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Abstract

Deep neural networks (DNNs) have achieved physician-level accuracy on many imaging-based medi-

cal diagnostic tasks, for example classification of retinal images in ophthalmology. However, their decision

mechanisms are often considered impenetrable leading to a lack of trust by clinicians and patients. To alle-

viate this issue, a range of explanation methods have been proposed to expose the inner workings of DNNs

leading to their decisions. For imaging-based tasks, this is often achieved via saliency maps. The quality

of these maps are typically evaluated via perturbation analysis without experts involved. To facilitate the

adoption and success of such automated systems, however, it is crucial to validate saliency maps against

clinicians. In this study, we used two different network architectures and developed ensembles of DNNs

to detect diabetic retinopathy and neovascular age-related macular degeneration from retinal fundus im-

ages and optical coherence tomography scans, respectively. We used a variety of explanation methods

and obtained a comprehensive set of saliency maps for explaining the ensemble-based diagnostic de-

cisions. Then, we systematically validated saliency maps against clinicians through two main analyses

— a direct comparison of saliency maps with the expert annotations of disease-specific pathologies and

perturbation analyses using also expert annotations as saliency maps. We found the choice of DNN archi-

tecture and explanation method to significantly influence the quality of saliency maps. Guided Backprop

showed consistently good performance across disease scenarios and DNN architectures, suggesting that

it provides a suitable starting point for explaining the decisions of DNNs on retinal images.

Introduction

Deep neural networks (DNNs) have become increasingly popular in medical image analysis [40, 20, 75, 61,
21]. Trained on various diagnostic tasks in imaging-based specialties of medicine, they have been shown
to achieve physician-level accuracy [28, 19, 15, 30, 7, 79]. However, DNNs are often referred to as black
boxes since their decision mechanisms are not transparent enough for clinicians to interpret and trust them
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Figure 1: Exemplary retinal images along with their pixel-level annotations for lesions. Best viewed in color
and when zoomed in. (a): A fundus image from the IDRiD collection. (b): The fundus image with the an-
notations for microaneurysms (green), hemorrhages (magenta), hard exudates (blue), soft exudates (cyan)
and the optic disc (yellow). (c): A B-scan from our OCT collection. (d): The same B-scan annotated for
retinal fluid. Intraretinal fluid is marked by green, whereas blue indicates subretinal fluid.

[11, 42, 61]. From a practical and ethical point of view, this is one of the major roadblocks in translating
cutting-edge machine learning research into meaningful clinical tools [22, 26, 27]. To tackle this challenge,
a number of explanation methods have been proposed to expose the inner workings of a DNN underlying
its decisions. In the case of image analysis, this is frequently done via saliency maps, where input pixels
are associated with saliency scores according to their contribution to network outputs [4, 49]. The efficacy
of a saliency map is typically evaluated via perturbation or sensitivity analysis [9, 64, 4, 35, 49, 51], without
involving a human in the process. For medical imaging, we thus lack an understanding of how good different
explanation methods are in providing saliency maps with clinical relevance.

To fill this gap, we systematically evaluated saliency maps for the decisions of DNNs trained to detect
two prevalent eye diseases, diabetic retinopathy (DR) and neovascular age-related macular degeneration
(nAMD), with respect to the expert opinions of clinical ophthalmologists. First, we compared saliency maps
with disease-specific annotations of pathologies. Second, we performed perturbation analyses and com-
pared the outcome to that obtained when using expert annotations as saliency maps. This allowed us to
use perturbation analysis also as a tool to validate DNN explanations against clinicians.

We also introduced two technical novelties. First, we developed a post-processing method for saliency
maps to improve the visualization of salient regions and standardize saliency maps for benchmarks. In
addition, we computed saliency for Deep Ensembles [38, 23] to obtain saliency maps which were more
informed than those obtained from individual networks in isolation.

Methods

DNNs are often trained for diagnostic classification of medical images. To introduce notation, we first review
the basics of DNN-based image classification. Then, we describe our datasets and disease detection tasks
as well as our methodology including model development and evaluation. Also, we discuss attribution
methods for generating saliency maps and introduce our post-processing method within this classification
framework.

In medical image analysis, a DNN achieves a diagnostic classification by learning a function that map
inputs to outputs: y = fθ(x), where y is a class label (e.g. disease severity or presence/absence of disease)
assigned by experts to an input image x and θ represents the DNN’s weights, which are tuned w.r.t. an ob-
jective on a finite datasetD = {xn, yn}Nn=1. The objective is usually to minimize the cross-entropy between
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Table 1: Fundus image collections. Kaggle DR and APTOS DR partitions are given according to the source.
Unpublished labels are indicated with ’-’. Messidor 2 and IDRiD data are used for external validation only.

Kaggle DR / APTOS DR Messidor 2 IDRiD

Partition Training Validation Test External validation
# of images 35126 / 3662 10906 / 1928 42670 / 13000 1744 516

S e
ve

ri
ty

0-No DR 25810 / 1805 8130 / - 31403 / - 1017 168
1-Mild DR 2443 / 370 720 / - 3042 / - 270 25
2-Moderate DR 5292 / 999 1579 / - 6282 / - 347 168
3-Severe DR 873 / 193 237 / - 977 / - 75 93
4-Proliferative DR 708 / 295 240 / - 966 / - 35 62

labels and predictions, which can be expressed in the following form: L(D, fθ(·)) = 1
N

∑N
n=1 l(yn, fθ(xn)),

where l(yn, fθ(xn)) =
∑K
k=1 yn,klog pn,k, yn is a hard label in multinomial (1-hot) representation, pn is a

list of predicted class probabilities and k is an index intoK classes. A DNN estimates the class probabilities
typically via a softmax function in its final layer: pn,k = exp(fωk (x̂n))/

∑
j exp(fωj (x̂n)), where ωk ⊂ θ repre-

sents the weights and bias for the k-th class in the softmax layer, x̂n is the feature representation by the
network’s penultimate layer, and outputs are multinomial distributions:

∑
k pn,k = 1.

Diseases and Datasets

DR and nAMD are two prevalent and progressive eye diseases [13, 3, 80], both of which can be automati-
cally graded using state-of-the-art DNNs [28, 15, 65, 37, 79].

In the case of DR, we used multiple publicly available collections of fundus images (Fig. 1a): Kaggle DR
[33], Asia Pacific Tele-Ophthalmology Society (APTOS) DR [34], Messidor 2 [1, 16, 36], and Indian Diabetic
Retinopathy Image Dataset (IDRiD) [59]. These images are graded by medical experts according to the
International Clinical Diabetic Retinopathy Severity Scale (Table 1). In addition to the image-level DR grades,
81 of the IDRiD images are annotated at the pixel level with regards to pathologies associated with DR, i.e.,
microaneurysms, soft exudates, hard exudates and hemorrhages as well as the optic disc [59] (Fig. 1b).

Table 2: OCT collection and B-scans.

Partition Training Validation Test
# of patients 53 7 10
# of B-scans 2751 407 604

0-Inactive 1903 306 335
1-Active 848 101 269

In the case of nAMD, we used 70 3D optical coherence to-
mography (OCT) volume scans from patients at the Univer-
sity Eye Hospital Tübingen collected with Heidelberg Spec-
tralis OCT (Heidelberg Engineering, Heidelberg, Germany).
Depending on the settings used during clinical examinations,
each volume consisted of 19,25,37,49 or 73 2D slices, namely
B-scans (Fig. 1c). In total, there were 3762 B-scans (1751 left
eye, 2011 right eye) and each was graded by a retina spe-
cialist according to the presence or absence of active nAMD
(Table 2), which is characterized by intraretinal or subretinal fluid (Fig. 1d). Furthermore, we selected 73
B-scans from the validation (19) or test (54) sets to be annotated by a board-certified ophthalmologist at
the pixel level w.r.t. nAMD activity. We excluded two of the annotated B-scans from our analyses due to
the mismatch between their image-level grading and pixel-level annotations carried out by our clinicians
(WI and LK, respectively). The use of this data set was permitted by the Institutional Ethics Committee of
the University of Tübingen and was performed in line with all relevant laws and regulations.
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Diagnostic Tasks, Network Architectures and Model Development

In the DR case, the task for the network was to detect DR from fundus images. Considering Mild DR as
the disease onset (Table 1), we grouped the fundus images into healthy and diseased, according to the DR
stages: {0} vs. {1,2,3,4}, respectively. For the nAMD case, the task was to recognize the nAMD activity from
individual B-scans of the retina (Table 2). For both tasks, we used two well-established DNN architectures,
ResNet50 [31] and InceptionV3 [74]. We obtained their implementations from Keras [14], pretrained on
ImageNet [63]. We modified and fine-tuned them to our tasks. Also, we used a 2-way softmax encoding
for the classification outcome for the sake of compatibility with the saliency methods (see Explanations in
the Visual Domain).

DR detection networks

We modified the pretrained ResNet50 and InceptionV3 networks by replacing their dense layers with sin-
gle layers containing 512 fully connected units followed by Batch Normalization [32] and ReLU [52] as well
as a softmax layer with two outputs. We applied L2 and L1 regularizers to convolutional and penulti-
mate layers, respectively. Also, we modified the objective functions to handle the class imbalance in the
datasets (Table 1): l(yn, fθ(xn)) =

∑K
k=1

1
nk
yn,klog pn,k, where nk is the number of images from class k in

a minibatch. Using Stochastic Gradient Descent (SGD) with Nesterov’s Accelerated Gradients (NAG) [53,
73] and a momentum coefficient of 0.9, we trained the networks for 150 epochs on random partitions of all
labeled images from Kaggle DR and APTOS DR combined (92,364 images, Table 1). More specifically, we
performed 5-fold cross-validation within these images and used 80% of them for training. For each cross-
validation run, we followed a stepwise learning rate schedule with rates 0.005, 0.001, 0.0005, 0.0001
after epochs 0, 25, 50, 85 respectively, on top of a decay rate of 0.00001. Also, during the first 10 epochs,
only the dense layers were updated and convolutional layers were frozen. For the remaining epochs, all
layers were fine-tuned to the task. The model performance was validated after each epoch on the re-
maining 20% of the images and the best configuration was saved for inference. In this scheme, each DNN
instance was evaluated on a disjoint internal validation set. In order to get a better picture of our DNNs’
generalization performance, we finally evaluated them on an external validation set that comprised of both
Messidor 2 and IDRiD images (Table 1).

nAMD activity detection networks

We modified the pretrained ResNet50 and InceptionV3 networks by concatenating max pooling to average
pooling, adding two dense layers with 1024 and 512 units, which were also followed by Batch Normalization
[32] and ReLU activation [52], and using a 2-way softmax classifier. All weight layers except the penultimate
one were equipped with L2 regularization. We used L1 regularization to promote sparsity in the penul-
timate layer. Ultimately, both ResNet50 and InceptionV3 networks achieved classification based on 512
features obtained from their penultimate layers. In this case, we countered the class imbalance (Table 2)
with random oversampling. Using SGD with NAG [53, 73], a momentum coefficient of 0.9, initial learning
rate of 0.001, a decay rate of 0.0001 and a regularization constant of 0.00001, we trained networks for
100 epochs. During the first 10 epochs, the convolutional stacks were frozen and only the dense layers
were trained. For the remaining epochs, all layers were fine-tuned to the task. The best models based on
validation accuracy were saved after each epoch and used for inference on the test set.
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Table 3: Disease detection accuracy for individual networks and their ensembles.

DR nAMD

Training Validation Test Training Validation Test
(internal) (external)

ResNet 1 0.889 0.892 0.859 0.993 0.956 0.899
ResNet 2 0.889 0.888 0.854 0.973 0.948 0.881
ResNet 3 0.888 0.885 0.842 0.983 0.968 0.858
ResNet 4 0.883 0.875 0.847 0.994 0.963 0.892
ResNet 5 0.889 0.885 0.852 0.987 0.953 0.892
Ensemble - - 0.856 0.996 0.966 0.912

Inception 1 0.879 0.879 0.860 0.939 0.956 0.884
Inception 2 0.880 0.881 0.852 0.995 0.953 0.917
Inception 3 0.866 0.862 0.862 0.961 0.968 0.897
Inception 4 0.887 0.877 0.858 0.981 0.958 0.887
Inception 5 0.883 0.880 0.853 0.974 0.958 0.906
Ensemble - - 0.869 0.990 0.971 0.929

Data augmentation and image preprocessing

Fundus images were first cropped to center such that the fundus circle touched the image borders. Namely,
the longer axis of image height or width was cropped on both sides equally to the same length as the
shorter axis. Then, images were resized to 512 × 512. During training, data augmentation was applied
to the images. The augmentation pipeline included vertical and horizontal flips, rotation by ±180 degrees
(pixels that have no image information due to rotation were set to black pixels), horizontal and vertical
translation by±20 pixels, brightness range±30% and zoom range−20% - 0%. After the first preprocessing
and data augmentation, the specific preprocessing functions of ResNet50 or InceptionV3 from the Keras
API [14] were applied.

B-scans contained 440 × 512 pixels (Fig. 1c). We performed data augmentation before feeding images
to networks during training. The augmentation pipeline included random rotation within ±45 degrees,
horizontal and vertical translations within±30 pixels, brightness adjustments with±10%, zoom with±10%,
and horizontal and vertical flips. Once images went through the pipeline, they were locally color-normalized
for contrast enhancement with background subtraction via a median filter of size 31. Then, appropriate
preprocessing functions from the Keras API [14] were applied.

Overconfidence and calibration of predictive probabilities via Deep Ensembles

DNNs are overconfident about their predictions [29, 76, 44]. To obtain well-calibrated predictions and im-
prove the performance of our networks, we used Deep Ensembles [38]. A Deep Ensemble simply consists
of multiple DNNs, each of which is randomly initialized, follows a different optimization trajectory and ex-
plores a different mode in function space [38, 23]. Thus, the ensemble, even a small one with 3-5 DNNs,
samples diverse and accurate predictors from a function space, exploits their diversity in decision-making
and ultimately improves upon the single network performance both in accuracy and calibration [38, 23, 57],
also in a DR detection scenario [8]. Using the network architectures, hyperparameters and training proce-
dures described above, we constructed ensembles of 5 DNNs for our diagnostic tasks (Table 3, Fig. 2). In
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Figure 2: Receiver Operating Characteristics (ROCs) and calibration of our ensembles. The degree of mis-
calibration was estimated via reliability diagrams [17, 29, 54] and the Adaptive Expected Calibration Error
(AECE) [17] based on adaptive histograms. A positive gap (dark blue) between predictive probability and
accuracy indicates overconfidence, whereas a negative gap (light green) points at the lack of confidence.
(a-c): DR detection. For the sake of clarity, only the performances on external validation set are shown.
(d-f): nAMD activity detection. Only the performances on combined validation and test sets are shown.

the DR case, we used the DNNs trained during cross-validation. For the nAMD task, we trained 5 DNNs per
architecture. All DNNs were diversified by the randomness in the initialization of dense layers, shuffling of
training examples as well as data augmentation.

Explanations in the Visual Domain

Saliency maps are frequently used to obtain explanations for a DNN’s decisions. We focused on saliency
methods with implicit access to model structure and its internal state. These methods generate saliency
maps via forward and backward passes [60, 4, 49, 51, 61]. They typically use backpropagation-based algo-
rithms or relevance propagation rules. As a result, a DNN’s decision is unravelled by attributing its predictive
values all the way back to the input domain [4, 49, 51, 61]. In this sense, an attribution is a mapping h from
an RGB image x to its raw saliency map through a trained network.

h(fθ(x)) : RH×W×3 → [0, 1]K → RH×W×3,where H and W are the height and width of images. (1)

In order to compute saliency maps conveniently, we used the open-source library iNNvestigate [2].
We only considered common gradient or relevance-based methods, which included a variety of methods
commonly used in ophthalmology and neuroimaging [62, 6, 5, 10, 65, 48, 78].
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Gradient-based methods

A saliency map R for an image can be obtained by simply using backpropagation to compute the gradient

of the predictive function w.r.t. inputs indexed by i, given a class of interest k: Rki (x) =
∂fkθ (x)
∂xi

[68, 49].
However, gradients are sensitive to pixel-based variation and yield scattered saliency maps [49, 55]. To
reduces this sensitivity, Simple Taylor decomposition [9], which is also called input× gradient, emphasizes

an input only if it is present and the network responds to it [49]: Rki (x) =
∂fkθ (x)
∂xi

xi. Also, Deep Taylor
decomposition (DTD) [50] computes the relevance scores in a layer-wise fashion: Rki (a) =

∑
j R

k
i←j =∑

j

∂Rkj
∂ai

∣∣
âji
·(ai−âji ), where j is an index into connections, a represents activations and â is a root point used

in decomposition. Here, the i-th neuron in a given layer receives relevance scores from its connections to
the next layer w.r.t. derivative evaluations at âji . DTD also ensures the positivity of relevance scores at each
layer through local decompositions and constraints [50].

SmoothGrad [70] reduces the pixel-sensitivity of gradients by sampling inputs with additive noise and
averaging over multiple maps. Its goal is to generate more informed and focused maps. Similarly, Inte-
grated Gradients [72] assumes a baseline (blank) image x̂ and follows a path between the baseline and

input x: Rki (x) = (xi − x̂i)
∫ 1

α=0
∂fkθ
∂xi

∣∣
x̂+α(x−x̂)dα. The gradients are integrated along the path. In prac-

tice, this means an approximation with a number of steps (e.g., 20-300 [72]) between x and x̂. These
sampling-based methods induce high computational costs, when large samples are needed for accurate
explanations. Despite the cost, we used 256 samples (or steps) for the sake of accuracy.

Apart from using the model structure as is, DeConvNet [82, 81] reverses the network components, e.g.,
pooling layers, filters and activations, and maps high-level features to inputs. In addition to deconvolution,
Guided Backprop [71] resorts to a combination of both forward and backward ReLUs during backpropaga-
tion for sharper visualization [55, 62, 10]. However, it is restricted to ReLU networks.

Layer-wise Relevance Propagation (LRP)

LRP [9] also relies on backward propagation but its conservation principle sets it apart from gradient-based
methods. Within the LRP framework, each neuron distributes to its predecessors exactly the sum of rel-
evance scores it receives from its successors [50, 49, 51]. As a result, an unnormalized network output
(fωk(x̂n), namely logit) reaches the input layer and disseminates into saliency scores. In this regard, LRP
explains the actual predictive outputs, instead of their local variation. It supports both positive and negative
relevance, corresponding to the excitation or inhibition characteristics of neurons, respectively [50, 49, 51].

A simple propagation rule is the z-rule (LRP-Z or LRP-0): Rki =
∑
j

(
aiωij∑
i aiωij

)
Rkj , whereω ⊂ θ between

two layers. LRP-ε introduces an additional hyperparameter ε to suppress the impact of weak or noisy

contributions from successors [51]: Rki =
∑
j

(
aiωij

ε+
∑
i aiωij

)
Rkj . We defaulted to ε = 0.05. A general rule is

the αβ-rule [50, 49, 51]: Rki =
∑
j

(
α

aiω
+
ij∑

i aiω
+
ij

− β aiω
−
ij∑

i aiω
−
ij

)
Rkj , where α − β = 1, β > 0, + and − denote

the excitatory and inhibitory parts. The hyperparameters α and β set the balance between the positive and
negative relevance and modulate the behaviour of saliency maps. Thanks to the conservation principle,
more sophisticated rules can also be composed of simple ones. For instance, LRP-αβ can modulate the
flow of relevance through the convolutional layers, while LRP-ε emphasizes the most salient scores through
the dense layers [51]. We considered two such rules designated as LRP-PresetA and LRP-PresetB with
α = 1, β = 0 and α = 2, β = 1, respectively [2]. These can also be coupled with a flat rule that assumes
uniform weights, i.e., ω = 1, in the very first layer during the propagation of relevance. As a result, the
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Figure 3: Post-processing and ensembling of saliency maps. All models correctly predicted the presence
of DR or active nAMD, given the inputs. Coloring of annotations is the same as in Fig. 1. Raw saliency
scores were obtained via Guided Backprop [71], aggregated along channels, positive and negative scores
were separated into the red and blue channels, respectively, and their absolute values were min-max
normalized into [0, 1] within channels. Then, ensemble-based maps were obtained by simple averaging.
Best viewed in color and when zoomed in. (a) Exemplary saliency maps from the ResNet50 instances and
their ensemble for DR detection. (b) Same as (a) but with InceptionV3 instances and for the nAMD activity
detection.

sensitivity to the first layer convolutional filters is reduced and the effect of higher layers is emphasized.

Post-processing and ensembling of saliency maps

Saliency maps essentially highlight regions in images based on which DNNs make their decisions. Thus, we
summarized the raw saliency maps (see Eq. 1) into 2D, by aggregating the saliency scores along channels.
Then, we dispatched the positive and negative scores back into the red and blue channels, respectively, for
visualization of excitatory or inhibitory features (Fig. 3). As the saliency scores exhibited stark differences
due to the underlying assumptions and objectives of attribution methods, we mapped the absolute values
of aggregate scores into [0, 1] within channels. However, a näive mapping via min-max normalization led to
extremely sparse maps, even with ensembling (Fig. 3, last column) and various attribution methods (Fig. 4,
top rows in (a) and (b)). We proposed a non-linear transformation to improve the visualization of salient
regions. Our procedure is a drop-in replacement for the min-max normalization and its detailed description
is given in Appendix A.1. Briefly, the crucial parameter of our method is fν ∈ [0, 1] and it allows us to grow
salient regions for better visualization (Fig. 4).

In principle, our method could be used on saliency maps with both excitatory and inhibitory features.
However, we focused on the excitatory ones since our evaluation was concerned with the efficacy of
saliency maps for explaining the DNN decisions in presence of lesions and their annotations by clinicians.
In addition, we leveraged the local sensitivity of gradient-based methods in order to enhance their visual-
izations of salient regions. Namely, we took the absolute values of raw saliency scores beforehand, which
was a handy trick used for Guided Backprop in recent applications [62, 10]. Given the similarities between
gradient-based saliency maps and those from LRP-Z and LRP-Epsilon (Fig. 4), we used the same trick for
these simple LRP configurations, as well. As other LRP rules were already good at disentangling the exci-
tatory and inhibitory regions, we excluded them from this treatment.
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Figure 4: The impact of our post-processing on saliency maps. Top rows in (a) and (b) show annotated
images (leftmost column) and saliency maps obtained via 14 attribution methods from the InceptionV3
ensembles using the min-max normalization as in Fig. 3. Remaining rows show the results of our post-
processing w.r.t. various settings of fν . (a) Exemplary saliency maps obtained from the DR detection en-
semble for its prediction on the given fundus image, also post-processed w.r.t. 3 values of fν : 0.01, 0.1 and
0.25. Also note that we could not couple the LRP-PresetA and LRP-PresetB rules with the flat rule due to
numerical difficulties. (b) Exemplary saliency maps obtained from the nAMD activity detection ensemble
for its prediction on the given B-scan, also post-processed w.r.t. 3 values of fν : 0.01, 0.025 and 0.05.

Evaluation of Saliency Maps

We assessed the correspondence between saliency maps and expert annotations via Dice loss [47]: D =

1 − 2
∑
i RiSi∑

i(Ri)
2+

∑
i(Si)

2 , where R was a saliency map and S the expert annotation. Intuitively, D ∈ [0, 1] is
a normalized distance between R and S. When a saliency map perfectly matches the expert annotation,
D decreases to 0. Otherwise, it indicates the degree of mismatch. It is also robust to imbalance between
the numbers of foreground and background pixels, which is typically severe due to the relative size of
annotations in medical images [47]. However, our post-processing influences D. Thus, given a triplet of
disease scenario, DNN architecture and attribution method (Fig. 6a,b,d, and e), we searched for the optimal
fν among 20 values spaced evenly within [0.0005, 1] on a log scale with a geometric1 progression. Our
criterion was based on the overall (dis)agreement between saliency maps and expert annotations. The
optimal values can be found in Table 4 in Appendix A.2. We also show examples of optimally processed
saliency maps in Fig. 8 and Fig. 9.

We also performed perturbation analyses [9, 64, 35] and compared the perturbation trajectory of saliency
maps to those of clinicians in order to obtain an alternative perspective on the clinical relevance of saliency

1np.geomspace(0.0005, 1.0, num=20, endpoint=True) [56, 77])
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maps. Our perturbation scheme involved a two-dimensional grid specified over a given image and we
regarded each cell as a patch to be perturbed (Fig. 5). Then, given a saliency map, we ranked the patches
based on the total patch saliency, perturbed the top-ranked patches with uniform random noise and mea-
sured the drop in the ensemble output for the class of interest, diseased. We followed the ranking and
repeated the measurement until there was no more patch to perturb. In addition, we used random maps to
facilitate random perturbation as our baseline. As expected, a saliency-based ranking led to faster decline
than a random selection of patches, since the saliency map indicated the informative regions in an image
more accurately than chance. Analogously, we used the rate of drop as a performance metric for saliency
maps. However, when the total perturbation grew and disease evidence was lost, all methods converged
to random (Fig. 7a and Fig. 7b). After all, we treated also expert annotations as saliency maps within this
perturbation-based framework. This allowed us to validate saliency maps against clinicians by monitoring
DNNs’ sensitivity to the removal of salient information determined by explanation methods as well as the
clinicians themselves.

For fundus images, which were accompanied with widespread annotations, we used the settings de-
scribed in Fig. 5 but we perturbed 4 patches per step. Thus, a fundus image was fully perturbed in 16 steps
(Fig. 7a and Fig. 7b). Considering the local annotations of retinal fluid on B-scans, we increased the granu-
larity of perturbations in order to precisely monitor the changes in the DNN outputs for nAMD activity. We
used patches of 4× 4 on a grid of 110× 128 and perturbed 4 patches per step. To sidestep the formidable
computation required to run the full-fledged analyses for this task, we stopped early after the 880th step out
of 3520 (Fig. 7d and Fig. 7e). After all, we plotted the average relative differences in the ensemble outputs
for being diseased against the steps (Fig. 7), by subtracting the drop observed via a random perturbation
from those of ranked perturbations. As a performance metric, we used the values induced by attribution
methods at steps 10 and 200 for the DR and nAMD scenarios, respectively.

Ra
nd

om
Gr

ad
ie

nt
Gu

id
ed

Ba
ck

pr
op

steps

Figure 5: Illustration of perturbation analysis. Given a fundus image with DR (the first column) and three
saliency maps (the second column) for it, 64×64 patches lead to 8×8 grids (the third column) with different
rankings of patches. If 16 patches are perturbed per step, the image is fully perturbed in 4 steps.
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Results

We developed DNNs to detect DR and active nAMD from retinal fundus images (Fig. 1a) and slices of OCT
volume scans (Fig. 1c), respectively. For each disease, we used two well-known network architectures:
ResNet50 [31] and InceptionV3 [74]. Then, we constructed two Deep Ensembles [38, 23] for each diag-
nostic task, which each consisted of five DNNs from a given architecture, trained with different random
initializations and data augmentation. Thus, we used 20 DNNs in this study. While individual DNNs were
accurate for their respective tasks, their ensembles further improved upon single network performance in
both disease scenarios and across network architectures (Table 3 and Fig. 2). We also assessed the cal-
ibration of our ensembles via reliability diagrams and the Adaptive Expected Calibration Error (AECE) [17]
and found them to be well calibrated (Fig. 2).

Interestingly, the diversity of DNNs in decision-making showed clearly in saliency maps. For example,
the first two DR detection networks paid more attention to the hemorrhages, microaneurysm (indicated by
a dotted arrow) and soft exudates (bottom right, Fig. 3a), while the soft exudate was completely unattended
by the last three DNN instances. The fifth one also ignored hemorrhages and detected only microaneurysm
in this area. In addition to the annotated lesions, the DNNs also detected two hemorrhages (indicated by
solid arrows) at the bottom left (for more examples, see the first two rows of Fig. 8 in Appendix A.2). Simi-
larly, the nAMD activity detection networks used the presence of intraretinal or subretinal fluid as revealed
by saliency maps (Fig. 3b). However, the first DNN did not pay much attention to the subretinal fluid,
while the fifth one highlighted it along with additional intraretinal cues. Despite the differences, DNNs also
agreed on the saliency of the top end of the large intraretinal lesion. After all, the ensembles of DNNs led to
well-informed and comprehensive saliency maps, thanks to the aggregation of different views from indi-
vidual DNNs (Fig. 3). However, even the ensemble-based saliency maps were not immediately amenable
to human interpretation, as they were extremely sparse (Fig. 4, top rows in (a) and (b)). We used a custom-
developed post-processing method (see Methods and Appendix A.1) to improve the visualization of salient
regions (Fig. 4). It also normalized the saliency scores that varied wildly due to the differences between
attribution methods and network architectures.

We used such enhanced ensemble-based saliency maps to systematically evaluate the clinical rele-
vance of DNNs with a focus on explainability. We first compared the saliency maps with expert annotations
(Fig. 6), which were presented as segmentation maps (Fig. 1b and Fig. 1d), and assessed their (dis)similarities
directly via Dice loss [47]. To exclude potentially misleading saliency maps due to misclassification from the
analysis, we considered only the images that were correctly classified by all members of respective en-
sembles. Interestingly, all annotated fundus images from the IDRiD collection were correctly classified by
all DR detection networks. This is likely due to the severity and spread of lesions in these images. For
nAMD activity detection, DNNs with ResNet50 and InceptionV3 architectures classified 62 and 55 B-scans
(out of 71) correctly, respectively. In order to obtain balanced groups for our analysis, we considered the
intersection of these two sets containing 52 B-scans.

We used the optimally post-processed saliency maps for each combination of disease scenario, DNN
architecture and attribution method (see Methods) and asked whether the match of the saliency maps to
the clinical annotation was significantly influenced by DNN architecture or the attribution method (2-way
repeated measures ANOVA, see Appendix A.4 for details). In the DR detection task, DNN architecture
(F(1,80) = 41.340, p = 8.6 x 10-9) and attribution method (F(13,1040) = 43.764, p = 3.0 x 10-89) as well as their
interaction (F(13,1040) = 106.684, p = 6.2 x 10-181) had a significant influence. We obtained similar results
for the nAMD activity detection task (F(1,51) = 65.573, p = 1.0 x 10-10 and F(13,663) = 29.354, p = 3.8 x 10-57

for the main effects and F(13,663) = 44.823, p = 6.6 x 10-82 for their interaction). Using post-hoc testing,
we found significant pairwise differences between the mean Dice loss of different attribution methods: For
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Figure 6: Comparison of ensemble-based saliency maps with expert annotations. Curves indicate the mean
Dice loss between saliency maps and expert annotations. Multiple comparisons of attribution methods
based on the minimum mean Dice loss for the overall DR and nAMD scenarios are given in grids with cell
colors indicating significance. Rows and columns are ordered in an ascending fashion w.r.t. the minimum
mean Dice loss achieved by methods. (a-c) Results for the DR detection task with expert annotations
excluding the optic disc. See Fig. 10 in Appendix A.3 for curves w.r.t. annotations of individual lesions, full
annotation including the optic disc as well as the unannotated regions. (d-f) Results for the nAMD activity
detection task with complete expert annotations. See Fig. 11 in Appendix A.3 for curves w.r.t. annotations
of intraretinal or subretinal fluid as well as the unannotated regions.

DR detection (Fig. 6a and b), Guided Backprop and SmoothGrad were competitive with each other and
significantly outperformed all other methods (Fig. 6c). Guided Backprop also performed well in the nAMD
activity detection task (Fig. 6d and e). It outperformed seven methods including SmoothGrad (Fig. 6f).
However, five LRP configurations along with Deep Taylor were as good as Guided Backprop on average in
this task. After all, DeConvNet yielded the worst saliency maps in terms of the match to clinical annotations.

We next studied which kind of lesions were most strongly highlighted in saliency maps, indicating that
they play a key role in the diagnostic decisions of DNNs. For DR, we found that DNNs relied more on small
lesions, such as microaneurysms (green) and hard exudates (dark blue), but they typically captured them
incompletely (Fig. 8 in Appendix A.2). In contrast, large instances of soft exudates (cyan) and hemorrhages
(magenta) were less taken into account by the DNNs. Even when such large lesions were attended by
DNNs, they were only partially covered in saliency maps. As a result, the Dice loss for individual lesion
types was larger on average for soft exudates than hard exudates, for example, but that strongly differed
between methods (Fig. 10e-h in Appendix A.3). Likewise, substantially large hemorrhages were almost
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completely ignored by DNNs (Fig. 8, 4th row). Also, different saliency methods highlighted different le-
sions or anatomical structures in the retina, even for the same network architecture (Fig. 8). For instance,
Guided Backprop almost always pointed at DR lesions, whereas SmoothGrad often focused on vessels (in
and out of the optic disc) and captured fewer lesions. While Guided Backprop’s top preferences were mi-
croaneurysms and hemorrhages (Fig. 10a-d), hard and soft exudates as well as the optic disc were typical
formations highlighted by SmoothGrad (Fig. 10e-j). Integrated Gradients also behaved similar to Guided
Backprop but it performed worse than the two overall. Finally, we observed that our post-processing
method emphasized not only the lesions themselves but also their surroundings. In particular, tiny lesions
such as microaneurysms and hard exudates were subject to overgrowing in saliency maps, since we tuned
fv with respect to Dice loss on the complete set of annotations, including those for large lesions. As a re-
sult, the average Dice loss values for microaneurysms and hard exudates were increased on top of these
lesions being captured incompletely in the first place (Fig. 10a,b,e and f in Appendix A.3). This combined
with the errors made on different parts reduced the overall gap between Guided Backprop and Smooth-
Grad (Fig. 6a-c), even though their saliency maps looked quite different. On the bright side, our method
was effective at detecting tiny relevance scores in the vicinity of DR lesions and bringing them up to hu-
man attention. In the nAMD activity detection task, small retinal fluid were the go-to pathology for DNNs
(Fig. 9 in Appendix A.2). However, the large ones were not ignored, either. DNNs typically responded to the
boundaries of large retinal fluid and saliency maps showed a cavity in the interior (Fig. 9, last three rows).
Thus, the Dice loss for intraretinal fluid was larger than for subretinal fluid on average (Fig. 11 in Appendix
A.3), since the former was usually larger in size than the latter. Interestingly, saliency methods were more
consistent about their preferences for salient regions in this case. We attribute this to the small variety of
pathologies. However, in addition to retinal fluid, DNNs used features from the fovea to discern nAMD ac-
tivity (Fig. 9), even though it was not annotated by experts as key for the task. On the other hand, the effect
of our post-processing was again apparent in saliency maps (Fig. 9). The retinal fluid and their surroundings
were highlighted together and the Dice loss for small subretinal fluid was high on average (Fig. 11).

Next, we used perturbation analysis to validate the optimal saliency maps with respect to expert anno-
tations. To this end, we used the expert annotations of clinically relevant lesions also as saliency maps. We
performed 2-way repeated measures ANOVA based on the average differences between the ensemble
outputs induced by ranked and random perturbations using the aforementioned design. In the DR detec-
tion task, we found that DNN architecture did not significantly influence our measure (F(1,80) = 1.901, p =
1.7 x 10-1), whereas the choice of attribution method had a significant effect (F(15,1200) = 113.691, p = 7.8
x 10-218) as had interaction of these two factors (F(15,1200) = 5.466, p = 7.8 x 10-11). The effects followed
a similar trend in the nAMD activity detection task (main effects: F(1,51) = 0.189, p = 6.7 x 10-1; F(15,765) =
116.869, p = 4.2 x 10-186); interaction: F(15,765) = 6.004, p = 5.8 x 10-12). Using post-hoc testing, we again
found significant pairwise differences between the means of attribution methods. In the DR detection task
(Fig. 7a and Fig. 7b), Guided Backprop was the best method on average, competitive with seven meth-
ods, including the expert annotation, and significantly outperforming eight methods (Fig. 7c). Also, the
expert annotation performed not significantly different than a number of saliency methods and better than
SmoothGrad and DeConvNet on average. In the nAMD activity detection task (Fig. 7d and Fig. 7e), saliency
methods and expert annotation closely followed in the early stages of perturbations. However, the expert
curves quickly stabilized into almost flat lines. The flat lines indicated that the perturbation order essentially
followed random selection of patches once the most important pathologies annotated by clinicians were
removed. Perturbations with respect to saliency maps led to further reduction beyond the expert curves,
indicating the use of additional features by DNNs. After all, Integrated Gradients outperformed five meth-
ods, one of which was the expert annotation (Fig. 7f). Guided Backprop, Deep Taylor, Input × Gradient,
SmoothGrad and six LRP configurations were as good as Integrated Gradients on average. Surprisingly,
DeConvNet achieved a better performance in comparison with the earlier scenarios.
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Figure 7: Perturbation analyses including the expert annotations as saliency maps. Curves were obtained by
measuring the average differences from the random baseline. Thus, the baseline is shown as a flat line and
all other methods converge to it, as the total perturbation grows and evidence is lost. Multiple comparisons
of attribution methods based on the relative differences at steps 10 and 200, for the overall DR and nAMD
scenarios, respectively, are given in grids with cell colors indicating significance. Rows and columns are
ordered in an ascending fashion w.r.t. the relative differences achieved by methods. (a-c) Results for the
DR detection task w.r.t. expert annotations excluding the optic disc. (d-f) Results for the nAMD activity
detection task with complete expert annotations. The insets in (d) and (e) focus on the steps between 0
and 200 inclusively. Black dots indicate the points of divergence between the expert and methods.

Our two analyses — direct comparisons of lesions using Dice loss and perturbation analysis — provided
complementary information about the factors influencing the quality of saliency maps: The first analysis
indicated that the DNN architecture can be a role for explainability, interacting with the attribution method.
Across tasks and network architectures, Guided Backprop emerged as the most useful method for gener-
ating clinically relevant saliency maps (Fig. 6). Also, the methods, e.g., Guided Backprop and SmoothGrad,
differed in their preferences for salient lesions and anatomical structures in the retina, even for a given ar-
chitecture. For the perturbation analysis, we did not find an effect of DNN architecture and we observed
similarities between the perturbation trajectories of many saliency methods and expert annotations (Fig. 7).
The use of large patches combined with the spread and severity of DR lesions probably suppressed the
differences between DNNs and clinicians in DR detection (Fig. 7a-b). But, in the nAMD scenario, the tra-
jectories of saliency methods and expert annotation diverged after an initial period of collective descent
(Fig. 7d-e). Interestingly, the curves based on the saliency methods continued to descent past the expert
curves, suggesting that a few key instances of retinal fluid were mostly enough for a clinician to make a
diagnosis, while DNNs also used fovea characteristics for detecting nAMD activity.
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Discussion

DR and nAMD are two progressive eye diseases and major causes of blindness in the developed world
[13, 3, 80]. Timely intervention is the key to avoiding them or preventing vision loss in both cases. Thus,
clinicians need cost-effective, accurate and trustworthy solutions to support the early diagnosis at scale
[80, 28, 39, 15, 75]. Here, we developed accurate and well-calibrated ensembles of DNNs to detect DR
and nAMD from retinal fundus images and slices of 3D OCT volume scans, respectively, and evaluated a
comprehensive set of saliency maps for explaining the ensemble-based diagnostic decisions using a variety
of published methods.

Interestingly, even the ensemble-based saliency maps were not readily interpretable by humans due to
their sparsity. To improve the visualization of salient regions, we introduced a new post-processing method.
Then, we systematically validated saliency maps against clinicians through two main analysis routes, in-
cluding (1) a direct comparison of saliency maps with expert annotations of disease-specific pathologies
and (2) perturbation analyses using also expert annotations as saliency maps. We found that the choice of
DNN architecture and explanation method significantly influenced the quality of saliency maps. Moreover,
DNNs used features both inside and outside the regions-of-interest (ROIs) annotated by clinicians. In par-
ticular, DNNs found additional instances of DR lesions that had not been explicitly annotated by clinicians.
This could be because the heavily diseased images in the IDRiD dataset had not been completely annotated.
In the nAMD case, extra cues were found in the fovea, which was never annotated by ophthalmologists in
our study, as they only focused on signs of AMD activity they would typically use for diagnosis.

Saliency map generation to explain a classifier’s decision is superficially related to another popular task
called semantic segmentation. However, segmentation is a causal task, while classification is anti-causal
[12]. Also, DNNs are opportunistic classifiers in the sense that they exploit statistical regularities and image
features to reach their objectives [24, 25]. Therefore, saliency maps for explaining the decisions of DNNs
trained to achieve classification may differ from the segmentation maps typically used to train DNNs for
segmentation in the first place. However, we gained insights into the diagnostic decisions of DNNs through
the comparisons of saliency maps with expert annotations presented as segmentation maps. For instance,
our DR detection networks mostly used a subset of small but sufficiently informative lesions, such as mi-
croaneurysms and hard exudates as well as small instances of hemorrhages. They also exploited soft exu-
dates and large hemorrhages, albeit less frequently and only partially. Overall, they used efficient decision
rules [25] mostly based on the characteristics of Mild and Moderate DR, as the task was to detect only the
presence of DR. The opportunistic nature of DNNs also showed in nAMD activity detection. For instance,
they detected large retinal fluid simply by its boundaries. Also, they exploited the fovea along with retinal
fluid. Given that retinal fluid caused changes in the foveal contour during nAMD [46, 67], DNNs probably
associated these changes with disease activity. Even though such associationist characteristics would not
lead to causal explanations in principle [58], saliency maps showed that the DNN decisions were medically
plausible. In this respect, DNNs, provided that they are also coupled with well-calibrated uncertainty esti-
mation [8], can be deployed to facilitate the cooperation of clinicians and algorithms in the form of assisted
reading [65].

In addition, our analyses indicated key practical limitations of the saliency methods in question. First,
DR lesions such as microaneurysms and hard exudates as well as small bodies of retinal fluid in the case
of nAMD indicate early-onset cases. As DNNs exploit retinal images opportunistically and the resulting
saliency maps may include sparse regions even after our post-processing, the pitfall is that such minus-
cule but critical pathologies can be overlooked while screening for timely intervention. To alleviate this,
alternative saliency methods designed for coarse maps can be used. Grad-CAM [66] and its combinations
with Guided Backprop, or saliency bounding boxes [41] are good candidates to that end. Another important
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factor, which is somewhat neglected in our study, is the inter-grader variability in human readings of med-
ical images. The inter-grader variability is high [18, 36], especially in segmentation tasks due to technical
challenges and anatomical variability across patients [45]. Clinician performance is also subject to internal
biases and experience levels. Thus, a more refined assessment of saliency maps could be achieved through
multiple readers, also by estimating the ground truth segmentation from their annotations [83].

The decision mechanisms of DNNs and clinicians have also been recently compared via a perturbation-
based reader study in the context of breast cancer screening [43]. The study included two groups of patients
with either microcalcifications or soft tissue lesions, and indicated the bias of DNNs towards high-frequency
features in both groups. While sharp and local peaks in mammogram images were salient features of
microcalcifications, DNNs recognized soft tissue lesions typically from their boundaries without focusing
on interiors. This is in line with our finding that the networks for DR and active nAMD detection used
rather microaneurysms and the boundaries of large retinal fluid in the eye to make decisions. Also in line
with our results, cancer screening networks found additional information outside the ROIs determined by
radiologists [43].

In another recent study [69], an instance of InceptionV3 [74] was trained to predict the presence of
choroidal neovascularization (CNV), diabetic macular edema (DME) or drusen from OCT images. Then,
three experts graded saliency maps for its decisions on a scale between 0 and 5 according to their clin-
ical relevance. In total, 13 saliency methods were used (9 of which are also used by our study). Accord-
ing to the subjective expert rating, Deep Taylor decomposition [50] and Guided Backprop [71] produced
the most relevant saliency maps. Deep Taylor decomposition provided slightly better visualizations than
Guided Backprop “due to clinically coherent explanations, better coverage of pathology, and lack of high-
frequency noise” [69, p.7]. Thus, their study provides further evidence that Guided Backprop is a useful
technique for obtaining clinically relevant saliency maps, especially considering that they did not use any
special post-processing of the saliency maps for Guided Backprop (see Methods), which could have im-
proved its saliency maps. Deep Taylor decomposition, however, performed less well in our study, hinting
at a disagreement between their rating-based evaluation and our segmentation-based evaluation.

In contrast to this evidence by us and others [5, 69] in favor of Guided Backprob in a clinical setting,
Guided Backprob has been shown to be insensitive to the object classes in ImageNet [63, 55]. This likely
happens because the algorithm exploits local connections in convolutional layers, which extract a series
of hierarchical feature representations from a given image, and the final dense layers, where class label
assignments are made, have less impact on saliency maps [55]. Nevertheleess, as Guided Backprop was
consistently among the best methods for generating saliency maps to explain the decisions of DNNs trained
to detect retinal diseases in our and other studies, we believe that it should be further studied to understand
its distinct behaviors when explaining DNN decisions on natural or medical images. Moreover, its restriction
by design to ReLU networks (see Methods) should be relaxed to extend its applicability to new architectures
beyond ReLU-based designs.

Conclusion

We studied the clinical relevance of saliency maps extracted from DNNs trained to detect DR and nAMD
from retinal images. We used different network architectures, well-calibrated ensembles of DNNs and a
variety of explanation methods to obtain a comprehensive set of saliency maps for explaining the ensemble-
based diagnostic decisions. Then, we validated the saliency maps against ophthalmologist’s expert anno-
tations. Overall, Guided Backprop emerged as the method of choice for generating saliency maps to explain
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the diagnostic decisions of DNNs on retinal images. In addition, a combination of multiple methods may
reveal complementary characteristics in order to obtain well-rounded explanations.
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Appendix

A.1 Details of Post-processing

Given a 2D map R̂ for excitatory or inhibitory features, we rescaled its values w.r.t. the maximum possible
sum of scores the map could have had after processing, i.e., D = H ×W , ∀i ∈ {1, . . . , D}R̆i = 1,

∑
i R̆i =

D:

R̃i =
|R̂i|∑
i |R̂i|

D (2)

Then, we achieved a non-linear transformation by thresholding and another rescaling:

R̆i =
1

τ
min(R̃i, τ) (3)

We determined the threshold τ by solving the following problem:

ν(τ) =
1

τ

∑
i

min(R̃i, τ)
!
= ν, (4)

where ν was our target for total relevance and ν(τ) was a monotonically decreasing and implicit function of
τ ∈ [0,maxi(R̃i)] (see Appendix A.1.1) with upper and lower bounds: limτ→0 ν(τ) ≤ D and ν(maxi(R̃i)) =∑
i R̃i/maxi(R̃i), respectively. We performed a binary search to find a suitable τ . We also introduced

a hyperparameter fν so that ν was easily adjusted: ν = fνD, where fν ∈ [0, 1] was the fraction of D.
Intuitively, fν was a growth factor for salient regions. Thus, larger fν , larger the salient region (Fig. 4).
However, the size of salient regions also depended on disease status and total class evidence carried over
to logits. To update our initial choice in the light of evidence, we introduced a scaling parameter:

γ =
fωk(x̂n)−minc∈1,...,K,i∈1,...,N fωc(x̂i)

maxc∈1,...,K,i∈1,...,N fωc(x̂i)
(5)

where the evidence fωk(x̂n) for class k, given an input image xn, was rescaled into [0, 1] w.r.t minimum and
maximum evidence over all images and across classes. Then, ν = γfνD, which allowed for fine-tuning the
ratios of salient regions with disease patterns and regions without over the image size. If the search interval
was somehow violated after these adjustments, then we set τ = maxi(R̃i) as a precaution. Also, in order
to avoid τ = 0, we heuristically set the minimum possible τ to δ ×maxi(R̃i), where δ = 0.00001.

A.1.1 Properties of ν(τ)

Lemma 1. ν(τ) is a monotonically decreasing and implicit function, where τ ∈ [0,maxi(R̃i)].

Proof. Let τ1 ≤ τ2, then

∀i ∈ 1, . . . , D :
1

τ1
min(R̃i, τ1) ≥ 1

τ2
min(R̃i, τ2) (A.1.1)

⇒ 1

τ1

∑
i

min(R̃i, τ1) ≥ 1

τ2

∑
i

min(R̃i, τ2) (A.1.2)

⇔ν(τ1) ≥ ν(τ2) (A.1.3)
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Given τ1 ≤ τ2, A.1.1 holds true in the following cases:

• R̃i ≤ τ1 ⇒ 1
τ1

min(R̃i, τ1) = R̃i
τ1
> R̃i

τ2

τ2>τ1>R̃i= 1
τ2

min(R̃i, τ2)

• R̃i > τ1 ⇒ 1
τ1

min(R̃i, τ1) = 1 ≥ 1
τ2

min(R̃i, τ2)

Then, A.1.1⇒ A.1.2⇔ A.1.3.

A.2 Optimum fν values for attribution methods and exemplary saliency maps

Table 4: Optimum fν values for attribution methods under the DR and AMD scenarios.

DR AMD

ResNet50 InceptionV3 ResNet50 InceptionV3

Gradient 0.0907 0.1353 0.0907 0.1353
SmoothGrad 0.0907 0.0907 0.0608 0.0608

Deconvnet 0.2019 0.2019 0.0907 0.1353
Guided Backprop 0.0608 0.0907 0.0273 0.0407

Deep Taylor 0.0907 0.0907 0.0407 0.0608
Input * Gradient 0.0907 0.1353 0.0407 0.0608

Integrated Gradients 0.0907 0.1353 0.0608 0.0907
LRP-Z 0.0907 0.1353 0.0407 0.0608

LRP-Epsilon 0.0907 0.0907 0.0273 0.0273
LRP-AlphaBeta 10 0.0608 0.0608 0.0183 0.0183
LRP-AlphaBeta 21 0.0907 0.0608 0.0183 0.0183
LRP-AlphaBeta 32 0.0907 0.0907 0.0183 0.0183
LRP-PresetA{Flat} 0.0608 0.0608 0.0183 0.0183
LRP-PresetB{Flat} 0.0608 0.0608 0.0183 0.0183

23

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 9, 2021. ; https://doi.org/10.1101/2021.05.05.21256683doi: medRxiv preprint 

https://doi.org/10.1101/2021.05.05.21256683
http://creativecommons.org/licenses/by-nc-nd/4.0/


Annotated fundus image Guided Backprop SmoothGrad Integrated Gradients Guided Backprop SmoothGrad Integrated Gradients

ResNet50 InceptionV3

Figure 8: Exemplary saliency maps obtained via our processing method and the best fν values for the
top three attribution methods for the DR detection task. The leftmost column shows fundus images with
expert annotations for the pathologies of DR. Coloring of annotations is the same as in Fig. 1. The remaining
columns show the ensemble-based saliency maps in two DNN groups.
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Annotated B-scan Guided Backprop LRP-PresetBFlat LRP-PresetAFlat Guided Backprop LRP-PresetBFlat LRP-PresetAFlat

ResNet50 InceptionV3

Figure 9: Exemplary saliency maps obtained via our processing method and the best fν values for the top
three attribution methods for the AMD activity detection task. The leftmost column shows AMD-active B-
scans with expert annotations for retinal fluid. Coloring of annotations is the same as in Fig. 1. The remaining
columns show the ensemble-based saliency maps in two DNN groups.
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A.3 Evaluation of saliency maps w.r.t. lesion types and their annotations

DR detection
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Figure 10: Comparison of ensemble-based saliency maps with expert annotations w.r.t individual lesions,
full annotation including the optic as well as the unannotated regions. Curves indicate the mean Dice loss
between saliency maps and expert annotations. (a-b) Microaneurysms (MA) (c-d) Hemorrhages (HE) (e-f)
Hard exudates (EX) (g-h) Soft exudates (SE) (i-j) The optic disc (OD) (k-l) Full set of annotations including
the optic disc (m-n) Unannotated regions via the negation of the full set of annotations.
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AMD activity detection
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Figure 11: Comparison of ensemble-based saliency maps with expert annotations w.r.t individual lesions as
well as the unannotated regions. Curves indicate the mean Dice loss between saliency maps and expert
annotations. (a-b) Intraretinal fluid (c-d) Subretinal fluid (e-f) Unannotated regions via the negation of the
full set of annotations.
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A.4 ANOVA and Post-hoc Tests

Direct comparison of saliency maps with expert annotations, DR detection

Table 5: 2-way repeated measures ANOVA results, saliency map correspondence to expert annotation via
Dice loss. Factor “DNN” can take 2 two values: ResNet50 or InceptionV3; factor “attribution method” can
be one of 14 attribution methods: Gradient, SmoothGrad, Deconvnet, Guided Backprop, Deep Taylor, Input
* Gradient, Integrated Gradients, LRP-Z, LRP-Epsilon, LRP-AlphaBeta 10, LRP-AlphaBeta 21, LRP-AlphaBeta
32, LRP-PresetA, LRP-PresetB.

F Value Num DF Den DF Pr(>F)

DNN 41.340289 1.0 80.0 8.640404e-09
attribution method 43.764390 13.0 1040.0 2.992390e-89

DNN:attribution method 106.684414 13.0 1040.0 6.182718e-181

Table 6: Multiple comparison of attribution methods w.r.t. Dice loss, using Tukey HSD with alpha=0.05

group1 group2 meandiff p-adj lower upper reject

Guided Backprop SmoothGrad 0.009 0.9 -0.0203 0.0383 False
Guided Backprop Integrated Gradients 0.0593 0.001 0.0299 0.0886 True
Guided Backprop LRP-Epsilon 0.0622 0.001 0.0329 0.0915 True
Guided Backprop LRP-PresetA 0.0623 0.001 0.033 0.0916 True
Guided Backprop LRP-PresetB 0.0623 0.001 0.033 0.0917 True
Guided Backprop Deep Taylor 0.0624 0.001 0.0331 0.0917 True
Guided Backprop LRP-AlphaBeta 10 0.0652 0.001 0.0359 0.0945 True
Guided Backprop LRP-AlphaBeta 21 0.0676 0.001 0.0383 0.0969 True
Guided Backprop Gradient 0.0683 0.001 0.039 0.0977 True
Guided Backprop Input * Gradient 0.0728 0.001 0.0435 0.1022 True
Guided Backprop LRP-Z 0.0728 0.001 0.0435 0.1022 True
Guided Backprop LRP-AlphaBeta 32 0.0946 0.001 0.0652 0.1239 True
Guided Backprop Deconvnet 0.1276 0.001 0.0983 0.157 True

SmoothGrad Integrated Gradients 0.0503 0.001 0.0209 0.0796 True
SmoothGrad LRP-Epsilon 0.0532 0.001 0.0239 0.0825 True
SmoothGrad LRP-PresetA 0.0533 0.001 0.024 0.0826 True
SmoothGrad LRP-PresetB 0.0533 0.001 0.024 0.0827 True
SmoothGrad Deep Taylor 0.0534 0.001 0.0241 0.0827 True
SmoothGrad LRP-AlphaBeta 10 0.0562 0.001 0.0269 0.0856 True
SmoothGrad LRP-AlphaBeta 21 0.0586 0.001 0.0293 0.0879 True
SmoothGrad Gradient 0.0593 0.001 0.03 0.0887 True
SmoothGrad Input * Gradient 0.0638 0.001 0.0345 0.0932 True
SmoothGrad LRP-Z 0.0639 0.001 0.0345 0.0932 True
SmoothGrad LRP-AlphaBeta 32 0.0856 0.001 0.0563 0.1149 True
SmoothGrad Deconvnet 0.1187 0.001 0.0893 0.148 True

Integrated Gradients LRP-Epsilon 0.003 0.9 -0.0264 0.0323 False
Integrated Gradients LRP-PresetA 0.003 0.9 -0.0263 0.0324 False
Integrated Gradients LRP-PresetB 0.0031 0.9 -0.0262 0.0324 False

Continued on next page
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Table 6 – Continued from previous page

group1 group2 meandiff p-adj lower upper reject

Integrated Gradients Deep Taylor 0.0031 0.9 -0.0262 0.0325 False
Integrated Gradients LRP-AlphaBeta 10 0.006 0.9 -0.0234 0.0353 False
Integrated Gradients LRP-AlphaBeta 21 0.0083 0.9 -0.021 0.0377 False
Integrated Gradients Gradient 0.0091 0.9 -0.0202 0.0384 False
Integrated Gradients Input * Gradient 0.0136 0.9 -0.0157 0.0429 False
Integrated Gradients LRP-Z 0.0136 0.9 -0.0157 0.0429 False
Integrated Gradients LRP-AlphaBeta 32 0.0353 0.0043 0.006 0.0646 True
Integrated Gradients Deconvnet 0.0684 0.001 0.0391 0.0977 True

LRP-Epsilon LRP-PresetA 0.0001 0.9 -0.0292 0.0294 False
LRP-Epsilon LRP-PresetB 0.0001 0.9 -0.0292 0.0294 False
LRP-Epsilon Deep Taylor 0.0002 0.9 -0.0291 0.0295 False
LRP-Epsilon LRP-AlphaBeta 10 0.003 0.9 -0.0263 0.0323 False
LRP-Epsilon LRP-AlphaBeta 21 0.0054 0.9 -0.0239 0.0347 False
LRP-Epsilon Gradient 0.0061 0.9 -0.0232 0.0354 False
LRP-Epsilon Input * Gradient 0.0106 0.9 -0.0187 0.04 False
LRP-Epsilon LRP-Z 0.0106 0.9 -0.0187 0.04 False
LRP-Epsilon LRP-AlphaBeta 32 0.0324 0.0156 0.003 0.0617 True
LRP-Epsilon Deconvnet 0.0654 0.001 0.0361 0.0948 True
LRP-PresetA LRP-PresetB 0.0 0.9 -0.0293 0.0294 False
LRP-PresetA Deep Taylor 0.0001 0.9 -0.0292 0.0294 False
LRP-PresetA LRP-AlphaBeta 10 0.0029 0.9 -0.0264 0.0323 False
LRP-PresetA LRP-AlphaBeta 21 0.0053 0.9 -0.024 0.0346 False
LRP-PresetA Gradient 0.006 0.9 -0.0233 0.0354 False
LRP-PresetA Input * Gradient 0.0105 0.9 -0.0188 0.0399 False
LRP-PresetA LRP-Z 0.0106 0.9 -0.0188 0.0399 False
LRP-PresetA LRP-AlphaBeta 32 0.0323 0.0161 0.0029 0.0616 True
LRP-PresetA Deconvnet 0.0653 0.001 0.036 0.0947 True
LRP-PresetB Deep Taylor 0.0001 0.9 -0.0293 0.0294 False
LRP-PresetB LRP-AlphaBeta 10 0.0029 0.9 -0.0264 0.0322 False
LRP-PresetB LRP-AlphaBeta 21 0.0053 0.9 -0.0241 0.0346 False
LRP-PresetB Gradient 0.006 0.9 -0.0233 0.0353 False
LRP-PresetB Input * Gradient 0.0105 0.9 -0.0188 0.0398 False
LRP-PresetB LRP-Z 0.0105 0.9 -0.0188 0.0398 False
LRP-PresetB LRP-AlphaBeta 32 0.0322 0.0164 0.0029 0.0616 True
LRP-PresetB Deconvnet 0.0653 0.001 0.036 0.0946 True
Deep Taylor LRP-AlphaBeta 10 0.0028 0.9 -0.0265 0.0322 False
Deep Taylor LRP-AlphaBeta 21 0.0052 0.9 -0.0241 0.0345 False
Deep Taylor Gradient 0.0059 0.9 -0.0234 0.0353 False
Deep Taylor Input * Gradient 0.0104 0.9 -0.0189 0.0398 False
Deep Taylor LRP-Z 0.0105 0.9 -0.0189 0.0398 False
Deep Taylor LRP-AlphaBeta 32 0.0322 0.0168 0.0028 0.0615 True
Deep Taylor Deconvnet 0.0652 0.001 0.0359 0.0946 True

LRP-AlphaBeta 10 LRP-AlphaBeta 21 0.0024 0.9 -0.027 0.0317 False
LRP-AlphaBeta 10 Gradient 0.0031 0.9 -0.0262 0.0324 False
LRP-AlphaBeta 10 Input * Gradient 0.0076 0.9 -0.0217 0.0369 False

Continued on next page
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Table 6 – Continued from previous page

group1 group2 meandiff p-adj lower upper reject

LRP-AlphaBeta 10 LRP-Z 0.0076 0.9 -0.0217 0.0369 False
LRP-AlphaBeta 10 LRP-AlphaBeta 32 0.0293 0.0497 0.0 0.0587 True
LRP-AlphaBeta 10 Deconvnet 0.0624 0.001 0.0331 0.0917 True
LRP-AlphaBeta 21 Gradient 0.0007 0.9 -0.0286 0.0301 False
LRP-AlphaBeta 21 Input * Gradient 0.0052 0.9 -0.0241 0.0346 False
LRP-AlphaBeta 21 LRP-Z 0.0053 0.9 -0.0241 0.0346 False
LRP-AlphaBeta 21 LRP-AlphaBeta 32 0.027 0.1103 -0.0024 0.0563 False
LRP-AlphaBeta 21 Deconvnet 0.06 0.001 0.0307 0.0894 True

Gradient Input * Gradient 0.0045 0.9 -0.0248 0.0338 False
Gradient LRP-Z 0.0045 0.9 -0.0248 0.0338 False
Gradient LRP-AlphaBeta 32 0.0262 0.1371 -0.0031 0.0556 False
Gradient Deconvnet 0.0593 0.001 0.03 0.0886 True

Input * Gradient LRP-Z 0.0 0.9 -0.0293 0.0293 False
Input * Gradient LRP-AlphaBeta 32 0.0217 0.4214 -0.0076 0.0511 False
Input * Gradient Deconvnet 0.0548 0.001 0.0255 0.0841 True

LRP-Z LRP-AlphaBeta 32 0.0217 0.4219 -0.0076 0.051 False
LRP-Z Deconvnet 0.0548 0.001 0.0255 0.0841 True

LRP-AlphaBeta 32 Deconvnet 0.0331 0.0115 0.0037 0.0624 True

Direct comparison of saliency maps with expert annotations, AMD activity detection

Table 7: 2-way repeated measures ANOVA results, saliency map correspondence to expert annotation via
Dice loss. Factor “DNN” can take 2 two values: ResNet50 or InceptionV3; factor “attribution method” can
be one of 14 attribution methods: Gradient, SmoothGrad, Deconvnet, Guided Backprop, Deep Taylor, Input
* Gradient, Integrated Gradients, LRP-Z, LRP-Epsilon, LRP-AlphaBeta 10, LRP-AlphaBeta 21, LRP-AlphaBeta
32, LRP-PresetA, LRP-PresetB.

F Value Num DF Den DF Pr(>F)

DNN 65.573142 1.0 51.0 1.022297e-10
attribution method 29.354237 13.0 663.0 3.828739e-57

DNN:attribution method 44.823081 13.0 663.0 6.641695e-82

Table 8: Multiple comparison of attribution methods w.r.t. Dice loss, using Tukey HSD with alpha=0.05

group1 group2 meandiff p-adj lower upper reject

Guided Backprop LRP-PresetBFlat 0.0138 0.9 -0.0438 0.0715 False
Guided Backprop LRP-PresetAFlat 0.0273 0.9 -0.0304 0.0849 False
Guided Backprop LRP-AlphaBeta 10 0.0386 0.5806 -0.0191 0.0963 False
Guided Backprop LRP-Epsilon 0.043 0.4096 -0.0147 0.1007 False
Guided Backprop LRP-AlphaBeta 21 0.0482 0.2231 -0.0095 0.1058 False
Guided Backprop Deep Taylor 0.05 0.1733 -0.0077 0.1077 False
Guided Backprop SmoothGrad 0.0715 0.0026 0.0138 0.1292 True

Continued on next page
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Table 8 – Continued from previous page

group1 group2 meandiff p-adj lower upper reject

Guided Backprop LRP-AlphaBeta 32 0.0893 0.001 0.0316 0.147 True
Guided Backprop LRP-Z 0.1003 0.001 0.0427 0.158 True
Guided Backprop Input * Gradient 0.1003 0.001 0.0427 0.158 True
Guided Backprop Integrated Gradients 0.1023 0.001 0.0446 0.16 True
Guided Backprop Gradient 0.1555 0.001 0.0978 0.2132 True
Guided Backprop Deconvnet 0.2264 0.001 0.1687 0.284 True

LRP-PresetBFlat LRP-PresetAFlat 0.0134 0.9 -0.0442 0.0711 False
LRP-PresetBFlat LRP-AlphaBeta 10 0.0247 0.9 -0.0329 0.0824 False
LRP-PresetBFlat LRP-Epsilon 0.0291 0.9 -0.0285 0.0868 False
LRP-PresetBFlat LRP-AlphaBeta 21 0.0343 0.7391 -0.0234 0.092 False
LRP-PresetBFlat Deep Taylor 0.0362 0.6702 -0.0215 0.0938 False
LRP-PresetBFlat SmoothGrad 0.0577 0.0502 -0.0 0.1153 False
LRP-PresetBFlat LRP-AlphaBeta 32 0.0754 0.001 0.0178 0.1331 True
LRP-PresetBFlat LRP-Z 0.0865 0.001 0.0288 0.1442 True
LRP-PresetBFlat Input * Gradient 0.0865 0.001 0.0288 0.1442 True
LRP-PresetBFlat Integrated Gradients 0.0885 0.001 0.0308 0.1461 True
LRP-PresetBFlat Gradient 0.1416 0.001 0.084 0.1993 True
LRP-PresetBFlat Deconvnet 0.2125 0.001 0.1549 0.2702 True
LRP-PresetAFlat LRP-AlphaBeta 10 0.0113 0.9 -0.0463 0.069 False
LRP-PresetAFlat LRP-Epsilon 0.0157 0.9 -0.0419 0.0734 False
LRP-PresetAFlat LRP-AlphaBeta 21 0.0209 0.9 -0.0368 0.0786 False
LRP-PresetAFlat Deep Taylor 0.0228 0.9 -0.0349 0.0804 False
LRP-PresetAFlat SmoothGrad 0.0442 0.358 -0.0134 0.1019 False
LRP-PresetAFlat LRP-AlphaBeta 32 0.062 0.0217 0.0044 0.1197 True
LRP-PresetAFlat LRP-Z 0.0731 0.0018 0.0154 0.1307 True
LRP-PresetAFlat Input * Gradient 0.0731 0.0018 0.0154 0.1307 True
LRP-PresetAFlat Integrated Gradients 0.075 0.0011 0.0174 0.1327 True
LRP-PresetAFlat Gradient 0.1282 0.001 0.0706 0.1859 True
LRP-PresetAFlat Deconvnet 0.1991 0.001 0.1414 0.2568 True

LRP-AlphaBeta 10 LRP-Epsilon 0.0044 0.9 -0.0533 0.0621 False
LRP-AlphaBeta 10 LRP-AlphaBeta 21 0.0096 0.9 -0.0481 0.0672 False
LRP-AlphaBeta 10 Deep Taylor 0.0114 0.9 -0.0462 0.0691 False
LRP-AlphaBeta 10 SmoothGrad 0.0329 0.7912 -0.0248 0.0906 False
LRP-AlphaBeta 10 LRP-AlphaBeta 32 0.0507 0.1568 -0.007 0.1084 False
LRP-AlphaBeta 10 LRP-Z 0.0617 0.0229 0.0041 0.1194 True
LRP-AlphaBeta 10 Input * Gradient 0.0617 0.0229 0.0041 0.1194 True
LRP-AlphaBeta 10 Integrated Gradients 0.0637 0.0153 0.006 0.1214 True
LRP-AlphaBeta 10 Gradient 0.1169 0.001 0.0592 0.1746 True
LRP-AlphaBeta 10 Deconvnet 0.1878 0.001 0.1301 0.2455 True

LRP-Epsilon LRP-AlphaBeta 21 0.0052 0.9 -0.0525 0.0628 False
LRP-Epsilon Deep Taylor 0.007 0.9 -0.0506 0.0647 False
LRP-Epsilon SmoothGrad 0.0285 0.9 -0.0292 0.0862 False
LRP-Epsilon LRP-AlphaBeta 32 0.0463 0.282 -0.0114 0.104 False
LRP-Epsilon LRP-Z 0.0573 0.0531 -0.0003 0.115 False
LRP-Epsilon Input * Gradient 0.0573 0.0531 -0.0003 0.115 False
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Table 8 – Continued from previous page

group1 group2 meandiff p-adj lower upper reject

LRP-Epsilon Integrated Gradients 0.0593 0.037 0.0016 0.117 True
LRP-Epsilon Gradient 0.1125 0.001 0.0548 0.1702 True
LRP-Epsilon Deconvnet 0.1834 0.001 0.1257 0.2411 True

LRP-AlphaBeta 21 Deep Taylor 0.0019 0.9 -0.0558 0.0595 False
LRP-AlphaBeta 21 SmoothGrad 0.0233 0.9 -0.0343 0.081 False
LRP-AlphaBeta 21 LRP-AlphaBeta 32 0.0411 0.4856 -0.0165 0.0988 False
LRP-AlphaBeta 21 LRP-Z 0.0522 0.1251 -0.0055 0.1098 False
LRP-AlphaBeta 21 Input * Gradient 0.0522 0.125 -0.0055 0.1098 False
LRP-AlphaBeta 21 Integrated Gradients 0.0541 0.0917 -0.0035 0.1118 False
LRP-AlphaBeta 21 Gradient 0.1073 0.001 0.0497 0.165 True
LRP-AlphaBeta 21 Deconvnet 0.1782 0.001 0.1206 0.2359 True

Deep Taylor SmoothGrad 0.0215 0.9 -0.0362 0.0791 False
Deep Taylor LRP-AlphaBeta 32 0.0393 0.5551 -0.0184 0.0969 False
Deep Taylor LRP-Z 0.0503 0.1659 -0.0074 0.108 False
Deep Taylor Input * Gradient 0.0503 0.1659 -0.0074 0.108 False
Deep Taylor Integrated Gradients 0.0523 0.1243 -0.0054 0.11 False
Deep Taylor Gradient 0.1055 0.001 0.0478 0.1631 True
Deep Taylor Deconvnet 0.1764 0.001 0.1187 0.234 True

SmoothGrad LRP-AlphaBeta 32 0.0178 0.9 -0.0399 0.0755 False
SmoothGrad LRP-Z 0.0288 0.9 -0.0288 0.0865 False
SmoothGrad Input * Gradient 0.0288 0.9 -0.0288 0.0865 False
SmoothGrad Integrated Gradients 0.0308 0.8695 -0.0269 0.0885 False
SmoothGrad Gradient 0.084 0.001 0.0263 0.1417 True
SmoothGrad Deconvnet 0.1549 0.001 0.0972 0.2126 True

LRP-AlphaBeta 32 LRP-Z 0.011 0.9 -0.0466 0.0687 False
LRP-AlphaBeta 32 Input * Gradient 0.011 0.9 -0.0466 0.0687 False
LRP-AlphaBeta 32 Integrated Gradients 0.013 0.9 -0.0447 0.0707 False
LRP-AlphaBeta 32 Gradient 0.0662 0.009 0.0085 0.1239 True
LRP-AlphaBeta 32 Deconvnet 0.1371 0.001 0.0794 0.1948 True

LRP-Z Input * Gradient 0.0 0.9 -0.0577 0.0577 False
LRP-Z Integrated Gradients 0.002 0.9 -0.0557 0.0596 False
LRP-Z Gradient 0.0552 0.0782 -0.0025 0.1128 False
LRP-Z Deconvnet 0.1261 0.001 0.0684 0.1837 True

Input * Gradient Integrated Gradients 0.002 0.9 -0.0557 0.0596 False
Input * Gradient Gradient 0.0552 0.0782 -0.0025 0.1128 False
Input * Gradient Deconvnet 0.126 0.001 0.0684 0.1837 True

Integrated Gradients Gradient 0.0532 0.1074 -0.0045 0.1109 False
Integrated Gradients Deconvnet 0.1241 0.001 0.0664 0.1818 True

Gradient Deconvnet 0.0709 0.0031 0.0132 0.1286 True
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Perturbation analysis, DR detection

Table 9: 2-way repeated measures ANOVA results, average relative softmax difference. Factor “DNN” can
take 2 two values: ResNet50 or InceptionV3; factor “attribution method” can be one of 16 attribution meth-
ods: Gradient, SmoothGrad, Deconvnet, Guided Backprop, Deep Taylor, Input * Gradient, Integrated Gra-
dients, LRP-Z, LRP-Epsilon, LRP-AlphaBeta 10, LRP-AlphaBeta 21, LRP-AlphaBeta 32, LRP-PresetA, LRP-
PresetB, Random, Expert

F Value Num DF Den DF Pr(>F)

DNN 1.900759 1.0 80.0 1.718364e-01
attribution method 113.691369 15.0 1200.0 7.772892e-218

DNN:attribution method 5.465855 15.0 1200.0 7.808541e-11

Table 10: Multiple comparison of attribution methods w.r.t. average relative softmax difference, using Tukey
HSD with alpha=0.05

group1 group2 meandiff p-adj lower upper reject

Guided Backprop LRP-PresetB 0.0383 0.9 -0.056 0.1326 False
Guided Backprop LRP-AlphaBeta 21 0.0486 0.9 -0.0457 0.1428 False
Guided Backprop Expert 0.0647 0.5701 -0.0296 0.159 False
Guided Backprop Integrated Gradients 0.0677 0.5005 -0.0266 0.162 False
Guided Backprop LRP-Epsilon 0.0706 0.4276 -0.0237 0.1649 False
Guided Backprop LRP-AlphaBeta 32 0.0759 0.2936 -0.0184 0.1702 False
Guided Backprop LRP-PresetA 0.0815 0.1847 -0.0128 0.1758 False
Guided Backprop LRP-AlphaBeta 10 0.101 0.0222 0.0067 0.1953 True
Guided Backprop Gradient 0.1041 0.0148 0.0098 0.1983 True
Guided Backprop LRP-Z 0.1236 0.001 0.0293 0.2179 True
Guided Backprop Input * Gradient 0.1237 0.001 0.0294 0.218 True
Guided Backprop Deep Taylor 0.1248 0.001 0.0305 0.219 True
Guided Backprop Deconvnet 0.3301 0.001 0.2358 0.4244 True
Guided Backprop SmoothGrad 0.381 0.001 0.2867 0.4753 True
Guided Backprop Random 0.5006 0.001 0.4063 0.5949 True

LRP-PresetB LRP-AlphaBeta 21 0.0103 0.9 -0.084 0.1046 False
LRP-PresetB Expert 0.0265 0.9 -0.0678 0.1208 False
LRP-PresetB Integrated Gradients 0.0294 0.9 -0.0649 0.1237 False
LRP-PresetB LRP-Epsilon 0.0323 0.9 -0.062 0.1266 False
LRP-PresetB LRP-AlphaBeta 32 0.0376 0.9 -0.0567 0.1319 False
LRP-PresetB LRP-PresetA 0.0432 0.9 -0.0511 0.1375 False
LRP-PresetB LRP-AlphaBeta 10 0.0627 0.6179 -0.0316 0.157 False
LRP-PresetB Gradient 0.0658 0.5453 -0.0285 0.1601 False
LRP-PresetB LRP-Z 0.0853 0.1288 -0.0089 0.1796 False
LRP-PresetB Input * Gradient 0.0854 0.128 -0.0089 0.1797 False
LRP-PresetB Deep Taylor 0.0865 0.1163 -0.0078 0.1808 False
LRP-PresetB Deconvnet 0.2918 0.001 0.1975 0.3861 True
LRP-PresetB SmoothGrad 0.3427 0.001 0.2484 0.437 True
LRP-PresetB Random 0.4623 0.001 0.3681 0.5566 True

LRP-AlphaBeta 21 Expert 0.0162 0.9 -0.0781 0.1105 False
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Table 10 – Continued from previous page

group1 group2 meandiff p-adj lower upper reject

LRP-AlphaBeta 21 Integrated Gradients 0.0191 0.9 -0.0752 0.1134 False
LRP-AlphaBeta 21 LRP-Epsilon 0.022 0.9 -0.0723 0.1163 False
LRP-AlphaBeta 21 LRP-AlphaBeta 32 0.0273 0.9 -0.067 0.1216 False
LRP-AlphaBeta 21 LRP-PresetA 0.0329 0.9 -0.0613 0.1272 False
LRP-AlphaBeta 21 LRP-AlphaBeta 10 0.0524 0.8599 -0.0419 0.1467 False
LRP-AlphaBeta 21 Gradient 0.0555 0.7873 -0.0388 0.1498 False
LRP-AlphaBeta 21 LRP-Z 0.0751 0.3121 -0.0192 0.1693 False
LRP-AlphaBeta 21 Input * Gradient 0.0751 0.3107 -0.0192 0.1694 False
LRP-AlphaBeta 21 Deep Taylor 0.0762 0.2868 -0.0181 0.1705 False
LRP-AlphaBeta 21 Deconvnet 0.2815 0.001 0.1872 0.3758 True
LRP-AlphaBeta 21 SmoothGrad 0.3324 0.001 0.2381 0.4267 True
LRP-AlphaBeta 21 Random 0.4521 0.001 0.3578 0.5463 True

Expert Integrated Gradients 0.003 0.9 -0.0913 0.0973 False
Expert LRP-Epsilon 0.0058 0.9 -0.0885 0.1001 False
Expert LRP-AlphaBeta 32 0.0112 0.9 -0.0831 0.1054 False
Expert LRP-PresetA 0.0168 0.9 -0.0775 0.1111 False
Expert LRP-AlphaBeta 10 0.0362 0.9 -0.0581 0.1305 False
Expert Gradient 0.0393 0.9 -0.055 0.1336 False
Expert LRP-Z 0.0589 0.7076 -0.0354 0.1532 False
Expert Input * Gradient 0.0589 0.7061 -0.0353 0.1532 False
Expert Deep Taylor 0.06 0.6809 -0.0343 0.1543 False
Expert Deconvnet 0.2653 0.001 0.1711 0.3596 True
Expert SmoothGrad 0.3163 0.001 0.222 0.4105 True
Expert Random 0.4359 0.001 0.3416 0.5302 True

Integrated Gradients LRP-Epsilon 0.0029 0.9 -0.0914 0.0972 False
Integrated Gradients LRP-AlphaBeta 32 0.0082 0.9 -0.0861 0.1025 False
Integrated Gradients LRP-PresetA 0.0138 0.9 -0.0805 0.1081 False
Integrated Gradients LRP-AlphaBeta 10 0.0333 0.9 -0.061 0.1276 False
Integrated Gradients Gradient 0.0364 0.9 -0.0579 0.1307 False
Integrated Gradients LRP-Z 0.0559 0.7773 -0.0384 0.1502 False
Integrated Gradients Input * Gradient 0.056 0.7758 -0.0383 0.1503 False
Integrated Gradients Deep Taylor 0.0571 0.7506 -0.0372 0.1513 False
Integrated Gradients Deconvnet 0.2624 0.001 0.1681 0.3567 True
Integrated Gradients SmoothGrad 0.3133 0.001 0.219 0.4076 True
Integrated Gradients Random 0.4329 0.001 0.3386 0.5272 True

LRP-Epsilon LRP-AlphaBeta 32 0.0053 0.9 -0.089 0.0996 False
LRP-Epsilon LRP-PresetA 0.0109 0.9 -0.0833 0.1052 False
LRP-Epsilon LRP-AlphaBeta 10 0.0304 0.9 -0.0639 0.1247 False
LRP-Epsilon Gradient 0.0335 0.9 -0.0608 0.1278 False
LRP-Epsilon LRP-Z 0.0531 0.8448 -0.0412 0.1473 False
LRP-Epsilon Input * Gradient 0.0531 0.8433 -0.0412 0.1474 False
LRP-Epsilon Deep Taylor 0.0542 0.818 -0.0401 0.1485 False
LRP-Epsilon Deconvnet 0.2595 0.001 0.1652 0.3538 True
LRP-Epsilon SmoothGrad 0.3104 0.001 0.2161 0.4047 True
LRP-Epsilon Random 0.43 0.001 0.3358 0.5243 True
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Table 10 – Continued from previous page

group1 group2 meandiff p-adj lower upper reject

LRP-AlphaBeta 32 LRP-PresetA 0.0056 0.9 -0.0887 0.0999 False
LRP-AlphaBeta 32 LRP-AlphaBeta 10 0.0251 0.9 -0.0692 0.1194 False
LRP-AlphaBeta 32 Gradient 0.0282 0.9 -0.0661 0.1225 False
LRP-AlphaBeta 32 LRP-Z 0.0477 0.9 -0.0466 0.142 False
LRP-AlphaBeta 32 Input * Gradient 0.0478 0.9 -0.0465 0.1421 False
LRP-AlphaBeta 32 Deep Taylor 0.0489 0.9 -0.0454 0.1432 False
LRP-AlphaBeta 32 Deconvnet 0.2542 0.001 0.1599 0.3485 True
LRP-AlphaBeta 32 SmoothGrad 0.3051 0.001 0.2108 0.3994 True
LRP-AlphaBeta 32 Random 0.4247 0.001 0.3304 0.519 True

LRP-PresetA LRP-AlphaBeta 10 0.0195 0.9 -0.0748 0.1138 False
LRP-PresetA Gradient 0.0226 0.9 -0.0717 0.1168 False
LRP-PresetA LRP-Z 0.0421 0.9 -0.0522 0.1364 False
LRP-PresetA Input * Gradient 0.0422 0.9 -0.0521 0.1365 False
LRP-PresetA Deep Taylor 0.0433 0.9 -0.051 0.1375 False
LRP-PresetA Deconvnet 0.2486 0.001 0.1543 0.3429 True
LRP-PresetA SmoothGrad 0.2995 0.001 0.2052 0.3938 True
LRP-PresetA Random 0.4191 0.001 0.3248 0.5134 True

LRP-AlphaBeta 10 Gradient 0.0031 0.9 -0.0912 0.0974 False
LRP-AlphaBeta 10 LRP-Z 0.0226 0.9 -0.0716 0.1169 False
LRP-AlphaBeta 10 Input * Gradient 0.0227 0.9 -0.0716 0.117 False
LRP-AlphaBeta 10 Deep Taylor 0.0238 0.9 -0.0705 0.1181 False
LRP-AlphaBeta 10 Deconvnet 0.2291 0.001 0.1348 0.3234 True
LRP-AlphaBeta 10 SmoothGrad 0.28 0.001 0.1857 0.3743 True
LRP-AlphaBeta 10 Random 0.3996 0.001 0.3054 0.4939 True

Gradient LRP-Z 0.0196 0.9 -0.0747 0.1138 False
Gradient Input * Gradient 0.0196 0.9 -0.0747 0.1139 False
Gradient Deep Taylor 0.0207 0.9 -0.0736 0.115 False
Gradient Deconvnet 0.226 0.001 0.1317 0.3203 True
Gradient SmoothGrad 0.2769 0.001 0.1826 0.3712 True
Gradient Random 0.3966 0.001 0.3023 0.4908 True

LRP-Z Input * Gradient 0.0001 0.9 -0.0942 0.0944 False
LRP-Z Deep Taylor 0.0011 0.9 -0.0932 0.0954 False
LRP-Z Deconvnet 0.2065 0.001 0.1122 0.3007 True
LRP-Z SmoothGrad 0.2574 0.001 0.1631 0.3517 True
LRP-Z Random 0.377 0.001 0.2827 0.4713 True

Input * Gradient Deep Taylor 0.0011 0.9 -0.0932 0.0954 False
Input * Gradient Deconvnet 0.2064 0.001 0.1121 0.3007 True
Input * Gradient SmoothGrad 0.2573 0.001 0.163 0.3516 True
Input * Gradient Random 0.3769 0.001 0.2826 0.4712 True

Deep Taylor Deconvnet 0.2053 0.001 0.111 0.2996 True
Deep Taylor SmoothGrad 0.2562 0.001 0.1619 0.3505 True
Deep Taylor Random 0.3759 0.001 0.2816 0.4701 True
Deconvnet SmoothGrad 0.0509 0.8951 -0.0434 0.1452 False
Deconvnet Random 0.1705 0.001 0.0763 0.2648 True

SmoothGrad Random 0.1196 0.0015 0.0253 0.2139 True
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Perturbation analysis, AMD activity detection

Table 11: 2-way repeated measures ANOVA results, average relative softmax difference. Factor “DNN”
can take 2 two values: ResNet50 or InceptionV3; factor “attribution method” can be one of 16 attribution
methods: Gradient, SmoothGrad, Deconvnet, Guided Backprop, Deep Taylor, Input * Gradient, Integrated
Gradients, LRP-Z, LRP-Epsilon, LRP-AlphaBeta 10, LRP-AlphaBeta 21, LRP-AlphaBeta 32, LRP-PresetA, LRP-
PresetB, Random, Expert

F Value Num DF Den DF Pr(>F)

DNN 0.189160 1.0 51.0 6.654512e-01
attribution method 116.869091 15.0 765.0 4.146892e-186

DNN:attribution method 6.004318 15.0 765.0 5.830063e-12

Table 12: Multiple comparison of attribution methods w.r.t. average relative softmax difference, using Tukey
HSD with alpha=0.05

group1 group2 meandiff p-adj lower upper reject

Integrated Gradients LRP-PresetBFlat 0.0308 0.9 -0.0811 0.1428 False
Integrated Gradients Guided Backprop 0.0382 0.9 -0.0738 0.1501 False
Integrated Gradients Deep Taylor 0.0407 0.9 -0.0713 0.1526 False
Integrated Gradients LRP-Epsilon 0.0502 0.9 -0.0617 0.1622 False
Integrated Gradients Input * Gradient 0.0526 0.9 -0.0594 0.1645 False
Integrated Gradients LRP-Z 0.0602 0.8999 -0.0518 0.1721 False
Integrated Gradients LRP-PresetAFlat 0.0645 0.8135 -0.0474 0.1765 False
Integrated Gradients LRP-AlphaBeta 21 0.0784 0.5393 -0.0336 0.1904 False
Integrated Gradients SmoothGrad 0.089 0.3137 -0.0229 0.201 False
Integrated Gradients LRP-AlphaBeta 32 0.0985 0.163 -0.0135 0.2104 False
Integrated Gradients LRP-AlphaBeta 10 0.1257 0.0117 0.0137 0.2377 True
Integrated Gradients Gradient 0.1725 0.001 0.0605 0.2844 True
Integrated Gradients Deconvnet 0.244 0.001 0.132 0.356 True
Integrated Gradients Expert 0.2455 0.001 0.1336 0.3575 True
Integrated Gradients Random 0.7758 0.001 0.6638 0.8878 True

LRP-PresetBFlat Guided Backprop 0.0073 0.9 -0.1047 0.1193 False
LRP-PresetBFlat Deep Taylor 0.0098 0.9 -0.1022 0.1218 False
LRP-PresetBFlat LRP-Epsilon 0.0194 0.9 -0.0926 0.1314 False
LRP-PresetBFlat Input * Gradient 0.0217 0.9 -0.0903 0.1337 False
LRP-PresetBFlat LRP-Z 0.0293 0.9 -0.0826 0.1413 False
LRP-PresetBFlat LRP-PresetAFlat 0.0337 0.9 -0.0783 0.1456 False
LRP-PresetBFlat LRP-AlphaBeta 21 0.0475 0.9 -0.0644 0.1595 False
LRP-PresetBFlat SmoothGrad 0.0582 0.9 -0.0538 0.1701 False
LRP-PresetBFlat LRP-AlphaBeta 32 0.0676 0.7528 -0.0444 0.1796 False
LRP-PresetBFlat LRP-AlphaBeta 10 0.0948 0.2127 -0.0171 0.2068 False
LRP-PresetBFlat Gradient 0.1416 0.0016 0.0296 0.2536 True
LRP-PresetBFlat Deconvnet 0.2132 0.001 0.1012 0.3251 True
LRP-PresetBFlat Expert 0.2147 0.001 0.1027 0.3266 True
LRP-PresetBFlat Random 0.745 0.001 0.633 0.8569 True

Guided Backprop Deep Taylor 0.0025 0.9 -0.1095 0.1145 False
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Table 12 – Continued from previous page

group1 group2 meandiff p-adj lower upper reject

Guided Backprop LRP-Epsilon 0.0121 0.9 -0.0999 0.1241 False
Guided Backprop Input * Gradient 0.0144 0.9 -0.0976 0.1264 False
Guided Backprop LRP-Z 0.022 0.9 -0.0899 0.134 False
Guided Backprop LRP-PresetAFlat 0.0264 0.9 -0.0856 0.1383 False
Guided Backprop LRP-AlphaBeta 21 0.0402 0.9 -0.0717 0.1522 False
Guided Backprop SmoothGrad 0.0509 0.9 -0.0611 0.1628 False
Guided Backprop LRP-AlphaBeta 32 0.0603 0.8974 -0.0517 0.1723 False
Guided Backprop LRP-AlphaBeta 10 0.0875 0.3433 -0.0244 0.1995 False
Guided Backprop Gradient 0.1343 0.0042 0.0223 0.2463 True
Guided Backprop Deconvnet 0.2059 0.001 0.0939 0.3178 True
Guided Backprop Expert 0.2074 0.001 0.0954 0.3193 True
Guided Backprop Random 0.7377 0.001 0.6257 0.8496 True

Deep Taylor LRP-Epsilon 0.0096 0.9 -0.1024 0.1216 False
Deep Taylor Input * Gradient 0.0119 0.9 -0.1001 0.1239 False
Deep Taylor LRP-Z 0.0195 0.9 -0.0925 0.1315 False
Deep Taylor LRP-PresetAFlat 0.0239 0.9 -0.0881 0.1358 False
Deep Taylor LRP-AlphaBeta 21 0.0377 0.9 -0.0742 0.1497 False
Deep Taylor SmoothGrad 0.0484 0.9 -0.0636 0.1603 False
Deep Taylor LRP-AlphaBeta 32 0.0578 0.9 -0.0542 0.1698 False
Deep Taylor LRP-AlphaBeta 10 0.085 0.3988 -0.0269 0.197 False
Deep Taylor Gradient 0.1318 0.0057 0.0198 0.2438 True
Deep Taylor Deconvnet 0.2033 0.001 0.0914 0.3153 True
Deep Taylor Expert 0.2049 0.001 0.0929 0.3168 True
Deep Taylor Random 0.7351 0.001 0.6232 0.8471 True
LRP-Epsilon Input * Gradient 0.0023 0.9 -0.1097 0.1143 False
LRP-Epsilon LRP-Z 0.0099 0.9 -0.102 0.1219 False
LRP-Epsilon LRP-PresetAFlat 0.0143 0.9 -0.0977 0.1262 False
LRP-Epsilon LRP-AlphaBeta 21 0.0281 0.9 -0.0838 0.1401 False
LRP-Epsilon SmoothGrad 0.0388 0.9 -0.0732 0.1507 False
LRP-Epsilon LRP-AlphaBeta 32 0.0482 0.9 -0.0638 0.1602 False
LRP-Epsilon LRP-AlphaBeta 10 0.0754 0.5974 -0.0365 0.1874 False
LRP-Epsilon Gradient 0.1222 0.0173 0.0102 0.2342 True
LRP-Epsilon Deconvnet 0.1938 0.001 0.0818 0.3057 True
LRP-Epsilon Expert 0.1953 0.001 0.0833 0.3072 True
LRP-Epsilon Random 0.7256 0.001 0.6136 0.8375 True

Input * Gradient LRP-Z 0.0076 0.9 -0.1044 0.1196 False
Input * Gradient LRP-PresetAFlat 0.012 0.9 -0.1 0.1239 False
Input * Gradient LRP-AlphaBeta 21 0.0258 0.9 -0.0861 0.1378 False
Input * Gradient SmoothGrad 0.0365 0.9 -0.0755 0.1484 False
Input * Gradient LRP-AlphaBeta 32 0.0459 0.9 -0.0661 0.1579 False
Input * Gradient LRP-AlphaBeta 10 0.0731 0.6431 -0.0388 0.1851 False
Input * Gradient Gradient 0.1199 0.0222 0.0079 0.2319 True
Input * Gradient Deconvnet 0.1914 0.001 0.0795 0.3034 True
Input * Gradient Expert 0.193 0.001 0.081 0.3049 True
Input * Gradient Random 0.7232 0.001 0.6113 0.8352 True
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Table 12 – Continued from previous page

group1 group2 meandiff p-adj lower upper reject

LRP-Z LRP-PresetAFlat 0.0044 0.9 -0.1076 0.1163 False
LRP-Z LRP-AlphaBeta 21 0.0182 0.9 -0.0937 0.1302 False
LRP-Z SmoothGrad 0.0288 0.9 -0.0831 0.1408 False
LRP-Z LRP-AlphaBeta 32 0.0383 0.9 -0.0737 0.1502 False
LRP-Z LRP-AlphaBeta 10 0.0655 0.7938 -0.0464 0.1775 False
LRP-Z Gradient 0.1123 0.0485 0.0003 0.2242 True
LRP-Z Deconvnet 0.1838 0.001 0.0719 0.2958 True
LRP-Z Expert 0.1853 0.001 0.0734 0.2973 True
LRP-Z Random 0.7156 0.001 0.6037 0.8276 True

LRP-PresetAFlat LRP-AlphaBeta 21 0.0139 0.9 -0.0981 0.1258 False
LRP-PresetAFlat SmoothGrad 0.0245 0.9 -0.0875 0.1364 False
LRP-PresetAFlat LRP-AlphaBeta 32 0.0339 0.9 -0.078 0.1459 False
LRP-PresetAFlat LRP-AlphaBeta 10 0.0612 0.8802 -0.0508 0.1731 False
LRP-PresetAFlat Gradient 0.1079 0.0737 -0.004 0.2199 False
LRP-PresetAFlat Deconvnet 0.1795 0.001 0.0675 0.2914 True
LRP-PresetAFlat Expert 0.181 0.001 0.069 0.2929 True
LRP-PresetAFlat Random 0.7113 0.001 0.5993 0.8232 True

LRP-AlphaBeta 21 SmoothGrad 0.0106 0.9 -0.1013 0.1226 False
LRP-AlphaBeta 21 LRP-AlphaBeta 32 0.0201 0.9 -0.0919 0.132 False
LRP-AlphaBeta 21 LRP-AlphaBeta 10 0.0473 0.9 -0.0647 0.1593 False
LRP-AlphaBeta 21 Gradient 0.0941 0.2249 -0.0179 0.206 False
LRP-AlphaBeta 21 Deconvnet 0.1656 0.001 0.0537 0.2776 True
LRP-AlphaBeta 21 Expert 0.1671 0.001 0.0552 0.2791 True
LRP-AlphaBeta 21 Random 0.6974 0.001 0.5855 0.8094 True

SmoothGrad LRP-AlphaBeta 32 0.0094 0.9 -0.1025 0.1214 False
SmoothGrad LRP-AlphaBeta 10 0.0367 0.9 -0.0753 0.1486 False
SmoothGrad Gradient 0.0834 0.4347 -0.0285 0.1954 False
SmoothGrad Deconvnet 0.155 0.001 0.043 0.267 True
SmoothGrad Expert 0.1565 0.001 0.0445 0.2685 True
SmoothGrad Random 0.6868 0.001 0.5748 0.7988 True

LRP-AlphaBeta 32 LRP-AlphaBeta 10 0.0272 0.9 -0.0847 0.1392 False
LRP-AlphaBeta 32 Gradient 0.074 0.6261 -0.038 0.186 False
LRP-AlphaBeta 32 Deconvnet 0.1456 0.001 0.0336 0.2575 True
LRP-AlphaBeta 32 Expert 0.1471 0.001 0.0351 0.259 True
LRP-AlphaBeta 32 Random 0.6774 0.001 0.5654 0.7893 True
LRP-AlphaBeta 10 Gradient 0.0468 0.9 -0.0652 0.1587 False
LRP-AlphaBeta 10 Deconvnet 0.1183 0.0263 0.0063 0.2303 True
LRP-AlphaBeta 10 Expert 0.1198 0.0224 0.0079 0.2318 True
LRP-AlphaBeta 10 Random 0.6501 0.001 0.5381 0.7621 True

Gradient Deconvnet 0.0716 0.6746 -0.0404 0.1835 False
Gradient Expert 0.0731 0.6447 -0.0389 0.185 False
Gradient Random 0.6034 0.001 0.4914 0.7153 True

Deconvnet Expert 0.0015 0.9 -0.1105 0.1135 False
Deconvnet Random 0.5318 0.001 0.4198 0.6438 True

Expert Random 0.5303 0.001 0.4183 0.6423 True
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