freezing
among the two types of soil samples. Results of high-
throughput sequencing targeting the hydrazine syn-
thesis β-subunit (hzsB) gene revealed the presence
of three known anammox genera (Ca. Brocadia, Ca.
Jettenia, and Ca. Kuenenia).

Generally, the high abundance of ammonia oxid-
izers in permafrost-affected soils indicates a relatively
high importance of nitrification, thereby confirming
findings of our meta-analysis on gross nitrification
rates. While molecular analysis of ammonification
is largely missing, the high abundance of ammo-
nia oxidizers in permafrost-affected soils would be
very surprising if there was no significant NH3 pro-
duction. Besides ammonification, an efficient recyc-
ling of NO3

− via dissimilatory nitrate reduction to
ammonium (DNRA) might also fuel nitrifiers. How-
ever, no clear evidence for a significant abundance
and activity of DNRA in permafrost-affected soils
exists so far. Most studies which described the min-
eral N cycle did not consider the nrfA gene, a marker
for DNRA. Another possibility for nitrifiers is the
alternative use of urea. Many ammonia oxidizers can
utilize urea for nitrification because they possess the
enzyme urease that hydrolyses urea to NH3 and CO2

(Pommerening-Röser and Koops 2005). The use of
ureamight be supported by ‘reciprocal feeding’ where
urease-positive nitrite-oxidizing bacteria can provide
urease for urease-negative AOB (Daims et al 2016).
In this respect, also the role of comammox bacteria
in permafrost-affected soils which are capable of the
complete transformation of NH3 into NO3

− needs to
be clarified. Of course, also the fixation of N2 needs
to be considered as a possible path for NH3 forma-
tion (see section 6).

Ammonia oxidization in active layers is respond-
ing to higher substrate availability, moisture and
temperature (Alves et al 2013, Osborne et al 2016,
Daebeler et al 2017). There are results showing that
warming had a minor effect on microbial com-
munities involved in nutrient cycling including N2O
production processes (Lamb et al 2011). However,
according to other studies warming had induced
changes in the abundance of genes (Mackelprang et al
2011, Penton et al 2016) and transcripts (Hultman
et al 2015) and increased N2O emissions from per-
mafrost peatland (Voigt et al 2017b). According to
a recent meta-analysis of 93 field warming studies,
warming increased N mineralization, N2O emissions

and DON, but did not affect the abundance of func-
tional genes relevant for N cycling (Salazar et al
2020).

6. The role of BNF in permafrost-affected
soils

Being an important N input source into soils, BNF
is thought to play an important role by facilitating
N limitation in the remote and pristine permafrost
region (Chapin and Bledsoe 1992, Vitousek et al 2002,
Hobara et al 2006, Lindo et al 2013, Stewart et al
2013). Amajor group of prokaryotes performing BNF
are cyanobacteria. These phototrophic prokaryotes
can be associated with certain plants like bryophytes
or grasses as facultative epiphytes (Solheim et al 1996)
or endophytes (Turetsky 2003), they can be an oblig-
atory constituent of a lichen (cyanolichens) as sym-
bionts, or free-living in water or topsoils. Another
N2-fixing group important in permafrost areas are
actinorhizal root symbionts of trees in subarctic eco-
systems close to the tree line or in permafrost-rich
boreal landscapes.

How N2 fixation influences nutrient availability
for microbes and plants is not completely understood
(Belnap 2001, Johnson et al 2005, Knowles et al 2006,
Lagerström et al 2007, Stewart et al 2014), especially
not for permafrost areas. Generally, N availability can
be increased (Zielke et al 2005, Stewart et al 2011a,
2011b, 2013, Letendre et al 2019), but the question
is if, when and how exactly BNF triggers ammoni-
fication and subsequent nitrification and denitrific-
ation with associated gaseous N losses. A prerequisite
for BNF-induced N2O production in an ecosystem
seem to be low immobilization rates of microbes and
plants, as otherwise the fixed N is immediately assim-
ilated (Diáková et al 2016, Voigt et al 2020). For
example, in arctic environments with high N lim-
itation but N-saturated microorganisms and/or low
abundance of plants, like in polar deserts, BNF can
fuel N cycling from ammonification to N2O emis-
sions (Stewart et al 2013, 2014). Another possibility
is that plants that are associated with N2 fixers trigger
N cycling and N2O emissions themselves (e.g. poten-
tially alders; see section 6.2).

However, since BNF and low N availability are
strongly correlated due to down-regulation processes
(Vitousek et al 2002), in many ecosystems N inputs
via BNF are often readily taken up and immobil-
ized bymicrobes and/or plants, preventingN2Oemis-
sions. This is why one can find ecosystems with BNF
that lack N2O emissions (Diáková et al 2016). Vice
versa, there are ecosystems with high N turnover
rates and N2O emissions, but without N2 fixation,
e.g. barren peat surfaces (Diáková et al 2016). N2O
emissions from permafrost ecosystems are thus not
strictly dependent on BNF, but can be caused solely
by internal cycling processes as well. When, however,
the microbes or plants that immobilized the fixed N2
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die off, the previously immobilized N can become
available in the soil in the form of organic N. This fits
observations that a big share of dissolved N that N2

fixers release is organic (Johnson et al 2005, Stewart
et al 2014). Higher inputs of organic N due to BNF
could, after being depolymerized, finally stimulate the
production of NH4

+ in the long term.
The persisting lack of knowledge on BNF rates is

exacerbated by a prevailing use of acetylene reduction
assays (ARAs) with controversial conversion factors,
suitable for comparative studies, but resulting in
doubtful absolute rate numbers. Publications using
more reliable, direct 15N2 fixationmethods in perma-
frost ecosystems are scarce (e.g. Vile et al 2014, Rousk
et al 2016b, 2017).

6.1. N fixation from bryophytes, lichens
and free-living cyanobacteria
Taking the whole terrestrial (sub-)arctic into account,
cyanobacteria are the primary N2-fixing organisms
(Henry and Svoboda 1986, Solheim et al 1996,
Hobara et al 2006). Lichens do not account for as
much BNF as bryophytes due to their lower mass,
but their BNF rates per mass are often higher (Schell
and Alexander 1973, Crittenden and Kershaw 1978,
Gunther 1989, Hobara et al 2006), e.g. accounting
for 24.9 kg N ha−1 yr−1 in a low arctic tundra
(Stewart et al 2011a). As can be seen in table 2, repor-
ted BNF rates are higher than commonly thought.
In subarctic regions, N2 fixation rates by moss-
associated cyanobacteria were found to range from
0.3 to 5 kg N ha−1 yr−1 (Rousk et al 2015, 2017). Val-
ues are even higher for frost-heaved sites: in subarctic
Northern Sweden N2 fixation accounted for an input
of 8.8–11 kg N ha−1 season−1, so that the fixed N
exceeded annual plant uptake (Sorensen et al 2006).
In peat of bogs in Alberta, Canada, the mean BNF
rate was as much as 25.8 ± 2.4 kg N ha−1 yr−1 (Vile
et al 2014). In high arctic ecosystems BNF rates are
lower, but still account for 65%–90% of the total eco-
system N input (Henry and Svoboda 1986, Hobara
et al 2006).

There are also N2-fixing prokaryotes that are
free-living in water/soil and form colonies. They
often belong to particularly drought-resistant biolo-
gical soil crusts (BSCs) together with algae, mosses,
liverworts, fungi and lichens (Stewart et al 2014).
Besides decomposition, direct N leakage from crust
organisms is substantial (Evans and Lange 2001). For
example, 1%–2% of TN in BSCs could be found
extracellularly as NH4–N in a semiarid desert in
Arizona (Mayland et al 1966), but comparable data
for arctic regions are missing. While bryophytes and
lichens are assumed to release fixed N rather slowly
due to decomposition or induced by disturbance
(Rousk et al 2016b), free-living cyanobacteria release
fixed N into the soil N pool within days to weeks
including diffusion (Rousk et al 2016b) and BSCs
do so even faster (Belnap 2001, Rousk et al 2016b).

Thus, they provide a constant N input into the soil.
Although BNF rates by free-living cyanobacteria are
generally low, NO and N2O losses from steppe can
be replaced by the fixed N2 (Holst et al 2009). It is
known that BNF still takes place at low temperat-
ures (Dickson 2000, Arndal et al 2009), e.g. mats of
Nostoc and Calothrix perfom BNF in soils at −4 ◦C,
because photosynthesis is not stopped and cells are
not entirely frozen (Davey 1983). A big portion of
fixed N is oxidized within the BSCs (Johnson et al
2005), which might lead to gaseous N emissions
under anoxic circumstances.

Fixation rates of 20–25 kg N ha−1 yr−1 argue
for a release of N limitation over years and might
contribute to the occurrence of mineral N turnover
in active layers, while low BNF rates of less than
1 kg N ha−1 yr−1 might not change N availab-
ility of the ecosystem significantly. Our literature
research led to a hypothetical mean BNF rate of
6.0 kg N ha−1 yr−1 by the different cyanobacterial
associations (table 2; overall mean). There is a caveat
concerning the reported BNF rates arising from the
conversion of monthly or growing season rates to
annual rates (ignoring times with lower BNF rates
than during measurements). Thus, some rates in
table 2 potentially overestimate actual rates.

A warming climate is expected to exert contro-
versial effects on BNF rates. For instance, warming-
induced increased shrub abundance in conjunction
with increased N availability and turnover could
diminish BNF rates (Zackrisson et al 2004, DeLuca
et al 2007). On the other hand, BNF rates are likely
to increase under conditions of increased temperature
and soil moisture (Rousk et al 2018). Thus, there is a
need for tracing the fate of fixed atmospheric N2 into
intact plant-soil-microbe systems as well as the use of
molecular tools rather than ARAs (a) across various
arctic ecosystems and (b) in controlled experiments
including differences in moisture and temperature to
finally reveal correlations between BNF rates and the
N turnover including GHG emissions (Stewart et al
2013).

6.2. Symbiotic N fixation by trees (Alnus-Frankia
association)
Evergreen shrubs, dwarf shrubs and grasses (includ-
ing sedges) are the most common plant functional
types in arctic wetlands, whereas the abundance of
tree species is much lower (Bridgham et al 1996).
Because ecosystemswithout trees are prevailing, over-
all N fixation in the arctic is dominated by bryophytes,
lichens and soil crusts as outlined in section 6.1. How-
ever, due to their size any trees capable of BNF rep-
resent a very significant N input pathway with great
potential to cause mineral N turnover and open the
N cycle. Deciduous actinorhizal Alnus spp. consti-
tute the only N2-fixing tree species in arctic envir-
onments, often found close to the southern bor-
der of permafrost areas (Hibbs and Cromack 1990,
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Pawlowski and Newton 2008). As pioneer species,
alders generally increase soil fertility in the long term
until successional species take over. BNF by Alnus
spp. is mediated by its filamentous bacterial sym-
biont Frankia (Actinobacteria) at a range similar to
Rhizobium-legume symbioses (Hibbs and Cromack
1990, Huss-Danell 1990, 1997, Dawson 2008). BNF
of Siberian alder (Alnus hirsuta Turcz. var. sibirica)
and other arctic alder species appears at budbreak,
peaks at midsummer after full leaf expansion and dis-
appears after all leaves have been shed, thereby fol-
lowing the seasonal change in nitrogenase activity of
the nodules (Huss-Danell 1990, Tsutsumi et al 1993,
Tobita et al 2013).

Temperate alder forests fix more than
150 kg N ha−1 yr−1 (Uri et al 2011). The
annual amount of BNF of a Siberian alder forest
stand in Japan was estimated at comparably low
56.4 kg N ha−1, contributing 66.4% to the annual
amount of N in leaf litter (Tobita et al 2013). Con-
cerning permafrost areas data are very scarce and
hitherto restricted to Alaska (table 2). In tundra,
rates are comparably low: annual N2 fixation was
5.3 ± 1.9 kg N ha−1 yr−1 by alder savannas and
19.5 ± 6.8 kg N ha−1 yr−1 by alder shrublands,
with the latter still causing elevated N levels in adja-
cent plants and soils (Salmon et al 2019). Nitro-
gen input by late-succession A. viridis in upland
of interior Alaska was 6.6 ± 1.2 kg N ha−1 yr−1

(Mitchell and Ruess 2009). However, Alnus spp. in
floodplains can show much higher BNF rates of 22–
107 kg N ha−1 y−1 (Ruess et al 2009). At a flood-
plain of the Tanana River, N2 fixation in alder stands
was 59 ± 11 kg N ha−1 yr−1 or 28 kg N ha−1 yr−1,
depending on the ARA conversion factor (Uliassi and
Ruess 2002). Alder stands fixed even more N when
fertilized with phosphorus (140± 41 kgN ha−1 yr−1)
(Uliassi and Ruess 2002). For boreal Alaska, it was
estimated that after a fire with moderate intensity,
Siberian alder might fix 33 ± 31 kg N ha−1 yr−1 if
there had been an alder stand already before the fire,
and 91± 30 kg N ha−1 yr−1 if there had been a black
spruce forest (Houseman et al 2020).

On the one hand, the temperature dependency
of BNF might limit annual BNF rates. However, the
temperature dependency of BNF by Siberian alder
has yet not been analyzed in different environments
and may be adapted to the low soil temperatures in
permafrost ecosystems. In view of the large influence
of BNF on the entire N cycle in permafrost ecosys-
tems, there is a need for research on this topic also
with regard to climate warming which might trigger
higher BNF rates. In Himalayan alder, BNF per plant
increased with plant age, but peaked at the stand level
at the age of 15–20 years (Sharma et al 2002). It has
not been reported whether BNF stops when a critical
amount of N has accumulated at the stand level, as
previously observed in an Acacia-Eucalyptus forest in
Australia (Pfautsch et al 2009). Thus, the significance

ofN2 fixation of deciduous actinorhizalAlnus spp. for
theNdynamics of trees, stands and ecosystems in per-
mafrost areas is presently not understood.

The soil N pool can be significantly increased
by alder-associated BNF (Nossov et al 2011). Also,
McCaully et al (2021) found first indications for
microbially produced NO3

− from degradation of
alder organic matter. In permafrost peatlands of
Northeast China, Ramm et al (personal communic-
ation) found gross ammonification and nitrification
rates in soils of alder forests to exceed those of adja-
cent tree-free peatlands by more than an order of
magnitude. Possibly such increases in N mineraliza-
tion are not only facilitated by BNF-induced N inputs
and organic matter with lower C:N ratio. It can be
speculated that due to the high energy demand of
BNF, the temperature in the surrounding of nod-
ules may increase, thereby generally supporting the N
dynamics in permafrost-affected soil. This still needs
to be studied both in the laboratory and in the field.
Possibly, permafrost alder forests, being widespread
in arctic and boreal zonobiomes, and increasing in
abundance in the circumpolar permafrost region
(Sturm et al 2001, Tape et al 2006, Lantz et al 2010,
Frost and Epstein 2014), show a completely atypical
N cycle with high mineral N cycling. The latter, com-
bined with anoxic soil conditions, could make such
permafrost alder forests hot spots of N2O emission.

7. Can atmospheric N deposition
contribute to release N limitation in
permafrost regions?

Atmospheric transportation of reactive N (Nr) com-
pounds ranges in scales up to thousands of kilomet-
ers and hence the very remote parts of the world,
e.g. the northern circumpolar permafrost region, also
receive substantial Nr deposition. The total depos-
ition of Nr involving organic and inorganic forms
has increased from less than 0.1 kg N ha−1 yr−1 in
1860 to the present 0.1–2 kg N ha−1 yr−1 in the
northern circumpolar permafrost region (Galloway
et al 2004, Dentener et al 2006). A further increase
of atmospheric deposition in the region is expected
during the 21st century due to increased Nr emis-
sions from global and local sources, e.g. arctic ship-
ping, wildfire and exploitation of natural resources
(Lamarque et al 2005, Dentener et al 2006, Peters et al
2011). Organic N deposition may contribute glob-
ally on average 20%–30% of total deposition, but
its rates remain unknown in most of the northern
circumpolar permafrost region (Hodson et al 2005,
Kanakidou et al 2016). Inorganic N deposition glob-
ally increased by 8% in the recent four decades, which
is estimated to be 0.27 kg N ha−1 yr−1 on average
in the Arctic according to the GEOS-Chem Chemical
Transport Model (Ackerman et al 2019).
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A number of N addition experiments have
been established to evaluate the effects of atmo-
spheric deposition on arctic and subarctic eco-
systems, but most of the experiments are carried
out with unrealistically high N addition rates of
40–250 kg N ha−1 yr−1 and a short duration
of 1 year. Very few studies simulate atmospheric
deposition with more realistic N addition rates, i.e.
⩽10 kg N ha−1 yr−1, for at least 3 years (Gordon
et al 2001, Madan et al 2007, Arens et al 2008). The
addition of ammonium nitrate (NH4NO3) with a
rate of 5 kg N ha−1 yr−1 significantly increased the
chlorophyll content of Polygonum viviparum leaves
at an arctic semi-desert in Svalbard, and altered
the CO2 exchange and normalized difference vegeta-
tion index at an arctic tundra in Greenland (Madan
et al 2007, Arens et al 2008). Addition of 5 and
10 kg N ha−1 yr−1 for 3 years caused N saturation,
i.e. the situation that soil N availability exceeds plant
and microbial demands, in the arctic semi-desert and
tundra, respectively. Addition of NH4NO3 with a rate
of 10 kg N ha−1 yr−1 to an arctic tundra heath in
Svalbard for 3–8 years led to physiological N satura-
tion of bryophytes as indicated by a strong reduction
in nitrate reductase activity and significant changes
in the abundance and tissue N content of lichens
and bryophytes (Gordon et al 2001). The impacts on
community composition, nutrient status and NO3

−

assimilation capacity of plants can persist 13–18 years
after N addition treatment (Street et al 2015). Since
the ambient deposition in Svalbard and Greenland is
approximately 1 kg N ha−1 yr−1, the multi-year N
addition experiments indicate that ecosystem struc-
ture and function start to change if total deposition
exceeds 6–11 kgN ha−1 yr−1 (Madan et al 2007, Küh-
nel et al 2011). The change of ecosystem structure and
function can be regarded as an indication of relieving
N limitation in the nutrient-poor arctic and subarc-
tic ecosystems. It should be noticed that a lower Nr
deposition (e.g. 3–5 kgNha−1 yr−1)may still have the
potential to release N limitation in the sensitive eco-
systems, e.g. heathland, scrub and tundra, but there is
a lack of long-termN addition experiments with such
low rates to support the hypothesis so far.

About 80% of the northern circumpolar perma-
frost region is currently subject to a deposition of
less than 1 kg N ha−1 yr−1, which cannot alter the
N-limited status of arctic and subarctic ecosystems
(Dentener et al 2006, Forsius et al 2010). However, Nr
deposition over 3 kg N ha−1 yr−1 has been observed
in large areas of Russia, Alaska and northern Europe
(Jónsdóttir et al 1995, Woodin 1997). The high Nr
deposition in the areas suffering heavy impacts of
local pollution and long-range transport from cent-
ral Europe and North America can greatly release N
limitation of ecosystems (up to 10 kg N ha−1 yr−1;
Woodin 1997). In general, atmospheric N inputs by
deposition (0.1–10 kg N ha−1 yr−1) and BNF (0.1–
25.8 kg N ha−1 yr−1; table 2) represent the primary

pathways of external N input to the arctic and sub-
arctic ecosystems with low nutrient supply.

The increasing frequency of large fires in the Arc-
tic (Holloway et al 2020,McCarty et al 2020)might be
a decisive factor affecting atmospheric N deposition.
In shrubland and forest, often more than 90% of the
plant biomass and organic layer is volatilized, e.g. due
to pyrodenitrification, while mineral N is accumulat-
ing at the site of the fire itself due to the combus-
tion process andmineralization of dead soilmicrobial
biomass (Dannenmann et al 2018). Also in dry tun-
dra heath a recent study showed fire-induced mineral
N increases (Xu et al 2021). However, implications
of arctic fires for N biogeochemistry remain severely
understudied (McCarty et al 2021).

8. Do plants in permafrost ecosystems
rather use mineral or organic N?

In general, arctic vegetation is adapted to short grow-
ing seasons and relatively low nutrient availability.
Due to the perennial nature of numerous arctic plant
species, nutrient storage and mobilization minimizes
the annual nutrient loss and reduces the demand for
annual nutrient uptake required to produce new tis-
sues. In addition, many dominant arctic plant spe-
cies can use organic N in the soil and atmospheric
N2 either directly, or through root symbiosis with
ericoid or ectotrophic mycorrhiza and Frankia bac-
teria symbiosis, as well as their tripartite symbiosis
system (plant-Frankia-mycorrhiza) (Kielland 1994,
Schimel and Chapin 1996, Johansson and Shaver
1999, Dawson 2008, Moore et al 2018). These two
features constitute a competitive advantage compared
to other species that dominantly rely on the annual
availability ofmineral N (Johansson and Shaver 1999,
Rennenberg and Schmidt 2010).

Preferential use of organic N versus mineral N by
plants from permafrost ecosystems has been reported
in either in vivo or in situ uptake studies. For instance,
a labeling experiment with intact soil cores from arc-
tic tundra in Alaska indicated that roots of woody
Vaccinium spp. acquired up to three times more N
from the amino acid glycine than fromNH4

+ (Walker
et al 2010). Fungistatic application reducedN acquisi-
tion into plant tissue by 30%–40% indicating that the
fungal partner of the ericaceous plant roots of Vac-
cinium spp. contributes significantly to N nutrition
(Walker et al 2010). Higher uptake rates of amino acid
compared to mineral N have also been reported for
other plant species growing in permafrost ecosystems
(Johansson and Shaver 1999, Moore et al 2018).

However, application of 13C/15N-labeled amino
acids suggests that some woody shrub species take
up amino acid N at least partially subsequent to
amino acid degradation as indicated by preferen-
tial 15N compared to 13C accumulation (Moore et al
2018). Apparently, mineral N in the form of NH4

+

can be taken up by the roots of arctic vegetation.
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In the light of low atmospheric deposition but large
ammonification rates found across permafrost eco-
systems, mineral N taken up by plants very likely
originates from N mineralization of organic mat-
ter rather than external inputs from the atmosphere.
Nonetheless, the significance of this uptake is species-
specific and assessing its contribution to plant N
nutrition requires further studies.

Despite preferential N accumulation from amino
acids compared to mineral N, leaves and roots of
numerous species from permafrost ecosystems con-
tain similar amounts of NO3

− of soil origin as
species from temperate and subtropical ecosystems
with higher N availability in the soil (Andrews 1986,
Schneider et al 1996, Simon et al 2014, Liu et al 2018).
Since also the ratios between leaf and soil NO3

−

contents were similar across ecosystems, it has been
concluded that despite low NO3

− availability, NO3
−

uptake capacities in permafrost are similarly high as
in low-latitude ecosystems (Liu et al 2018). The pres-
ence of NO3

− in both leaves and roots of arctic plant
species in the absence of appreciable atmospheric N
inputs suggests that at least part of the NO3

− taken
up by the roots is transported to and assimilated in the
leaves. In situ assimilation in the leaves of arctic plant
species has also been assumed from stable isotope
analyses of soil and plant NO3

−, since NO3
− assim-

ilation by nitrate reductase activity causes an enrich-
ment of 15Nand 18O in unassimilatedNO3

− (Liu et al
2018). In a modelling approach, Liu et al (2018) cal-
culated that NO3

− uptake can contribute 4%–52% to
total leaf N in a range of arctic plant species with par-
ticularly low contributions in most ectomycorrhizal
plants. This result indicates that mycorrhizal sym-
biosis is of high significance for the acquisition of
DONby plant roots as also observed in previous stud-
ies (e.g. Kielland 1994), but that mineral N sources
may be particularly important for plants lacking this
root symbiosis. It also demonstrates that concluding
fluxes of nutrients into plant roots from soil nutrient
concentrations can be misleading and that generally
NO3

− cannot be neglected as an N source of arctic
plant species.

As a consequence of climate warming, recent
studies conducted in alpine ecosystems of the Tibetan
Plateau indicated changing soil freeze-thaw front
dynamics of permafrost-affected soil in the past dec-
ades, i.e. a decreased maximum layer of frozen soil
and a delay of beginning and end of the annual frozen
period (Wang et al 2001, Gao et al 2003, Li et al 2005).
Such changes of soil freeze-thaw dynamics have signi-
ficantly enhanced concentrations of dissolved organic
matter in permafrost-affected soils (Fitzhugh et al
2001, Herrmann andWitter 2002, Sharma et al 2006).
This increase is thought to be a consequence of the
disruption of microbial biomass during thawing and
the concomitant release of organic N compounds.
However, particularly NH4

+ seems to accumulate in
the melt water (Keuper et al 2012, Salmon et al 2016,

Keuper et al 2017, Voigt et al 2017a). It is still a mat-
ter of debate, if the significant NH4

+ accumulation
in the melt water is a consequence of insufficient root
uptake capacity of NH4

+ compared to DON or of a
fast rate of ammonification.

Chang et al (2014) reported that simulated
freezing-thawing cycles with elevated thawing peri-
ods in the Qilian Mountains (northern Tibetan Plat-
eau), China, increased soil DON concentrations 2.42-
and 2.82-fold in Picea crassifolia stands and stands
of alpine shrubs/grasses, respectively, compared to
control treatments. Thus, thawing and subsequent
mineralization can increase plant-available N at the
thaw front of permafrost-affected soils.WhenNavail-
ability was experimentally increased at the freeze-
thaw front at 45 cm depth, the roots of several
shrubs exclusively present at this soil depth were
capable of N uptake between autumn and spring,
when aboveground tissue was largely senescent (Keu-
per et al 2017). Nitrogen fertilization of these roots
increased aboveground biomass and N content of
the deep-rooting plants at a similar magnitude as
shallow N fertilization, showing that N taken up
by the roots at the thaw front can be transported
upwards effectively. Also labeling experiments with
15N–ammonium chloride indicate that the roots of
arctic plant species are able to take up mineral N
at soil temperatures close to or even below 0 ◦C
(Edwards and Jefferies 2010), but the quantitative
significance of this uptake remains to be elucidated.
Thus, thawing of permafrost soil by climate warm-
ing provides additional N to deep-rooting, N-limited
shrubs for growth and development and, therefore,
can be assumed to change plant community compos-
ition and to counteract increased C loss from thawing
permafrost soils due to enhanced biomass production
at enhanced N availability (Keuper et al 2017). Not-
withstanding this, enhanced plant N demand in con-
junction with high N losses can also increase N limit-
ation of the vegetation (Kou et al 2020).

9. Nitrogen losses induced bymineral N
production in permafrost-affected soils

Substantial losses of N via gaseous emissions to the
atmosphere through nitrification and denitrification
and via leaching of mineral N to water bodies are
thought to occur from terrestrial ecosystems that are
N-saturated, i.e. where N supply exceeds the imme-
diate needs of plants and microbes (Butterbach-Bahl
et al 2013). This has led to the assumption of neg-
ligible or small gaseous and aquatic N losses from
permafrost-affected soils, where mineral N turnover
andN pools where supposed to be small andN tightly
recycled between plants, microbes and SOM (Shaver
et al 1992, Buckeridge et al 2010, Kicklighter et al
2019).

The generally high ammonification and nitrifica-
tion rates in active layers of permafrost-affected soils
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however should also result in significant N losses,
even if mineral N limitation prevails due to high
microbial immobilization and plant-microbe com-
petition. Furthermore, enhanced N mineralization
with warmer temperatures (Salazar et al 2020) and N
release from permafrost (Keuper et al 2012, Voigt et al
2017a) will likely increase N losses to the atmosphere
and aquatic systems, with important consequences
for the ecosystem C balance both on land (via nutri-
ent limitation of plant growth) and in water bodies
(via enhanced primary production).

9.1. Gaseous N losses
The gaseous N losses from soils occur mainly in the
formof atmospherically inert dinitrogen (N2) (Scheer
et al 2020), the strong GHG nitrous oxide (N2O)
(Tian et al 2020), and, to smaller extent, the atmo-
spherically reactive gases nitric oxide (NO) (Pilegaard
2013) and nitrous acid (HONO) (Su et al 2011,
Oswald et al 2013). Regarding these gaseous N losses,
only those of N2Ohave been reported for permafrost-
affected soils in situ, and even they are understud-
ied compared to gaseous C losses from permafrost
regions.

According to a recent review (Voigt et al
2020), small N2O emissions commonly occur from
permafrost-affected soils during the growing sea-
son, whereas studies on wintertime N2O exchange in
the Arctic are scarce. At the higher end these emis-
sions are comparable to N2O emissions from trop-
ical or agricultural soils. Nitrous oxide emissions
during the growing season tend to be higher from
peatlands (median with 25th–75th quartiles: 60 (18–
481) µg N m−2 d−1) than from upland soils (34
(6–170) µg N m−2 d−1) or from wetlands with low
organic matter content (19 (−8–19) µg N m−2 d−1).
Higher emissions occur from bare soils (455 (165–
779) µg N m−2 d−1) compared to vegetated soils (30
(6–89) µg N m−2 d−1) (Voigt et al 2020). As typ-
ical for soil N2O fluxes (Butterbach-Bahl et al 2013),
N2O emissions from permafrost-affected soils show
high spatial and temporal heterogeneity (Voigt et al
2020), with high emissions e.g. from bare peat sur-
faces on permafrost peatlands, reaching up to over
6000 µg N m−2 d−1 during the growing season
(Repo et al 2009, Marushchak et al 2011). On the
other hand, high N2O emissions have recently been
confirmed from Alaskan tussock tundra on a land-
scape scale with air-borne measurements (Wilkerson
et al 2019), suggesting widespread emissions across
the landscape. Since N2O is produced during min-
eral N transformation processes (Butterbach-Bahl
et al 2013), substantial emissions confirm significant
microbial production and turnover of mineral N.

Due to lack of direct in situ measurements of
N2, NO and HONO from permafrost-affected soils,
we can only speculate about their occurrence. But,
since these gases are produced by the same mineral
N transformation processes as N2O (Butterbach-Bahl

et al 2013, Oswald et al 2013, Pilegaard 2013), soils
with substantial N2O emissions (permafrost peat-
lands, bare soils) can be considered as themost poten-
tial sources for the other gaseous N forms as well.
Scheer et al (2020) estimated that at the global scale
N2O comprises approximately 8% (6%–11%) of the
terrestrial denitrification flux. Assuming that on aver-
age permafrost-affected soils emit 288 µg N m−2 d−1

in the growing season (Voigt et al 2020), this would
equal to about 0.3 kg N2O–N ha−1 growing season−1

of 100 d, or eventually 3 kg N ha−1 growing season−1

of total denitrification as estimated based on the
global ratios of N2O to total denitrification provided
by Scheer et al (2020). There is additional direct evid-
ence forN2 release fromhigh-N2O-emitting subarctic
peat soils as a result of complete denitrification, i.e.
N2O reduction to N2, from application of the acet-
ylene inhibition method (blocking N2O reduction to
N2) in vitro (Palmer et al 2012) and from stable iso-
tope studies of N2O in the pore gas in situ (Gil et al
2017). Production of NO was observed in a laborat-
ory incubation conducted with Alaskan tundra soils,
with strong positive dependence on mineral N con-
tent (Yonemura et al 2019).

9.2. Aquatic N losses
Permafrost landscapes are characterized by low
hydrological landscape conductivity, shallow flow
paths of water (Sjöberg et al 2020), and high abund-
ance of water bodies and water-logged soils (Vonk
et al 2015). The magnitude, timing and composi-
tion of lateral N losses from land to aquatic systems
will change with permafrost thaw processes such as
thermokarst erosion (Turetsky et al 2019) and active
layer deepening (Biskaborn et al 2019), combined
with changing precipitation patterns (Bintanja and
Andry 2017). The particulate organic N transport
by rivers to the Arctic Ocean has been estimated at
695 Gg N and is associated with dissolved N export
(DON and mineral N) of equal magnitude (McClel-
land et al, 2016), and will likely increase in the future
with permafrost thaw (Connolly et al 2020).

There are differences in the magnitude and com-
position of dissolvedN losses by leaching between soil
types and layers. Organic soils have a higher poten-
tial for overall N leaching losses (DON and mineral
N) than mineral soils (Wickland et al 2018, Fouché
et al 2020). In organic soils, N leachingmay be domin-
ated byDON (Wickland et al 2018, Fouché et al 2020)
and NH4

+ (Fouché et al 2020). Leaching of NO3
−

may bemore important forwell-drainedmineral soils
and is expected to increase with deepening active lay-
ers and exposure of mineral soil layers in thermokarst
features (Harms and Jones 2012, Harms et al 2014).
This can have great implications for plant nutrition
(see section 8).

Interestingly, the content of leachable N is typ-
ically higher in permafrost layers compared to act-
ive layers (Keuper et al 2012, Beermann et al 2017,
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Wickland et al 2018, Fouché et al 2020), suggest-
ing higher lateral N losses with progressing per-
mafrost thaw (Connolly et al 2020). Enhanced and
persistent mineral N losses via leaching have been
observed from permafrost thaw slumps (Bowden et al
2008, Abbott et al 2015) and thermokarst gullies
(Harms and Jones 2012). Elevated mineral N concen-
trations observed in arctic rivers (Jones et al 2005,
Bowden et al 2008) indicate that mineral N losses
from permafrost-affected landscapes are increasing.

Besides dissolved N discharge from thermokarst
features, substantial N inputs into aquatic sys-
tems occur with direct sediment losses associ-
ated with wildfires (Abbott et al 2021) and fluvio-
thermal erosion and thermokarst along river banks
(Kanevskiy et al 2016, Fuchs et al 2018) and coast-line
(Günther et al 2013). In addition to permafrost thaw
processes, longer thaw seasons will likely enhance
leaching of mineral N through continued ammoni-
fication and nitrification in fall with little N uptake
by plants or microbes (Treat et al 2016b).

10. Mineral N cycling matters: a revised
paradigm, persisting knowledge gaps and
recommendations for future studies

This review demonstrates that the paradigm of a
predominance of organic N cycling in permafrost-
affected soils cannot be confirmed by gross N
turnover data published during recent years (see
figure 1(b)). In contrast, mineral N cycling is present
and important in the active layer of permafrost-
affected soils to a similar extent as in temperate or
even tropical soils and its main processes ammoni-
fication and nitrification are similarly dependent on
SOC and TN. This is because functional limitations
of SOM decomposition, N mineralization and min-
eral nutrient cycling are largely released upon perma-
frost thaw so that soil microbial N cycling does not
stop at the level of DON in these cold environments.
Considering the presence of an abundant microbial
community involved inmineral N cycling both in act-
ive and permafrost layers, the large C and N stocks of
permafrost-affected soils and the fact that the main
functional limitation forN cycling is exerted by frozen
soil, mineral N turnover might increase in a warmer
future. In a changing Arctic, there may be increas-
ing priming and N mining due to increased rooting
and exudation, mobilizing additional SOM/SON and
accelerating N cycling even more. Permafrost retreat
thus bears a high potential not only for C but also for
N mineralization even in soils with high C:N ratios.

Our meta-analysis showed that gross ammonific-
ation in permafrost ecosystems can be high enough
to allow for significant mineral N nutrition of plants
which might be especially relevant when no ectomy-
corrhiza are present. As plants compete strongly for
both organic and inorganic N forms with microbes

in permafrost areas, net N turnover rates tend to
be around zero and do not depict which processes
are taking place and at which magnitude. Thus,
in fact, net rates might be particularly misleading
with respect to permafrost-affected soils, and their
widespread use can explain how the old paradigm
has established in the first place. While net N min-
eralization was found to decrease with latitude (and
altitude) (Liu et al 2016, 2017), this is not indic-
ated for gross ammonification and nitrification. High
depolymerization rates do not only question the
paradigm that depolymerization is the bottleneck of
N cycling, but also—together with high ammonific-
ation, nitrification and nitrification:ammonification
ratios—suggest that N limitation is not particularly
pronounced in permafrost-affected soils. Among the
wide and diverse range of different permafrost eco-
systems, mineral N cycling and associated N losses
appear to be especially important in N-rich organic
soils, when plant cover is absent and when impacted
by cryoturbation or erosion (such as thermokarst).
However, more data are needed to reveal influences
of different ecosystem types on gross N turnover
as no significant differences were found (not even
when comparing unvegetated to vegetated ecosys-
tems). With an increasing amount of available data,
geographical patterns should be analyzed in more
detail in future review articles.

Currently, the process-based and quantitative
understanding of N cycling in permafrost-affected
ecosystems is still limited by a lack of experimental
evidence on gross N turnover rates (particularly on
gross protein depolymerization), with regard to sea-
sonal dynamics and dynamics in the vertical soil pro-
file (e.g. along the freezing/thawing front and water
table) (table 3). As soils freeze from the surface in
autumn/winter there is a phase where the upper part
of the active layer is frozen, but is underlain by a non-
frozen part. In contrast to temperate soils, below this
non-frozen layer there is the permanently frozen core.
Currently, nothing is known about N turnover and
gas accumulation between the two frozen layers, while
it has been shown that these soil conditions are rel-
evant for CH4 release (Mastepanov et al 2008, Pirk
et al 2015, Zona et al 2016). Nitrogen turnover pro-
cesses in frozen soil itself are also generally unknown
but could matter as few studies reported for non-
permafrost soils. A methodological framework to
study N transformation processes in frozen soil is
urgently needed to gain insight into annual N cyc-
ling in permafrost-affected soils, in particular in tun-
dra uplands and the high arctic. Furthermore, the
microbiome performing ammonification is not well-
known for permafrost-affected soils. Also processes
such as anammox and DNRA are severely understud-
ied (table 3).

There is increasing evidence that arctic plants
in addition to DON can use also mineral N forms
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for growth, particularly those which are not in asso-
ciation with mycorrhizal fungi and Frankia bac-
teria symbioses. Plants relying on mineral N forms
may even have a competitive advantage in a future
warmer world, when permafrost thawing and climate
warming trigger the availability of relatively high
amounts of NH4

+ and NO3
− by enhanced microbial

mineral N cycling. The significance of higher plants
and their interaction with rhizospheric microorgan-
isms for N cycling in permafrost ecosystems are still
largely unexplored. Especially how BNF influences
N mineralization is not clear. There is a research
gap concerning the physiological, biochemical and
molecularmechanisms that allow BNF and plant root
N uptake at freezing temperatures. Studying interac-
tions of plant physiology with soil biogeochemistry
will be decisive for predicting climate change effects
on nutrient cycles andGHGbalances inwarming per-
mafrost ecosystems, especially with regard to alder
shrubs (table 3).

The outlined high importance of mineral N
cycling in permafrost-affected soils suggests that
also gaseous N losses may be higher as previously
assumed, but so far only fluxes of N2O have been
studied, while reports on other forms of gaseous N
losses from permafrost-affected soils (e.g. HONO,
NO, N2) are almost completely missing. Findings
of high N2O emissions from permafrost should
not be neglected as they are potentially relevant
as another feedback mechanism to climate change.
Already today, permafrost-affected soils emit 0.17–
1.3 Tg N2O–N yr−1 (Voigt et al 2020), i.e. up to
20% of the N2O emissions from soils under nat-
ural vegetation worldwide (6.6 Tg N2O–N yr−1; Ciais
et al 2013). It has been estimated that between 7%
and 15% of organic C might be released from per-
mafrost in this century (Schuur et al 2015). When
analogously assuming that ca. 10% of the organic
N store will be released until 2100, and only 1%
thereof will be emitted as N2O (conservative estim-
ate as 1% is the default N2O emission factor of
the Intergovernmental Panel on Climate Change for
N mineralized from mineral soils; IPCC 2006), this
would mean additional 67 Tg N2O–N until 2100.
This translates into ca. 0.8 Tg N2O–N yr−1 which
would approximately double current average emis-
sions frompermafrost, with a huge uncertainty of this
estimate. Regarding aquatic losses, the lateral trans-
port of N (e.g. NO3

− leaching through draining of
thermokarst) is an important research field to gain
insight into possible nutrient shifts from terrestrial
to aquatic ecosystems. Also, arctic fires might not
only cause N volatilization and re-deposition at large
scales, but accelerate permafrost thaw and possibly
promote mineral N cycling at large scales, however
this has been rarely assessed for different permafrost
ecosystems.

Consequently, the research gaps on permafrost
N cycling (table 3) need to be addressed by inter-
disciplinary studies involving atmospheric/soil phys-
icists, biogeochemists, microbiologists, hydrologists
and plant physiologists to investigate N cycling in
intact plant-soil-microbe systems at the landscape
scale, thereby considering plant-soil-microbe C:N:P
interactions, seasonal dynamics, and vertical soil pro-
file dynamics. Such studies will be a prerequisite
for better assessing permafrost nutrient climate feed-
backs.
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