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More than just sound: Harnessing metadata
to improve neural network classifiers
for medical auscultation
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Label-efficient algorithms are of central importance for machine learning applications in manymedical fields,
where obtaining expert annotations is often expensive and time-consuming. Soni et al. show how contrastive
learning can help build classifiers for one of the oldest andmost reveredmethods of clinical medicine: auscul-
tation of heart and lung sounds.
When René Théophile Hyacinthe La€ennec

published his book on the use of ‘‘mediate

auscultation’’ in 1819,1 he provided physi-

cians around the world with one of the

most powerful tools in the history of med-

icine: the stethoscope. Together with the

instrument, which 200 years on has

become one of the emblems of the medi-

cal profession, he also provided a classifi-

cation of normal and abnormal heart and

lung sounds and introduced terms like

egophony, bronchophony, or vesicular

breathing,2 which to this day feature

prominently in the clinical examination

practices of physicians around the globe.

With tools for easy and high-quality digital

sound recording now at hand, these rich

and easily obtainable data represent a

treasure trove of clinical knowledge and

lend themselves to analysis with modern,

data-driven algorithms. In this issue of

Patterns, Soni et al.3 show how heart

and lung sounds can be evaluated effi-

ciently using a contrastive learning

scheme.

One of the main challenges in the use of

machine learning methods on many types

of medical data is that while a large

enough number of high-quality data is

the key ingredient for training modern al-

gorithms, most conventional, supervised

schemes also require classification labels

that can be used as ground truth at

training time. In contrast to data from the

everyday domain (such as the classical

problem of telling an image of a cat from

that of a dog), where ground-truth labels

can be obtained at scale from a large

number of annotators, labeling of medical
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data often requires expert knowledge.

Furthermore, even experts can show

considerable variability in inter- and

intra-rater agreement. For those reasons,

compiling datasets large enough to suc-

cessfully apply supervised machine

learning techniques is often prohibitively

expensive, a phenomenon noted across

many medical data domains, including

digital pathology,4 dermatology,5 radi-

ology,6 and ophthalmology.7

Motivated by these limitations concern-

ing the availability of labeled data, a num-

ber of strategies have been pursued in

recent years that allow training on data

either lacking labels completely or pos-

sessing only weak labels, i.e., labels that

carry only part of the relevant descriptive

information on a given data point. In the

context of medical data, this might mean

that some background information on a

patient is known, while the ground truth,

in this case the expert diagnosis, is not.

Within the framework of neural networks,

the common aim of these methods is to

optimize the structure of hidden represen-

tations of the data, thus optimizing feature

extraction that forms the basis for down-

stream tasks such as classification into

diagnostic groups. One way of imple-

menting this optimization task is contras-

tive learning, which considers pairs of

training data that share or do not share

certain features (so-called positive and

negative pairs). By using a contrastive

loss function, the representations of pos-

itive pairs are mapped to close points in

latent space, while dissimilar, negative

pairs are being pushed apart. In the
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context of image classification for

example, a common strategy is the

SimCLR scheme published by Chen and

co-authors in 2020,8 which uses image

augmentation strategies to generate pos-

itive pairs of data.

Soni et al. build on this contrastive

learning strategy and extend it from the

imaging into the sound analysis domain.

For selecting positive and negative sam-

ple pairs in the sound recording data-

bases, they use clinical patient-related

data, such as patient age, sex, and

anatomic recording location of the given

heart of lung sound recording. Compared

to costly expert annotations, this type of

information is much more readily acces-

sible also in the medical domain. The

authors show that using this clinical

meta-information allows for significant

improvements in the development of clas-

sifiers for heart and lung sounds. Interest-

ingly, for the task of recognizing abnormal

lung sounds, the results show that har-

nessing the age and sex category of pa-

tients for negative pair generation leads

to the highest improvement in the classifi-

cation scheme, which lines upwith clinical

experience showing that those two

parameters are correlated with lung dis-

ease. Hence, demographic knowledge

can be of help in improving recognition

of abnormal cases, to an algorithm as

much as to a human diagnostician

considering these factors when perform-

ing auscultation on a patient.

The work by Soni and co-authors

shows an innovative way of harnessing

patient metadata as a source of weak
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labels and using it as a means to improve

neural network training in the label-expen-

sive setting characteristic of machine

learning tasks on medical data. Conse-

quently, it will be interesting to systemati-

cally explore which labels can serve as

helpful weak labels for both heart and

lung sounds and other data sources,

such as imaging or lab data.Will metadata

found useful for improving the algorithm

be related to known clinical parameters

in the respective task? If they are not,

might this observation point us toward a

‘‘Clever Hans’’-type behavior,9 indicating

the algorithm only appears to have

learned the relevant parameters of a

task? As the distribution of data and

metadata may vary between different pa-

tient cohorts, generalization of the results

of classifier algorithms to other diagnostic

settings has to be critically evaluated, in

order to avoid biased prediction when us-

ing the classifiers in a real-world setting.

This includes the effect of confounding

factors that might not always be reflected

in the labels used at training time, such as

background noise level, or chestpiece
2 Patterns 3, January 14, 2022
used when recording the sound samples.

These components may also provide

useful metadata for the improvement of

algorithms that provide the practicing

physician with a diagnostic aid.

After the construction of his first stetho-

scopes, Dr La€ennec used his invention to

study various conditions known at the

time, from lung emphysema to liver ab-

scesses and bone fractures. His situation

at the time is not dissimilar to the current

exploration of a growing number of medi-

cal fields by machine learning methods.

For these rich novel methods to fulfill their

full promise, methods making efficient

use of easily obtainable labels as the

one presented by Soni et al. will be of

central importance.
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