
1 
 

Electronic Supplementary Material 

Size matters: tissue size as a marker for a transition between reaction–diffusion regimes in 

spatio-temporal distribution of morphogens 

Alberto S. Ceccarelli1, Augusto Borges1,2,3 & Osvaldo Chara1,4,5 

1 Systems Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySIB), 

National Scientific and Technical Research Council (CONICET), University of La Plata, La Plata, 

Argentina 

2 Research Unit of Sensory Biology & Organogenesis, Helmholtz Zentrum München, Munich, 

Germany 

3 Graduate School of Quantitative Biosciences (QBM), Munich, Germany 

4 Center for Information Services and High Performance Computing (ZIH), Technische Universität 

Dresden, Dresden, Germany 

5  Instituto de Tecnología, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina. 

 

* Corresponding author: 

E-mail: osvaldo.chara@tu-dresden.de, ochara@iflysib.unlp.edu.ar (OC) 

Web: http://sysbioiflysib.wordpress.com/  

  

mailto:osvaldo.chara@tu-dresden.de
mailto:ochara@iflysib.unlp.edu.ar
http://sysbioiflysib.wordpress.com/


2 
 

Index 

1.1. Analytical solution of the 1D Reaction Diffusion model assuming a finite domain, a source and 

a sink boundary conditions at     and     , respectively ..........................................................4 

1.2. Analytical solution of the 1D Reaction Diffusion model assuming a finite domain, a source and 

no flux boundary conditions at     and     , respectively ……………………………………………………14 

1.3. Analytical solution of the 1D Reaction Diffusion model assuming a finite domain a fixed 

concentration and a sink boundary conditions at     and     , respectively .………………………20 

1.4. Analytical solution of the finite-domain model in simple 2D geometries…………..……….………….25 

2. Comparison between analytical and numerical solutions of the 1D Reaction Diffusion model 

assuming a finite domain.………………………………………………..……………………………………………..……………33 

3. Steady state of the 1D Reaction Diffusion model assuming a finite domain.………………………….…36 

4.     calculation………………………………………………………………………………………………………………………….38 

5.     calculation………………………………………………………………………………………………………………………….40 

6.   ( ) and   ( ) calculation……………………………………………………………………………………………………...42 

7. Finite versus infinite domains in the reaction-diffusion model used in the FRAP-based 

determination of diffusion parameters ………………………………………………………………………………………..45 

8. Error of assuming an infinite domain instead of finite one in the steady state 

calculations..…………………………………………………………………………………………….………………………………….64 

9. Comparison between the computational efficiency between numerical and analytical 

solutions.…………………………………………………………………………….……………………………………………………….65 



3 
 

10. Supplementary references……………………………………………………………………………………………………..67  



4 
 

1.1. Analytical solution of the 1D Reaction Diffusion model assuming a finite domain, a source 

and a sink boundary conditions at  = 0 and  = R, respectively. 

We considered a 1D tissue of length L where a morphogen is produced at    , it diffuses to the 

tissue tip with a diffusion constant D and degrades linearly at a rate k. We assumed that at the tip 

of the tissue in     there is a sink. At     there is no morphogen in the tissue. The changes in 

the morphogen distribution    in time and space are expressed mathematically as the reaction 

diffusion equation: 

                                                                        
   

  
  

    

   
                                                           (Eq. S.1.) 

With the following conditions: 

No morphogen at initial time: 

  (      )    

Morphogen production at    : 

   
  

(      )   
 

 
 

Where q is the morphogen production rate at     . 

And a sink at the tip of the tissue    :  

  (      )    

We rewrote Eq. S.1. in terms of the dimensionless variables   
 

√
 

 

 and     . We defined the 

quantities R and S as   
 

√
 

 

 and   
 

√  
 and we rewrote the concentration as (   )  

  (   ) 

 
 : 
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                                                              (Eq. S.2.) 

With the following conditions. No morphogen at initial time: 

 (      )    

Morphogen production at    : 

  

  
(      )     

And a sink at the tip of the tissue    : 

 (       )    

To solve this equation we redefined   in terms of an auxiliary function    defined as: 

      
   

We calculated the derivatives of    in terms of the derivatives of  . The second spatial derivative 

is: 

   

    
    

    
    

 

And the time derivative is: 

  

  
    

   
  

    
   

This leads to the following equation: 

                                                                               
   

  
 
    

    
                                                                (Eq. S.3.) 

With the following boundary conditions: 

  (      )    
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   (     )

  
     

  (      )    

To solve Eq. S.3., solely performing a separation of variables would not suffice with this particular 

initial condition. Doing so, would yield the only solution as the trivial one,   (    )   . To 

overcome this difficulty, we redefined   using the auxiliary functions   (   ),  ( ) and  ( ). The 

explicit definition of the auxiliary functions g( ) and f( ) will be defined later.  

  (   )    (   )   ( ) ( ) 

The derivative with respect to   is: 

   (   )

  
 
   (   )

  
  ( )

  ( )

  
  

And derivative with respect to   is: 

    (   )

    
 
    (   )

    
 
   ( )

    
 ( )   

We rewrote the reaction diffusion equation in    as: 

   (   )

  
 
    (   )

    
 
   ( )

    
 ( )   ( )

  ( )

  
   

The initial condition: 

  (      )    ( ) (   ) 

With the following boundary conditions: 

The source:  
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   (      )

  
     

  (    )

  
 ( )  

And the sink: 

  (      )    (   ) ( ) 

It is desirable that the initial condition is different from 0 and the boundary conditions are equal to 

0. We defined  ( ) and  ( ) as: 

 ( )        ,  ( )      

With this choice Eq. S.3. turns out to be: 

                                                           
   (   )

  
 
    (   )

    
 (   )                                                 (Eq. S.4.) 

The initial condition: 

  (      )  (   ) 

With the following boundary conditions: 

The source:  

   (      )

  
   

And the sink: 

  (      )    

The solution to systems of the type of Eq. S.4. can be found in [1]. In this reference, the authors 

defined a method to find the solution for systems with the following aspect: 
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 ( ) ( )
  (   )

  
 [
 ( ( )

  (   )
  

)

  
  ( ) (   )]   (   ) 

   (     )   
  (     )

  
   

   (     )   
  (     )

  
   

 (     )   ( ) 

Where u(   ),  ( ),  ( ),  ( ),  ( ),  (   ) and  ( ) are functions and a, b,  ,  ,   and   are 

constants. 

The authors defined the following quantities: 

   ∫  ( )
 

 

  ( ) ( )   

  ( )  ∫  (   )
 

 

  ( )   

Where   ( ) and    are obtained from the solution of the following problem: 

 ( ( )
   ( )

  
)

  
  ( )  ( )       ( )    

 With the conditions: 

   (     )   
  (     )

  
   

   (     )   
  (     )
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The solution to the problem is: 

 (   )  ∑    ( ) 
   ∫

 
 ( )

  
 

 

 

   

 ∑  ( ) 
   ∫

 
 ( )

  
 

 ∫
  ( )

 ( )
 
  ∫

 
 ( )

  
 

   
 

 

 

   

 

In our problem, we solved Eq. S.4. by identifying the following quantities: 

 ( )   ,  ( )   ,  ( )   ,  ( )   ,  (   )  (   )   

 ( )  (   ),    ,    ,    ,    ,    ,     

First we solved the associated homogeneous problem: 

    ( )

   
     ( )    

   (   )

  
   

  (   )    

The solution to this problem is: 

  ( )  √
 

 
    (

(  
 
 
)  

 
) 

And: 

√    
(  

 
 ) 

 
 

It is important to notice that since   ( ) are the elements of a base of the space of functions, they 

need to be normalized. This means that ∫   ( )
  

 
    . 
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We calculated   : 

    
√ 
 

[
(  

 
 
) 

 ]

   

We also calculated   ( ): 

  ( )   
√ 
  

 

[
(  

 
 ) 

 ]

  

The solution to the equation is: 

                              (   )  ∑  
 

 

   (
(  

 
 )  

 
)  

[
(  

 
 
) 

 
]

 

[
 
 
 
 
 
 

(
(  

 
 )  

 
)

 

 

 [(
(  

 
 
)  

 
)

 

  ] 

  

(
(  

 
 
)  

 
)

 

  

]
 
 
 
 
 
 

  
                         (Eq. S.5.) 

We obtained the original function: 

 (   )  [  (   )  (   ) 
 ]     

 (   )  [  (   ) 
   (   )]  

 (   )  ∑ 
 

 

   (
(  

 
 )  

 )

[
(  

 
 ) 

 ]

 

[
 
 
 
 
 
 
 
 

(
(  

 
 )  

 )

 

 

 [(
(  

 
 
)  

 )

 

  ] 

  

(
(  

 
 )  

 )

 

  

]
 
 
 
 
 
 
 
 

 

 

   

 (   ) 
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 (   )  ∑ 
 

 

   (
(  

 
 
)  

 
)

[
(  

 
 
) 

 ]

 

 

(
(  

 
 
)  

 )

 

  

 

 

   

 (   )

 ∑ 
 

 

   (
(  

 
 
)  

 
)

[
(  

 
 
) 

 ]

  

 [(
(  

 
 
) 

 )

 

  ] 

 

 

   

 

We rewrote (   ) in the base of √
 

 
    (

(  
 

 
)  

 
) in the interval     (   ) as: 

(   )  ∑ 
 

 

   (
(  

 
 )  

 
)

[
(  

 
 
) 

 ]

  

 

   

 

To do this calculation, we wrote (   ) as: 

(   )  ∑  √
 

 
   (

(  
 
 )  

 
) 

 

   

 

And we obtained    by taking the inner product as the integral: 

   ∫ (   )√
 

 
   (

(  
 
 )  

 
)  
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    √
 

 

 

[
(  

 
 
) 

 ]

  

We wrote  (   ) as: 

 (   )  ∑
 

 

   (
(  

 
 
)  

 
)

[
(  

 
 
) 

 ]

 

  

 

 

   

 ∑ 
 

 

   (
(  

 
 
)  

 
)

(
(  

 
 
) 

 
)

 

  

 

 [(
(  

 
 
) 

 )

 

  ] 

 

 

   

 

We wrote 
   

      
 

  

     
  in the base of √

 

 
    (

(  
 

 
)  

 
) in the interval     (   ) as: 

   

      
 

  

     
 ∑

 

 

   (
(  

 
 )  

 
)

[
(  

 
 
) 

 ]

 

  

 

 

   

 

To do this calculation, we wrote (
   

      
 

  

     
) as: 

   

      
 

  

     
 ∑  √

 

 
   (

(  
 
 )  

 
) 

 

   

 

And we obtained    by taking the inner product as the integral: 

   ∫ (
   

      
 

  

     
)√

 

 
   (

(  
 
 )  

 
)  
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   √
 

 

 

[
(  

 
 
) 

 ]

 

  

 

Finally, we wrote  (   ) as: 

                          (   )  (
   

      
 

  

     
)  ∑  

 

 

   (
(  

 
 )  

 
)

(
(  

 
 ) 

 
)

 

  

 
 [(

(  
 
 
) 

 
)

 

  ] 

  
                  (Eq. S.6.)  
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1.2. Analytical solution of the 1D Reaction Diffusion model assuming a finite domain, a source 

and no flux boundary conditions at  = 0 and  = R, respectively. 

We considered a 1D tissue of length L where a morphogen is produced at    , it diffuses to the 

tissue tip with a diffusion constant D and degrades linearly at a rate k. We assumed that at the tip 

of the tissue in     there is a no flux boundary condition. At     there is no morphogen in the 

tissue. The changes in the morphogen distribution    in time and space are expressed 

mathematically as the reaction diffusion equation (Eq. S.1.): 

   
  

  
    
   

     

With the following conditions: 

No morphogen at initial time: 

  (      )    

Morphogen production at    : 

   
  

(      )   
 

 
 

Where q is the morphogen production rate at     . 

And no flux boundary conditions at the tip of the tissue    :  

   
  

(      )    

We followed the same procedure that was used in section S.1.1.. We rewrote Eq. S.1. in terms of 

the dimensionless variables   
 

√
 

 

 and     . We defined the quantities R and S as   
 

√
 

 

 and 
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√  
 and we defined the concentration as  (   )  

  (   ) 

 
. We obtained the following 

equation (Eq. S.2.): 

  

  
 
   

   
   

With the following conditions:  

No morphogen at initial time: 

 (      )    

Morphogen production at    : 

  

  
(      )     

And no flux boundary condition at the tip of the tissue      :  

  

  
(       )    

We used an auxiliary function to solve Eq. S.2. following the same procedure as in section S.1. In 

that section, we used three auxiliary functions and combined them into only one auxiliary function 

  : 

 (   )  [  (   ) 
   (  

  

  
)] 

With this choice, we obtained for Eq. S.2.: 

                                                     
   (   )

  
 
    (   )

    
 
  

 
(     

  

 
)                                         (Eq. S.7.) 

With the following boundary conditions: 
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The initial condition: 

  (      )  (  
  

  
) 

The source:  

   (      )

  
   

And the tip: 

   (      )

  
   

We used the method presented in [1] as defined on section S.1.1. We identified the following 

quantities: 

 ( )   ,  ( )   ,  ( )   ,  ( )   ,  (   )  
  

 
(     

  

 
) 

 ( )  (  
  

  
),    ,    ,    ,    ,    ,     

First, we solved the associated homogeneous problem: 

    ( )

   
     ( )    

   (   )

  
   

   (   )

  
   

The solution to this problem is: 

If     : 



17 
 

  ( )  √
 

 
    (

   

 
) 

And: 

√    
  

 
 

And if     : 

  ( )  √
 

 
 

We calculated   : 

If     : 

    √
 

 

 

(
  
 )

  

And if     : 

   √
 

 

  

 
 

We calculated   ( ): 

If     : 

  ( )   
  

(
  
 )

 
√
 

 
 

And if     : 
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  ( )  √
 

 
  (

  

 
  ) 

The solution to Eq. S.7. is: 

  (   )  
 

 
 
 

 
(    )(

  

 
  )  ∑ 

 

 
 
   (

   
 
)

(
  
 
)
  

 (
  
 
)
 

 
[  ∫    

(
  
 
)
 

 
  

 

 

]

 

   

 

                 (   )   
 

 
 
 

 
  (

  

 
  )  ∑  

 

 
 
   (

   

 
)

(
  

 
)
  

 (
  

 
)
 
 
[  

 
[(
  
 
)
 
  ] 

  

[(
  

 
)
 
  ]

] 
          (Eq. S.8.) 

We obtained the original function: 

 (   )  [  (   )  (  
  

  
)  ]     

 (   )  [  (   ) 
   (  

  

  
)]  

 (   )   
 

 
    

 

 
(
  

 
  )  ∑ 

 

 
 
   (

   
 
)

(
  
 )

 

[
 
 
 
 

 
 [(

  
 
)
 

  ] 
 
   

 [(
  
 
)
 

  ] 

[(
  
 )

 

  ]
]
 
 
 
  

   

 (  
  

  
) 

 (   )   
 

 
    (

 

 
 
 

 
)  ∑ 

 

 
 
   (

   
 )

[(
  
 )

 

  ]

 
 [(

  
 
)
 

  ] 
 

   

 ∑ 
 

 
 
   (

   
 )

[(
  
 )

 

]
[
 
 
 
 

 

[(
  
 )

 

  ]
]
 
 
 
  

   

 (  
  

  
) 
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We wrote (  
  

  
) in the base of √

 

 
    (

   

 
) and √

 

 
 as: 

(  
  

  
)  

 

 
 ∑ 

 

 

   (
   
 )

[
  
 ]

  

 

   

 

So we wrote  (   ) as: 

 (   )   
 

 
    

 

 
 ∑ 

 

 
 
   (

   
 
)

[(
  
 
)
 

  ]

 
 [(

  
 
)
 

  ] 
 

   

 ∑
 

 
 
   (

   
 
)

[(
  
 
)
 

  ]

 

   

 

We wrote 
  

     
 

   

      
  in the base of √

 

 
    (

   

 
) and √

 

 
 as: 

  

     
 

   

      
  

 

 
 ∑

 

 

   (
   
 )

[
  
 ]

 

  

 

 

   

 

Finally, we wrote  (   ) as: 

                           (   )   (
  

     
 

   

      
)  

   

 
 ∑  

 

 

   (
   

 
)

(
  

 
)
 
  
 
 [(

  

 
)
 
  ] 

  
                 (Eq. S.9.) 

From  (   ), we calculated its steady state by taking in Eq. S.9. the limit of   to infinite: 

                                                       ( )   (
  

     
 

   

      
)                                                       (Eq. S.10.) 

This previous result can also be obtained from the original differential equation by solving for C 

when 
  

  
  .  



20 
 

1.3. Analytical solution of the 1D Reaction Diffusion model assuming a finite domain a fixed 

concentration and a sink boundary conditions at  = 0 and  = R, respectively. 

Similarly, as in sections S.1.1. and S.1.2., we considered a 1D tissue of length L. Now we assumed 

the morphogen concentration is fixed at    , it diffuses to the tissue tip with a diffusion 

constant D and degrades linearly at a rate k. We assumed that at the tip of the tissue in     

there is a sink. At     there is no morphogen in the tissue. The changes in the morphogen 

distribution    in time and space are expressed mathematically as the reaction diffusion equation 

(Eq. S.1.): 

   
  

  
    
   

     

With the following conditions:  

No morphogen at initial time: 

  (      )    

Fixed morphogen concentration at    : 

  (      )     

Where    is a constant. 

And sink at the tip of the tissue    :  

  (      )    

We followed the same procedure that was used in sections S.1. and S.2.. We rewrote this equation 

in terms of the dimensionless variables   
 

√
 

 

 and     . We defined the quantity R as   
 

√
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and we defined the concentration as  (   )  
  (   ) 

  
. We obtained the following equation (Eq. 

S.2.): 

  

  
 
   

   
   

With the following conditions:  

No morphogen at initial time: 

 (      )    

Fixed morphogen at    : 

 (      )    

And a sink at the tip of the tissue    :  

 (       )    

We used an auxiliary function to solve Eq. S.2. following the same idea as in section S.1.1. In that 

section, we used three auxiliary functions and combined them into only one auxiliary function   : 

 (   )  [  (   ) 
   (  

 

 
)]  

With this election Eq. S.2. is: 

                                                              
   (   )

  
 
    (   )

    
   (  

 

 
)                                         (Eq. S.11.) 

With the following boundary conditions: 

The initial condition: 
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  (      )  (
 

 
  ) 

The source:  

  (      )    

And the tip: 

  (      )    

We used the method presented in [1] as defined on section S.1.1. We identified the following 

quantities: 

 ( )   ,  ( )   ,  ( )   ,  ( )   ,  (   )    (
 

 
  )  

 ( )  (
 

 
  ),    ,    ,    ,    ,    ,     

First, we solved the associated homogeneous problem: 

    ( )

   
     ( )    

  (   )    

  (   )    

The solution to this problem is: 

  ( )  √
 

 
    (

   

 
) 

And: 
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√    
  

 
 

We calculated   : 

    √
 

 

 

  
 

 

We calculated   ( ): 

  ( )   √
 

 

  

  
 

 

The solution to Eq. S.11. is: 

  (   )  ∑√
 

 
    (

   

 
)  

 (
  
 
)
 

 
[ √

 

 

 

  
 

 ∫  √
 

 

  

  
 

 
(
  
 
)
 

 
  

 

 

]

 

   

 

                                          (   )  ∑  
 

 
 
   (

   

 
)

  

 

 
 (

  

 
)
 
 
[  

 
[(
  
 
)
 
  ] 

  

[(
  

 
)
 
  ]

] 
                       (Eq. S.12.) 

We obtained the original function: 

 (   )  ∑ 
 

 
 
   (

   
 )

  
 

[
 
 
 
 

 
 [(

  
 
)
 

  ] 
 
   

 [(
  
 
)
 

  ] 

[(
  
 )

 

  ]
]
 
 
 
  

   

 (  
 

 
)  

 (   )  ∑ 
 

 
 
   (

   
 )

  
 

[
 
 
 
 
(
  
 )

 

 
 [(

  
 
)
 

  ] 
  

[(
  
 )

 

  ]
]
 
 
 
  

   

 (  
 

 
) 

We wrote (  
 

 
) in the base of √

 

 
    (

   

 
) as: 
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(  
 

 
)  ∑

 

 

   (
   
 
)

  
 

 

 

   

 

We wrote  (   ) as: 

 (   )  ∑ 
 

 
 
   (

   
 )

  
 

[
 
 
 
 
(
  
 )

 

 
 [(

  
 
)
 

  ] 
  

[(
  
 
)
 

  ]

  

]
 
 
 
  

   

  

 (   )  ∑ 
 

 
 
   (

   
 
)

  
 

[
 
 
 
 
(
  
 
)
 

 
 [(

  
 
)
 

  ] 
 (
  
 
)
 

[(
  
 )

 

  ]
]
 
 
 
  

   

 

We wrote 
          

      
 in the base of √

 

 
    (

   

 
) as: 

          

      
   ∑

 

 

   (
   
 )

  
 

[
  
 ]

 

  

 

 

   

 

Finally, we wrote  (   ) as: 

                                            (   )  
          

      
 ∑  

 

 
    (

   

 
) [

  

 
 
 [(

  
 
)
 
  ] 

[(
  

 
)
 
  ]

] 
                 (Eq. S.13.) 

From  (   ) we calculated its steady state by taking in Eq. S.13. the limit of   to infinite: 

                                                                      ( )  
          

      
                                                        (Eq. S.14.) 

This previous result can also be obtained from the original differential equation by solving for C 

when 
  

  
  . 
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1.4 Analytical solution of the finite-domain model in simple 2D geometries 

We considered a 2D tissue of length    and    where a morphogen is produced at    , it 

diffuses to the tissue tip with a diffusion constant D and degrades linearly at a rate k. We assumed 

that at the tip of the tissue in      there is a sink and we have no fluxes on     and     . At 

    the tissue has  (       )   (   ) and we solved for the particular case in which 

 (   )   . The changes in the morphogen distribution   in time and space are expressed 

mathematically as the reaction diffusion equation:     

We have: 
  

  
  

   

   
  

   

   
    

With the following conditions: 

At initial time: 

 (         )   (   ) 

And: 

  

  
(        )     

 (         )    

  

  
(        )    

  

  
(         )    

In normalized units (    ,   
 

√
 

 

 and   
 

√
 

 

): 

  

  
 
   

   
 
   

   
   

With the following conditions: 

At initial time: 

 (        )   (   ) 

And: 
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(        )     

 (         )    

  

  
(        )    

  

  
(          )    

We can write C as: 

 (       )    (       )     (    ) 

And    (    ) is the steady state solution.  

  
     (    )

   
 
     (    )

   
    (    ) 

And: 

    
  

(      )     

   (       )    

    
  

(      )    

    
  

(       )    

The original equation now is: 

   
  

 
    
   

 
    
   

    

With the following conditions: 

At initial time: 

 (        )   (   ) 

  ((        ))   (   )     (   ) 

And: 

  

  
(        )     

 (         )    
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(        )    

  

  
(         )    

Goes to: 

   
  
(        )    

  (         )    

   
  

(        )    

   
  

(         )    

 

We can choose: 

    ( ) ( ) ( ) 

Thus: 

 

 ( )

  ( )

  
 

 

 ( )

   ( )

   
 

 

 ( )

   ( )

   
    

We ask: 

 

 ( )

  ( )

  
    

 

 ( )

   ( )

   
     

 

 ( )

   ( )

   
     

And: 

            

So: 

 ( )     
    

 ( )        (√   )        (√   ) 
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 ( )        (√   )        (√   ) 

The boundary conditions give us: 

 ( )  √
 

  
   (

(  
 
 ) 

  
 ) 

And for     : 

 ( )  √
 

  
   (

  

  
 ) 

And for     : 

 ( )  √
 

  
 

The solution is: 

  (      )  ∑√
 

  
   (

(  
 
 
) 

  
 )√

 

  
   (

  

  
 )    

(   (
(  

 
 
) 

  
)

 

 (
  
  
)
 
) 

   

 

At  =0: 

  (        )  ∑√
 

  
   (

(  
 
 ) 

  
 )√

 

  
   (

  

  
 )   

   

 

And we knew: 

  (         )   (   )     (    ) 

Thus,     can be obtained by asking: 

    ∬[ (   )     (    )]√
 

  
   (

(  
 
 ) 

  
 )√

 

  
   (

  

  
 )     

The general solution is: 
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  (      )  ∑

√
 

  
   (

(  
 
 ) 

  
 )√

 

  
   (

  

  
 )  

(   (
(  

 
 
) 

  
)

 

 (
  
  
)
 
) 

∬[ (   )     (    )]√
 

  
   (

(  
 
 
) 

  
 )√

 

  
   (

  

  
 )     

   

 

Of note, there is an abuse of notation in the previous result. For n=0 the prefactor is √
 

  
 instead 

of √
 

  
. 

Finally, we need to calculate the steady state: 

  
     (    )

   
 
     (    )

   
    (    ) 

And: 

    (       )

  
    

   (       )    

    (      )

  
   

    (        )

  
   

We propose: 

   (    )   ( ) 

Thus, we obtain: 

  
   ( )

   
  ( ) 

And: 

  (   )

  
    

 (    )    

We choose: 

 ( )             
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  (   )

  
          

         

 (    )  (    ) 
             

  (        )      

   
   

        
 

      
   

        
  

    

        
 

So: 

 ( )    
    

        
   

   

        
    

 ( )   
            

        
 
     (    )

    (  )
 

So: 

   (    )  
     (    )

    (  )
 

Thus, the original solution is: 
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√
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As  (   )  
     (    )

    (  )
 does not depend on    the integral on   is 0 except for n=0, therefore: 
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Thus, we obtain: 
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) 

            (Eq. S.15.) 

Next, we considered a 2D tissue of length    and    where a morphogen is produced at     and 

   , it diffuses towards the tissue tip with a diffusion constant D and linearly degrades at a rate 

k. We assumed that at the tip of the tissue in      and      we have no fluxes going out of 

the tissue. At     the tissue has  (       )   (   ) and we solved for the particular case in 

which  (   )   . The changes in the morphogen distribution    in time and space are expressed 

mathematically as the reaction diffusion equation:     

We have: 

  

  
  

   

   
  

   

   
    

With the following conditions: 
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At initial time: 

 (         )   (   ) 

And: 

  

  
(        )     

  

  
(         )    

  

  
(        )     

  

  
(         )    

We followed the same procedure as in the previous example and we obtained (in normalized units 

 ,   and  ): 
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Here there is an abuse of notation. For j=0 the prefactor is √
 

  
 instead of √

 

  
 and for n=0 the 

prefactor is √
 

  
 instead of √

 

  
. 

For the steady state we obtained: 

   (   )  
     (    )

     (  )
 
     (    )

     (  )
 

And for  (   )    we calculated the integrals and finally obtained: 
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(Eq. S.16.) 
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2. Comparison between analytical and numerical solutions of the 1D Reaction Diffusion model 

assuming a finite domain. 

We tested the analytical solutions in 1D for the finite model with a sink and with no flux at     

by a numerical integration of Eq. S.6. for different values of R (see Fig. S1). We used a finite 

differences scheme by using Euler method with a fixed spatial step of    
 

   
 and a time step of 

   
   

 
, which guaranties the numerical stability of the method. Furthermore, we numerically 

tested the analytical solutions in 2D (see Fig. S2). 
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Figure S1. Comparison between the numerical and analytical solution for the concentration as a function of the spatial 

position in 1D for different times. A), C) and E) show the morphogen distribution for the model with a sink at     for 

R equal to 0.1, 1 and 5, respectively. B), D) and F) show the morphogen distribution for the model with no flux at     

for R equal to 0.1, 1 and 5, respectively. The straight lines in these panels are the analytical solutions at time equal to 

0.1, 1 and 10. The dotted lines are the numerical solution at those times.   
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Figure S2. Comparison between the numerical and analytical solution for the concentration as a function of the spatial 

position in 2D for different times. A) to F) show the morphogen distribution for the 2D model with one source, one sink 

and two no fluxes. A) and D) are the analytical solution at time 0.1 and 10, respectively. B) and E) show the numerical 

solution at time 0.1 and 10, respectively. C) and F) show the absolute value of the difference between the analytical and 

the numerical solutions at time 0.1 and 10, respectively. G) to L) show the morphogen distribution for the 2D model with 

two sources and two no fluxes. G) and J) show the analytical solution at time 0.1 and 10, respectively. H) and K) show the 

numerical solution at time 0.1 and 10, respectively. I) and L) show the absolute value of the difference between the 

analytical and the numerical solutions at time 0.1 and 10, respectively.  



36 
 

3. Steady state of the 1D Reaction Diffusion model assuming a finite domain. 

We  already calculated in Eq. S.6., that the morphogen concentration depends on   and   for the 

model assuming a finite domain with a sink at     as follows: 

 (   )  (
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From  (   ) we calculated its steady state by taking in Eq. S.6. the limit of   to infinite: 

                                                                       ( )  (
   

      
 

  

     
)                                           (Eq. S. 

16.) 

Following the same procedure for the no flux boundary condition at     be obtain: 

   ( )   (
  

     
 

   

      
) 

We calculated the total amount of morphogen in the tissue    ( ): 

   ( )  ∫    
      ( )  

 

 

 

To achieve that it is useful to integrate directly from the differential equation: 

   

   
     

∫
     

      ( )

   
  

 

 

 ∫    
      ( )  

 

 

   

    
      (   )

  
 
    

      (   )

  
    ( )    

   ( )        (Eq. S.17.) 
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To continue our analysis, we expanded using Laurent series    
      ( ) for R in R=0: 

   
      ( )  

    ( )

 
     ( )  

 

 
     ( )   (  ) 

If we look for small values of R, we can see that we also have small values of  . In this case: 

    ( )   

    ( )   

Thus, we obtain: 

   
      ( ) 

 

 
                    (Eq. S.18.) 
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4.     calculation. 

We defined     as the position in space in which the concentration is 10 % of the concentration at 

the source. We calculated this value analytically for the steady state. For an infinite domain, the 

steady state is: 

                                                                              ( )   
                                                              (Eq. S.19.) 

We found     by solving the following equation: 

   (   )  
   ( )

  
 

       
 

  
 

                                                                               (  )                                                         (Eq. S.20.) 

Where   ( ) is the natural logarithm of x. 

We also calculated     analytically for the steady state in a finite domain with a sink at    . 

First, we rewrote the steady state (Eq. S.16.) as: 

   ( )  (
   

      
 

  

     
)  

    (   )

    ( )
 

Where     ( ) and     ( ) are the hyperbolic sine and hyperbolic cosine of  , respectively.  

We found     by solving the following equation: 
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    ( )
  

 

  

    ( )

    ( )
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                                                                             (
    ( )

  
)                                              (Eq. S.21.) 

In the limit of R going to infinity in the previous equation, we obtained: 

   
   

       
   

[          (
    ( )

  
)]    (  )     

This is in agreement with the solution obtained before. 

We followed the same procedure with the model assuming a finite domain with no flux at     

and obtained: 

              (
    ( )

  
)       (Eq. S.22.) 
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5. Rc calculation. 

From     in the steady state of the model assuming a finite domain with a sink at     as a 

function of R (Eq. S. 21.) we identified two regimes: while for large values of R,     reaches a 

plateau, for small values of R,     has a line-like behavior. To characterize the transition between 

both regimes, we Taylor-expanded 10 and arbitrarily looked for the R = Rc upon which the second 

non-zero term of the series would be about 20 % of the first linear term. First, we calculated the 

Taylor series of     around    : 
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  (  ) 

Where the coefficients are: 

   ( )   , 
    ( )

  
    , 

     ( )

   
  , 

     ( )

   
        

We looked for a       value such that 
    ( )

  
      is not much bigger in module than the first non-

vanishing term of higher order than R. We arbitrarily defined “not much bigger” in this context as 

one term being one fifth of the other. This means: 
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 √

     

       
                                   (Eq. S.23.) 

With the finite model with a no flux boundary condition at     we followed the same procedure 

but we expanded Eq. S.22 around R = 3: 
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Where the coefficients are: 
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   ( )      , 
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6.   ( ) and   ( ) calculation. 

Berezhkovskii et al. have developed a method to estimate the mean time it takes a morphogen to 

reach its steady state [2]. 

They defined the local relaxation function  (   ) as: 

 (   )    
 (   )

   ( )
 

Where  (   ) is the concentration of morphogen at the position x at time t and    ( ) is the 

concentration of the morphogen at its steady state at position x. It is important to note that in the 

above mentioned article  (   ) is defined as  (   ). 

From the relaxation function, they obtained the probability density: 

 (   )   
  (   )

  
 

From the probability density, they obtained the mean time it takes it to establish a morphogen 

gradient as: 

 ( )  ∫   (   )  
 

 

 ∫  (   )  
 

 

 

We used this definition to estimate how long it takes to establish a morphogen gradient in a finite 

tissue with a sink at     by using the analytic solution presented in this work (Eq. S.6.). 
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With the model assuming a finite domain with no flux at    : 
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The mean time of the model assuming a finite domain with a sink at     is: 
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                                  (Eq. S.24.) 

And for the model assuming a finite domain with no flux at    : 

                                              ( )  
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   ]                             (Eq. S. 25.) 

It is important to know how good this estimate obtained previously is. To achieve that, we 

calculated the standard deviation: 

  ( )  √ [ 
 ]    ( )

  

Where  [  ] is defined as: 

 [  ]  ∫    (   )  
 

 

   ∫ (   )  ]
   
   

  ∫ (∫ (   )  )   
 

 

 

For the model assuming a finite domain with a sink at    , we obtained: 
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And for of the model assuming a finite domain with no flux at      we obtained: 
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And for the infinite domain, we obtained: 

                                                                              ( )  
√   

 
                                                            (Eq. S.26.) 
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7. Finite versus infinite domains in the reaction-diffusion model used in the FRAP-based 

determination of diffusion parameters 

We considered a 1D tissue of length L where a morphogen is produced at    , it diffuses to the 

tissue tip with a diffusion constant D and degrades linearly at a rate k. We assumed that at the tip 

of the tissue in     there is a sink or a no flux. At     the tissue is at steady state except 

between     and       where it is bleached and it has b time the concentration at steady 

state. The changes in the morphogen distribution    in time and space are expressed 

mathematically as the reaction diffusion equation:     

                                                                 
   

  
  

    

   
                                                           (Eq. S.27.) 

With the following conditions: 

Morphogen at initial time: 

Initial time for x between d and d+h: 

  (      )      ( ) 

Initial time for x elsewhere: 

  (      )     ( ) 

Or: 

  (      )     ( )  (   )   ( ) (   ) (    ) 

Morphogen production at    : 

   
  

(      )   
 

 
 

Where q is the morphogen production rate at     . 

And a sink at the tip of the tissue    :  

  (      )    
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Or a no flux boundary condition at x = L: 

   
  

(      )    

We rewrote Eq. S.27. in terms of the dimensionless variables   
 

√
 

 

 and     . We defined the 

quantities R and S as   
 

√
 

 

 and   
 

√  
 and we rewrote the concentration as (   )  

  (   ) 

 
 : 

                                                                              
  

  
 
   

   
                                                               

With the following conditions. No morphogen at initial time: 

  (      )     ( )  (   )   ( ) 

(

   
 

√ 
 )

  

(

    
   

√ 
 )

  

Morphogen production at    : 

  

  
(      )     

And a sink at the tip of the tissue     :  

 (       )    

Or a no flux at  = R: 

  

  
(      )    

We calculated    ( ) for the model assuming a finite domain with a sink at    : 

   ( )  
     (   )

    ( )
 

For the model assuming a finite domain with no flux at    : 
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   ( )  
     (   )

    ( )
 

To solve this equation we redefined   in terms of an auxiliary function    defined as: 

      
   

We calculated the derivatives of    in terms of the derivatives of  . The second spatial derivative 

is: 

   

    
    

    
    

 

And the time derivative is: 

  

  
    

   
  

    
   

This leads to the following equation: 

                                                                               
   

  
 
    

    
                                                              

With the following boundary conditions: 

  (      )     ( )  (   )   ( ) 
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√ 
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   (     )

  
     

  (      )    

Or a no flux: 
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(      )    

We redefined   using the auxiliary functions   (   ),  ( ) and  ( ). The explicit definition of the 

auxiliary functions g( ) and f( ) will be defined later.  

  (   )    (   )   ( ) ( ) 

The derivative with respect to   is: 

   (   )

  
 
   (   )

  
  ( )

  ( )

  
  

And derivative with respect to   is: 

    (   )

    
 
    (   )

    
 
   ( )

    
 ( )   

We rewrote the reaction diffusion equation in    as: 

   (   )
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   ( )

    
 ( )   ( )

  ( )

  
   

The initial condition: 

  (      )     ( )  (   )   ( ) 
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√ 
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√ 
 )

   ( ) (   ) 

With the following boundary conditions: 

The source:  

   (      )

  
     

  (    )

  
 ( )  
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And the sink: 

  (      )    (   ) ( ) 

Or no flux: 

   (      )

  
  

  (    )

  
 ( ) 

It is desirable that the initial condition is different from 0 and the boundary conditions are equal to 

0. We defined  ( ) and  ( ) as: 

For the model assuming a finite domain with a sink at    : 

 ( )        ,  ( )      

For the model assuming a finite domain with no flux at    : 

 ( )        ,  ( )  (  
  

  
) 

With this choice: 

For the model assuming a finite domain with a sink at    : 

                                                           
   (   )

  
 
    (   )

    
 (   ) 

For the model assuming a finite domain with no flux at    : 

                                                           
   (   )

  
 
    (   )

    
 
  

 
 (  

  

  
)                                                     

With the following boundary conditions: 

The initial condition: 
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For the model assuming a finite domain with a sink at    : 
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For the model assuming a finite domain with no flux at    : 
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The source:  

   (      )

  
   

And the sink: 

  (      )    

Or no flux: 

The source:  

   (      )

  
   

The solution to systems of this type can be found in [1]. In this reference, the authors defined a 

method to find the solution for systems with the following aspect: 
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  ( ) (   )]   (   ) 
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   (     )   
  (     )

  
   

   (     )   
  (     )

  
   

 (     )   ( ) 

Where u(   ),  ( ),  ( ),  ( ),  ( ),  (   ) and  ( ) are functions and a, b,  ,  ,   and   are 

constants. 

They defined the following quantities: 

   ∫  ( )
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Where   ( ) and    are obtained from the solution of the following problem: 
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 With the conditions: 
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The solution to the problem is: 
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In our problem,  (   )    (   ) and we identified the following quantities: 

For the model assuming a finite domain with a sink at    : 
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For the model assuming a finite domain with no flux at    : 
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First we solved the associated homogeneous problem: 

    ( )

   
     ( )    

   (   )

  
   

  (   )    

Here    is the eigenvalue asociated to   ( ), it should not be confused with the characteristic 

length of the morphogen  . 

The solution to this problem is: 
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For the model assuming a finite domain with a sink at    : 
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And: 
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For the model assuming a finite domain with no flux at    : 
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Or if j =0: 
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It is important to notice that since   ( ) are the elements of a base of the space of functions, they 

need to be normalized. This means that ∫   ( )
  

 
    . 

We calculated   : 

For the model assuming a finite domain with a sink at    : 
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)        (Eq. S.28.) 

For the model assuming a finite domain with no flux at    : 

If     : 
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)          (Eq. S.29.) 

And if     : 
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S.30.) 

 

We also calculated   ( ): 

For the model assuming a finite domain with a sink at    : 
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For the model assuming a finite domain with no flux at    : 

If     : 
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And if     : 
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We obtained the original function: 

For the model assuming a finite domain with a sink at    : 
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For the model assuming a finite domain with no flux at    : 
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We calculated the recovery of the average concentration f(t) in the bleached region. To achieve 

that we used the original coordinates x and t instead of the normalized ones   and  : 
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For the model assuming a finite domain with a sink at    : 
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Thus, the expression of the recovery curve (f(t)) for the model assuming a sink boundary condition 

at  = R is as follows: 
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       (Eq. S.31.) 

With    defined in Eq. S.28.  

For the model assuming a finite domain with no flux at    : 
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Thus, the expression of the recovery curve (f(t)) for the model assuming a no flux boundary 

condition at  = R is as follows: 
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         (Eq. S.32.) 

With    defined in Eq. S.30. and    defined in Eq. S.29.  

Finally, the expression or the recovery curve (f(t)) predicted by the infinite-domain model as 

calculated by Kicheva and collaborators (3) is as follows: 
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     (Eq. S.33.) 

Where erf(x) is the error function of x and   is the immobile fraction. In this work we have 

obtained the solution for a finite tissue when     (no immobile particles). 
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8. Error of assuming an infinite domain instead of finite one in the steady state calculations. 

We defined the error of using the infinite model in the steady state (E) as: 

                           ( )  |           ( )           ( )|  | 
   (

   

      
 

  

     
)|             (Eq. S.34.) 

We defined the accumulated error of using the infinite model in steady state (    ) as the integral 

over the tissue of the error of using the infinite model in steady state (Eq. S.35.) divided by the 

length of the tissue. For the model assuming a finite domain with a sink at     we obtained: 
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Where      ( ) is the hyperbolic tangent function of R and      ( ) is the hyperbolic sine of R. 

For the model assuming a finite domain with a no flux at     we obtained: 
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And: 
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Where      ( ) is the hyperbolic cosine function of R and      ( ) is the hyperbolic sine of R. 
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9. Comparison between the computational efficiency between numerical and analytical 

solutions. 

Multiscale computational models that involve morphogen gradients, encoded in a reaction 

diffusion scheme [4,5,6], combine different coupled scales, which may lead to long simulation 

times. Typically, this scheme is numerically implemented. Therefore, we wondered if our new 

analytical solution could improve the efficiency, compared to a numerical approach. To achieve 

that goal, we compared the computational time needed to obtain the morphogen concentration 

using the analytical solution with respect of the numerical solution.  

We used domains of lengths R = 0.1, R = 1 and R = 10 and calculated the concentration of 

morphogen at each position in the tissue at times   = 0.1,   = 1 and   = 10. We discretized the 

domain in 100 equal parts of length 
 

   
.  

For the analytical solution, we first determined the optimum number of terms in the sum. To that 

end, we asked that: 

                                                              
∑   (   )
      
    ∑   (   )

    
   

∑   (   )
    
   

                                            (Eq. S.36.) 

With   (   ) obtained from  (   )  ∑   (   )
 
   . In this way, adding more terms above jmax 

has little impact on the solution. We chose   equal to 0.00001.  

For the numerical solution, we performed a finite difference simulation. We chose the length of 

the time step as    
   

 
 
(
 

   
)
 

 
 to avoid oscillations in the solution [7].  

Our calculation of the analytical solution is faster than the numerical implementation (Table S1). 

We observed that, for small values of R, the time needed to run the numerical simulations is 
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larger. The time step    must meet the condition that    
   

 
. Thus, for small values of R,    is 

small and consequently    is even smaller. This leads to an increase in the number of time steps 

needed to perform the simulation. 

 

 Analytical solution Numerical Solution 

 R = 0.1 R = 1 R = 10 R = 0.1 R = 1 R =10  

  = 0.1 0.002 sec 0.003 sec 0.002 sec 81.454 sec 0.831 sec 0.010 sec 

  = 1 0.004 sec 0.005 sec 0.005 sec 815.204 sec 8.355 sec 0.084 sec 

  =10 0.007 sec 0.008 sec 0.007 sec 8150.534 sec 81.688 sec 0.822 sec 

Table S1. Comparison between the computational time needed to perform the simulation using the numerical and 

analytical solution for the concentration as a function of space for different times with different domain length (R). 

The simulations were performed in python in an Intel Core i7-7700k with 16 GB of RAM and can be found in [8]. 
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