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Abstract

Acoustic heterogeneities in biological

samples are known to cause artifacts

in tomographic optoacoustic (photo-

acoustic) image reconstruction. A statisti-

cal weighted model-based reconstruction

approach was previously introduced to

mitigate such artifacts. However, this

approach does not reliably provide high-quality reconstructions for partial-

view imaging systems, which are common in preclinical and clinical

optoacoustics. In this article, the capability of the weighted model-based algo-

rithm is extended to generate optoacoustic reconstructions with less distortions

for partial-view geometry data. This is achieved by manipulating the weighting

scheme based on the detector geometry. Using partial-view optoacoustic

tomography data from a tissue-mimicking phantom containing a strong acous-

tic reflector, tumors grafted onto mice, and a mouse brain with intact skull,

the proposed partial-view-corrected weighted model-based algorithm is shown

to mitigate reflection artifacts in reconstructed images without distorting struc-

tures or boundaries, compared with both conventional model-based and the

weighted model-based algorithms. It is also demonstrated that the partial-

view-corrected weighted model-based algorithm has the additional advantage

of suppressing streaking artifacts due to the partial-view geometry itself in the

presence of a very strong optoacoustic chromophore. Due to its enhanced per-

formance, the partial-view-corrected weighted model-based algorithm may

prove useful for improving the quality of partial-view multispectral opto-

acoustic tomography, leading to enhanced visualization of functional parame-

ters such as tissue oxygenation.

Abbreviations: BGD, background; MSOT, multispectral optoacoustic tomography; OA, optoacoustic; PVc, partial-view-corrected; ROI, region of
interest; sO2, oxygen saturation; wMB, weighted model-based

.
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1 | INTRODUCTION

Most OA reconstruction algorithms assume that the sample
under investigation is acoustically homogeneous and per-
fectly matched to the coupling medium between the sample
and the acoustic detectors [1–3]. However, in in vivo imag-
ing cases, the propagation of OA waves is distorted due to
acoustic heterogeneities inside the imaged sample. For
example, lungs, bones and other tissues with high acoustic
mismatch to surrounding tissues can induce strong acoustic
reflections, scattering or speed-of-sound variation artifacts
in reconstructed OA images [4, 5], reducing the overall
image fidelity [6]. Acoustic heterogeneities can also contrib-
ute to the appearance of artifactual negative values in the
reconstructed images [7] with adverse effects on spectral
unmixing and functional OA imaging [8].

Different approaches have been introduced to
account for the effects of acoustic heterogeneities. One
method incorporated a higher-order geometrical acous-
tics approximation in the reconstruction algorithm to
account for the time-shift of OA signals caused by vari-
ations in the speed of sound [9]. Another finite-ele-
ment reconstruction algorithm was based on the
Helmholtz-like OA wave equation in the frequency
domain to increase the efficiency of computing the OA
inverse problem solution in the presence of heteroge-
neities [10]. Another strategy, previously introduced by
colleagues of our research group, was based on a statis-
tical approach to account for artifacts due to acoustic
heterogeneities [11]. The main idea of this approach is
to weight the contribution of the detected OA signals
during the reconstruction by the probability that they
are distorted on their propagation path to the detector,
assuming that the closer an OA signal generator is to
the detector, the lower the distortion of this signal will
be. This statistical approach was shown to be generally
effective at mitigating artifacts due to acoustic hetero-
geneities in reconstructions of in vivo scans [12]. Ini-
tially developed for the back-projection algorithm, this
statistical approach was later adapted for MB recon-
struction [12] in order to provide more accurate ana-
tomical reconstructions and quantitation of the optical
absorption distribution [13]. The MB implementation
of this statistical approach, to which we refer below as
“wMB”, resulted in reconstructions containing less
noise and artifacts [12] compared with reconstructions

that utilized only the first half (timewise) of the
acquired data for each detector [14].

Despite the promising potential of the wMB algorithm
to reduce artifacts due to acoustic heterogeneities in full-
view cross-sectional coverage [11, 12], when it was applied
to PV data, in which the detection geometry does not cover
the entire sample, it caused noticeable distortion at areas of
the image that were not well covered by the tomographic
projections [15]. In this study, we hypothesized that by
suitably manipulating the weighting scheme of the wMB
approach to take into account the PV detection geometry,
we could enhance the quality of PV reconstructions using
the same weighting principle. Such development can be
particularly useful for clinical scanners operating in hand-
held mode, since they collect data over limited projection
angles [16]. To achieve such improved performance, we
developed a “PV-corrected” version of the wMB algorithm
(PVc-wMB) based on manipulating the decreasing probabi-
listic weighting particularly for detectors which are geomet-
rically on the opposing side of the empty section of the
detection circular aperture. The performance of the pro-
posed modified algorithm was examined on a tissue-mim-
icking phantom and in vivo datasets. It produced
reconstructions with fewer distortions, while maintaining
the mitigation of reflection artifacts, and sharper images
compared with conventional MB and the unmodified wMB
reconstructions, thus improving the quality of both ana-
tomical images and quantitative oxygenation maps. We
further demonstrated that the PVc-wMB algorithm can in
some cases suppress streaking artifacts that arise due to the
PV geometry itself (i.e., not only due to acoustic heteroge-
neities) in the presence of a very strong OA absorber.

2 | MATERIALS AND METHODS

2.1 | Theoretical foundation

2.1.1 | MB reconstruction

The OA pressure that is generated and propagated in an
OA sample in response to optical excitation is described
by the following equation [3]:

p r, tð Þ¼ Γ

4πc
∂

∂t

Z
Sct rð Þ

H r0ð Þ
r� r0j jdS r0ð Þ, ð1Þ

2 of 12 MUHAMMAD ET AL.



where p r, tð Þ is the OA pressure at a certain location r
and time t; Γ is the Grueneisen parameter; c is the speed
of sound; H is the energy absorbed per unit volume;
Sct rð Þ is the surface of a sphere centered at r with
radius ct.

The conventional MB reconstruction algorithm is
based on discretization of the OA forward model in
Equation (1), provided that thermal confinement condi-
tions are applicable [13]. Such discretization can be rep-
resented as:

p ri, tj
� �¼XN

k¼1

aijkH r0kð Þ, ð2Þ

where H is evaluated at pixel locations r0k on the discrete
grid on which the reconstruction is computed; aijk are
coefficients encoding the physical parameters in Equa-
tion (1) that describe the propagation of OA pressure
waves; N is the number of pixels. Equation (2) can be
represented as a linear system of equations in the follow-
ing matrix form:

p¼AMH, ð3Þ

where AM is called the model matrix; p and H are the
vector forms of p ri, tj

� �
and H r0kð Þ, respectively.

The inversion process (i.e., the calculation of H) is
performed by minimizing the mean squared difference
between the pressure p predicted by the model and the
measured pressure pm according to the following for-
mula: [13]

H¼ argmin
H

pm�AMHk k2þ λ2 LHk k2� �
, ð4Þ

where λ is the regularization parameter, and L is a matrix
that usually corresponds to a high-pass spatial filter
applied to the result of the reconstruction (imposing a
smoothness constraint on the solution) [17]. Regulariza-
tion is particularly required in the case of PV geometries
because the given inverse problem is ill-posed for such
geometries.

2.1.2 | wMB reconstruction

A weighting technique was previously introduced to
the conventional MB algorithm to mitigate artifacts in
OA reconstructions due to the presence of acoustic het-
erogeneities in the imaged sample [12]. The basic princi-
ple behind this technique is the following: in the case of
no prior knowledge about the distribution of optical
absorbers or acoustic heterogeneities in the sample, it

can be generally assumed that the further the location
from which an OA signal is propagating to a detector,
the less probable it is that this signal propagates directly
to that specific detector. That is; if strong acoustic het-
erogeneities are likely to be present in the propagation
path, there is a probability that any measured signal
could have been already distorted during its propagation
before reaching a detector that is far from the source of
this signal.

To further explain this principle, we assume an area
A is manually chosen to encircle all optical absorbers and
acoustic heterogeneities (light blue area in Figure 1) in
an imaged sample. The probability Pi

r tj
� �

of detecting a
reflected or scattered wave at the transducer at position i
and at time tj was given by the formula: [11]

Pi
r tj
� �¼

Z
Aij

Pi
r tjjr0
� �

f E r0ð Þdr0, ð5Þ

where f E r0ð Þ is the probability density function that an
energy differential is absorbed at location r0; Pi

r tjjr0
� �

is
the conditional probability that a reflected or scattered
wave with unit amplitude is detected at the instant tj,
given that all the optical energy is absorbed at r0; Aij is
the intersection of A and the circle centered at transducer
i with radius ctj. Such intersection is chosen as the inte-
gral support in order to exclude regions where definitely
no acoustic heterogeneities exist (for example, the water
path between the imaged sample and the detector). The
probability Pi

r,dist tjjr0
� �

that the wave, detected at the ith

transducer at instant tj, is distorted (hence the subscript
dist) by a reflected or scattered wave is proportional to
Pi
r tjjr0
� �

, and was approximated as

FIGURE 1 Illustration of the weighting approach in the

original wMB algorithm. The area A contains all optical absorbers

and acoustic heterogeneities. The area Aij is the intersection of A

and the circle centered at the transducer located at ri with radius ctj
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Pi
r,dist tj

� �
≈min 1,ω

Aij

A

� �� �
, ð6Þ

where ω is a heuristic parameter [11]. Hence, the proba-
bility Pi

d tj
� �

that the signal detected by the ith transducer
at instant tj has undergone a “direct” propagation (hence
the subscript d) is given by

Pi
d tj
� �

≜1�Pi
r,dist tj

� �¼max 0,1�ω
Aij

A

� �� �
: ð7Þ

The main idea of the wMB reconstruction approach is to
incorporate Pi

d tj
� �

as a weighting term (representing the
acoustic heterogeneity of the sample) in the forward
propagation model before attempting to solve the inverse
acoustic problem. That is; Equation (2) is modified
according to this approach to

Pi
d tj
� �

p ri, tj
� �¼ Pi

d tj
� �XN

k¼1

aijkH r0k
� �

: ð8Þ

Similarly, the matrix form in Equation (3) is modified to

Wp¼WAMH, ð9Þ

where W is a diagonal matrix containing the elements of
Pi
d tj
� �

on its diagonal.
It was shown that this wMB technique mitigates arti-

facts due to acoustic reflections in tissue-mimicking
phantoms and in vivo cases for full-view cross-sectional
geometries [11, 12]. For PV geometries however, due to
the nature of the weighting scheme, areas in the image
that are not fully covered by the detection geometry tend
to be severely underweighted. Consequently, the recon-
struction at these areas is distorted.

To further illustrate the underweighting problem, we
assume that the PV imaging domain can be represented
by the region covered by the 2D detection arc ∂D as in
Figure 2a. This circular detection arc is covering only
270� of the 2D imaging plane to resemble the preclinical
MSOT system used in this study. The weighting function
Pi
d tj
� �

can be graphically represented as in Figure 2b. For
the wMB algorithm, the signal at detector i is multiplied
by the weight Pi

d tj
� �

. Specifically for detectors in the sec-
tion ∂Du (indicated by the red bold section of the detec-
tion arc ∂D), this weighting approach underweights the

FIGURE 2 Illustrative figures for the theoretical basis of the proposed PVc-wMB algorithm. (a) A diagram of the 270�-PV detection

geometry investigated in this article. (b,c) Pi
d tj
� �

plots for transducer i for (b) the wMB, and (c) the proposed PVc-wMB reconstruction

algorithms. (d) Detected OA signal for transducer i with no weighting (used in the conventional MB reconstruction). (e–f) The same detected

signal for transducer i in (d) after being weighted by Pi
d tj
� �

for (e) the wMB, and (f) the proposed PVc-wMB algorithms
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detected samples indicated by the red dotted segment for
transducer i (corresponding spatially to OA signals origi-
nating at locations farther than the center of the detec-
tion circular aperture ∂D). Consequently, image parts
corresponding to these underweighted samples are rela-
tively distorted in the final reconstruction.

This underweighting can be justified due to two rea-
sons. First, there are no detectors on the opposite side to
∂Du to compensate for such underweighting. Second,
and commonly for such OA scanners, the
acoustic detectors and illumination sources are on
the same circular aperture (i.e., both the detection
and illumination geometries are the same). This leads to
a relatively weaker illumination in areas not fully cov-
ered by the geometry, aggravating the underweighting
problem.

2.1.3 | PVc-wMB reconstruction

To circumvent the underweighting problem of the wMB
algorithm for transducers in ∂Du, we introduce a modifi-
cation to the weighting function Pi

d tj
� �

that takes into
account the PV geometry. In principle, we manipulate a
part of Pi

d tj
� �

to counteract this underweighting effect.
That is; we propose to modify Equation (7) particularly
for the affected detectors to become:

Pi
d tj
� �¼

max 0,1�ω
Aij

A

� �� �
, j< jc

1�ω
Aijc

A

� �
, j≥ jc

8>><
>>:

, ð10Þ

where the instant jc can be chosen to correspond spatially
to the center of the detection circular aperture ∂D. This
value for jc was also the choice for the half-time recon-
struction approach published before [14]. This choice is
reasonable because the imaged sample is almost always
placed in the center of the scanning aperture in order to
maintain the homogeneity of both illumination and
detection. For transducers in ∂Du, this modification
changes the temporal profile of the weighting function
Pi
d tj
� �

from Figure 2b to Figure 2c.
To demonstrate how the weighting term Pi

d tj
� �

affects
the temporal profile of the detected signals for detectors
in ∂Du for both the wMB and PVc-wMB algorithms, we
assume that the raw detected signal by transducer i in
Figure 2a is as shown in Figure 2d. If the original wMB
weighting (without PVc; as in Equation (7) and
Figure 2b) is applied to this raw signal, the signal changes
to the curve shown in Figure 2e. However, if the same
weighting, but with the proposed PVc (as in Equation (10)

and Figure 2c), is applied to the raw signal, it changes to
the curve shown in Figure 2f. It can be noticed that the
detected samples corresponding spatially to OA signals
originating at locations farther than the center of the
detection circular aperture (indicated by the dotted gray
ellipse) are much less flattened in Figure 2f compared
with Figure 2e. This demonstrates how incorporating the
proposed PVc in the wMB algorithm can alleviate the
aforementioned underweighting issue in PV OA imaging
scenarios.

2.2 | Experimental setup and datasets

In order to evaluate the performance of the proposed
PVc-wMB reconstruction algorithm, both phantom and
in vivo experiments were carried out using a commer-
cial preclinical MSOT scanner (MSOT256-TF,
iTheraMedical GmbH, Munich, Germany). In this sys-
tem, a wavelength-tunable Nd:Yag pump optical para-
metric oscillator-based laser provides pulsed excitation
between 680 and 980 nm with a pulse width of about
10 ns, repetition rate of 10 Hz, and per-pulse energy of
about 90 mJ. The optical output is shaped by means of a
fiber bundle to provide a 2D ring-like cross-sectional
illumination. The acoustic detection part of this system
consists of a 256-element concave array of cylindrically
focused piezoelectric transducers with a central fre-
quency of 5 MHz, a radius of curvature of 40 mm and
an angular coverage of approximately 270� (hence the
PV problem) [18, 19].

2.2.1 | Phantom dataset

A tissue-mimicking phantom was prepared to illustrate
the nature of the artifacts produced due to the presence of
a strong acoustic heterogeneity. To achieve this purpose, a
cylindrically shaped absorbing inclusion and a hollow
cylindrical cavity are included in the phantom. The optical
absorption of the absorbing inclusion was obtained by
adding India ink to an agar solution (corresponding
approximately to an optical absorption coefficient μa of
1.2 cm�1 at 680 nm). The background optical absorption
and scattering were achieved by mixing India ink and
intralipid with an agar solution. This corresponded to an
approximate optical absorption coefficient μa of 0.1 cm�1

at 680 nm and an approximate reduced scattering coeffi-
cient μ0s of 7 cm

�1. These values were chosen to approxi-
mate average light fluence attenuation in biological soft
tissues [20–22]. This phantom was imaged at several opti-
cal wavelengths between 680 and 980 nm.

MUHAMMAD ET AL. 5 of 12



2.2.2 | In vivo datasets

All animal handling protocols were performed under
supervision of trained personnel in accordance with insti-
tutional and local guidelines and with the approval of the
Government of Upper Bavaria, Germany. Mice were
housed in an animal housing facility (21 ± 2 �C, 36%
± 2% humidity) on a 12/12-h light/dark cycle at the Insti-
tute of Biological and Medical Imaging, Helmholtz
Zentrum München (Munich, Germany). During the
experiments, the mice were sedated (1.8% isoflurane in
100% O2 at 0.81 ml/min) and immersed in a water bath
kept at approximately 33 �C using a specialized mouse
holder (iThera Medical GmbH, Munich, Germany).

To investigate the performance of the proposed PVc-
wMB reconstruction algorithm in vivo when the acoustic
reflector is localized within the same region as the optical
chromophores, we used a dataset (hereinafter referred to
as “dataset 1”) acquired previously by our research group
from a BALB/c nude mouse (Charles River Laboratories,
Boston, MA, USA) bearing a mammary tumor xenograft.
The animal was injected in its backside with 4 T1 cells
(8 � 105 cells; CRL-2539, American Type Cell Culture
Collection, Manassas, VA), and the xenograft was
allowed to grow for several days, until it reached a size of
100 mm3. Then the animal was injected intravenously
with Rhodobacter sphaeroides (1 � 109 CFU) [23, 24]. At
24 h later, the torso region was imaged at 25 wavelengths
between 680 and 920 nm. This anatomical section was
chosen because the spine acts as a strong source of acous-
tic reflections within the chromophore region.

In order to investigate the performance of the PVc-
wMB algorithm when the acoustic reflector surrounds the
chromophores, we tested it on a dataset (hereinafter
referred to as “dataset 2”) which our research group had
previously acquired from the intact brain of a young adult
mouse (Hsd:Athymic Nude-Foxn1nu/nu) at 805 nm. This
wavelength was chosen because it is close to the isosbestic
point for hemoglobin. In this case, the intact skull provided
a strong acoustic reflector that surrounds the chromophores
inside the brain. Further details about the experimental
procedure can be found in the previous publication [25].

To demonstrate the additional advantage of the PVc-
wMB algorithm of suppressing streaking artifacts arising
from strong OA generation in the case of PV detection
scenarios, we tested it on a dataset (hereinafter referred
to as “dataset 3”) that we acquired from an 8-week-old
female athymic Nude-Foxn1�/� mouse (Envigo, Hun-
tingdon, UK) bearing a 4 T1 tumor. 4 T1 cells (American
Type Culture Collection) were cultured in RPMI-1640
medium (Sigma) supplemented with 10% fetal bovine
serum (Gibco) and 1% penicillin–streptomycin (Sigma).
Cells (0.25 � 106) were inoculated orthotopically into the

right third thoracic mammary fat pad of the mouse, and
allowed to grow for 15 days, until the tumor reached a
diameter of 1 cm (~0.5 cm3 in volume). The transversal
section of the tumor with the longest diameter,
corresponding to its anatomical center, was imaged on
the last day (day 15) at 27 wavelengths between 700 and
960 nm. The skin on the tumor ulcerated on the day of
imaging and consequently, coagulated blood on the sur-
face of the ruptured skin produced a very strong OA sig-
nal, causing a severe streaking artifact. Although this
ulceration was unintentional, it provided a good opportu-
nity to evaluate the proposed PVc-wMB algorithm. It is
important to note that this streaking artifact was not due
to the presence of acoustic heterogeneities in the imaged
sample, but rather due to the PV geometry itself.

2.3 | Quantitative and multispectral data
analysis

As contrast is an important factor of determining whether
a region can be differentiated from the background, we
used the CNR measure to quantify the improvement
achieved by the PVc-wMB reconstruction in the contrast
of the upper boundary of the phantom that is particularly
distorted by the wMB algorithm due to the PV detection
geometry. The CNR is defined as follows: [26]

CNR¼ j μROI�μBGD jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2ROIþσ2BGD

p , ð11Þ

where μROI, μBGD and σROI, σBGD are the means and stan-
dard deviations of a given ROI and BGD, respectively,
both with homogenous intensities.

To demonstrate the spectral performance of the pro-
posed PVc-wMB reconstruction algorithm, spectral
unmixing was performed after acoustic reconstruction
using linear least-squares spectral fitting for in vivo datasets
1 and 3 [27, 28]. This is a conventional spectral unmixing
model in the OA literature, in which the measured spec-
trum at any pixel is assumed to be a linear combination of
distinctive spectral components [29, 30]. For the multispec-
tral datasets 1 and 3, oxy- and deoxy-hemoglobin spectral
components were unmixed in image areas where reflection
and streaking artifacts, respectively, were apparent. Then,
oxygen saturation (sO2) values at the respective pixels were
calculated based on the unmixed spectra.

3 | RESULTS

The performance of the proposed PVc-wMB reconstruc-
tion algorithm was compared with that of the

6 of 12 MUHAMMAD ET AL.



conventional MB algorithm and the unmodified wMB
algorithm, first for the simplified case of the tissue-mim-
icking phantom (Figure 3), and then for the three in vivo
datasets (Figure 4). Before investigating the results, it is
important to know that the value of the heuristic parame-
ter ω was kept at 1 for all datasets investigated in this
article, as it maintained the best compromise between
mitigating artifacts (as will be shown later) and avoiding
smearing the overall reconstruction for most cases, and
also to focus more on studying the effect of the intro-
duced PVc. For more information about the effect of
varying ω, we refer the reader to the discussion in [11,
12], where the original statistical weighting scheme was
first developed for the backprojection and MB reconstruc-
tion, respectively. Additionally for the in vivo dataset
3, we investigated the effect of reducing ω on the
smearing of structures in the center of the image that was
induced by the weighting scheme.

3.1 | Phantom validation

The three algorithms were compared with regard to their
ability to reconstruct the phantom shown in Figure 3a,
containing an optical chromophore and a strong acoustic
reflector. Figure 3b shows the OA reconstruction using
the conventional MB algorithm, where typical arc-like

reflection artifacts (indicated by the red arrows) are
noticeable. Figure 3c shows the OA reconstruction with
the unmodified wMB algorithm, which mitigated the
reflection artifacts but also caused severe distortion in the
upper boundary of the phantom (enclosed by the dotted
ellipse), which was not fully covered by the detection
geometry. Figure 3d shows the reconstruction with the
proposed PVc-wMB algorithm, which recovered the upper
distorted boundary of the phantom without compromis-
ing the capability of the wMB algorithm to mitigate the
arc-like reflection artifacts. Figure 3e shows the intensity
profile along the line l1 across the arc-like artifact in
Figure 3b. The wMB weighting scheme by itself mitigated
this artifact, and the proposed PVc-wMB algorithm
maintained this mitigation as well. Figure 3f shows the
intensity profile along the line l2 across the upper edge of
the phantom in Figure 3b. The proposed PVc recovered
this edge of the phantom that was visible in the conven-
tional MB reconstruction in Figure 3b, reversing the dis-
tortion caused by the wMB algorithm in Figure 3c.
Figure 3g shows the CNR values (calculated based on
Equation 11) for the wMB and PVc-wMB reconstructions
acquired with different illumination wavelengths. The
CNR was calculated taking into account that the ROI
and BGD regions are those indicated by the light-yellow
arc and light-red square, respectively, in Figure 3d. This
ROI was particularly chosen because it represents the

FIGURE 3 Anatomical performance of the PVc-wMB algorithm for the tissue-mimicking phantom. Upper row: (a) A schematic cross-

section of the phantom. OC, optical chromophore; AR, acoustic reflector. (b–d) OA reconstruction of the phantom using (b) MB, (c) wMB,

and (d) PVc-wMB algorithms. Red arrows in (b) indicate typical arc-like reflection artifacts. l1 and l2 are lines taken for intensity profile

analysis in (e) and (f), respectively. Dotted ellipses in (c) and (d) indicate the area not fully covered by the detection geometry. Light-yellow

arc and light-red square in (d) indicate the ROI and BGD regions, respectively, used for CNR calculation in (g). Lower row: (e–f) Intensity
profiles for lines (e) l1 and (f) l2 from (b). (g) CNR plots based on the ROI & BGD regions indicated in (d)
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region with homogenous intensity (theoretically) that is
particularly distorted by the wMB algorithm, but recov-
ered by the PVc-wMB algorithm. As shown in Figure 3g,
the PVc-wMB algorithm maintains a considerably higher
CNR for most of the wavelength range, compared with
the wMB algorithm alone. The steep drop of the CNR for
the PVc-wMB reconstructions starting around 890 nm is
due to the fact that the increasing optical absorption of
water starts to significantly affect the overall reconstruc-
tion quality as the image becomes much noisier and con-
trast is lost all over the image.

3.2 | In vivo validation

Next, we compared the performance of the PVc-wMB
algorithm with that of the conventional MB algorithm for
reconstructing OA in vivo data. Figure 4 shows the three
datasets, each presenting a different challenge for accu-
rate OA reconstruction.

In dataset 1, the spine (indicated with the red arrow
in Figure 4a) acts as a strong acoustic reflector inside the
mouse. Comparison of the magnified insets of Figure 4a
and b shows that the proposed PVc-wMB algorithm miti-
gates the reflection artifact (indicated by the white
arrows). Figure 4c confirms this mitigation by showing
less intensity variations along the yellow profile line
across the reflection artifact in (a) and (b). This mitiga-
tion of the reflection artifact was achieved without caus-
ing distortion of the upper part of the image, which was
not fully covered by the detection geometry.

In the case of dataset 2, the skull acted as a strong
acoustic reflector surrounding the OA chromophores.
Visual inspection of Figure 4d and e and the two magni-
fied ROIs demonstrates that the PVc-wMB reconstruction
has qualitatively a higher overall sharpness. Figure 4f
confirms this increase of sharpness quantitatively based
on the Brenner's gradient of sharpness [31].

In dataset 3, a blood vessel within the tumor ruptured
near the skin and released blood that coagulated, creating

FIGURE 4 Anatomical performance of the PVc-wMB algorithm for the three in vivo datasets. First column: OA reconstructions of

dataset 1 using (a) MB and (b) PVc-wMB algorithms. The red arrow in (a) indicates the spine. White arrows in the side insets of (a) and

(b) indicate typical reflection artifacts. (c) Intensity profile along the yellow line taken across the reflection artifact in (a) and (b). Second

column: OA reconstructions of dataset 2 using (d) MB and (e) PVc-wMB algorithms. The side insets indicate two ROIs used for further

sharpness analysis. (f) Sharpness measures of the two ROIs in (d) and (e). Third column: OA reconstructions of dataset 3 using (g) MB and

(h) PVc-wMB algorithms. White arrows in the side insets indicate typical streaking artifacts due to the very strong OA generation by

coagulated blood. (i) Intensity profile along the dotted line taken across the small vessel in the side insets of (g) and (h)
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a strongly absorbing chromophore that gave rise to
streaking artifacts in the subsequent OA reconstruction.
Although such streaking artifacts arise from the PV
detection geometry itself and not from acoustic heteroge-
neities, the proposed PVc-wMB algorithm was able to
suppress them as well. Comparison of Figure 4g and h
demonstrates that the proposed algorithm significantly
suppressed the streaking artifacts around the coagulated
blood (indicated with the white arrows), again without
introducing distortion in the upper image part which was
not fully covered by the detection geometry. This streak-
ing suppression led to enhancing the delineation of the
tumor boundary. Figure 4i shows the intensity profile
across a blood vessel within the tumor (indicated with
the small dotted line in the magnified insets of (g) and
(h)), further demonstrating the ability of the proposed
algorithm to reproduce fine anatomical details with rela-
tively higher contrast.

For dataset 3, however, it has to be noted that the
PVc-wMB reconstruction for ω = 1 caused slight
smearing of some of the image parts in the center. This
smearing can be better visualized in Figure 5d, which
shows the absolute difference image between the MB
reconstruction (Figure 4g) and the PVc-wMB reconstruc-
tion for ω = 1 (Figure 4h, also shown in Figure 5a). A
similar smearing of some of the image parts in the center

for the small animal imaging results was also reported in
Reference [11] (where the statistical weighting scheme
was first introduced to backprojection reconstruction).
There, the smearing started to become noticeable with
values of ω more than 1. Reducing the value of ω can
reduce such smearing. For our in vivo dataset 3, and in
comparison with Figure 5d, this reduction of smearing
can be noticed in Figure 5e and f, which are the differ-
ence images between the MB reconstruction and the
PVc-wMB reconstructions for ω = 0.8 (Figure 5b) and ω
= 0.5 (Figure 5c), respectively. This reduction of smearing
for ω values <1 is attained while still maintaining accept-
able suppression of the streaking artifact around the
ulceration area. It has to be pointed out that because ω is
a heuristic parameter, and also due to the statistical
nature of the weighting scheme, it is up to the user to
select the value of ω that achieves the best compromise
between mitigating artifacts and maintaining minimal
smearing of true image information for any given dataset.

3.2.1 | Validation of spectral unmixing

The results for in vivo reconstruction suggest that the
PVc-wMB algorithm can improve the anatomical quality
of reconstructed images. We further investigated whether

FIGURE 5 Effect of reducing ω on the appearance of internal parts for the in vivo dataset 3. Upper row: PVc-wMB reconstructions at

(a) ω = 1, (b) ω = 0.8, and (c) ω = 0.5. Lower row: Absolute difference images between the MB reconstruction (Figure 4(g)) and the PVc-

wMB reconstructions at (d) ω = 1, (e) ω = 0.8, and (f) ω = 0.5. Red arrows in (d) indicate internal parts that were slightly smeared in (a).

Such smearing was reduced by reducing ω as can be noticed in (e) and (f)
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the proposed method could improve spectral unmixing
results in order to generate more reliable mapping of
functional measures such as the sO2. Hence, we com-
pared the spatial estimation of sO2 in areas of the
abovementioned mouse tumor images showing a reflec-
tion artifact (dataset 1) and a streaking artifact (dataset
3). Comparison of Figure 6a and b indicates that the PVc-
wMB mitigated the spectral signature of the reflection
artifact observed in the conventional MB reconstruction
(indicated by the black arrows in the side insets). Simi-
larly, comparison of Figure 6c and d shows that the PVc-
wMB also suppressed the spectral signature of the streak-
ing artifact (indicated by the black arrows in the side
insets), thus enhancing the delineation of the spectral sig-
nature of the tumor, similar to what was observed ana-
tomically in Figure 4h.

4 | DISCUSSION AND
CONCLUSION

In this article, we modified the wMB reconstruction algo-
rithm to have a better performance for PV geometries.
The proposed PVc-wMB algorithm showed generally bet-
ter reconstruction performance compared with both the
conventional MB and the unmodified wMB algorithms.

For both phantom and in vivo data, the PVc-wMB
retained the ability of the wMB algorithm to mitigate
reflection and/or streaking artifacts observed with con-
ventional MB reconstruction. Additionally, the proposed
method did not introduce distortions observed with the
wMB algorithm in areas not fully enclosed by the detec-
tion geometry. The proposed PVc-wMB algorithm was
found to have better performance at the anatomical as
well as spectral level, potentially allowing for more reli-
able estimation of functional parameters like sO2 for
in vivo measurements. The proposed reconstruction
scheme can support a more accurate and reliable preclin-
ical and clinical analysis using commercially available
MSOT imaging systems, most of which feature PV
geometries.

In the case of an acoustic reflector localized inside the
imaged target, we observed in experiments with a tissue-
mimicking phantom and an in vivo dataset (dataset 1)
that the PVc-wMB reconstruction algorithm mitigates the
reflection artifacts without giving rise to the distortion
caused by the weighting scheme of the unmodified wMB
algorithm. While imaging a tumor xenografted on a
mouse in vivo (dataset 3), we also observed the additional
advantage of the proposed algorithm to suppress typical
streaking artifacts around super strong absorbers due to
the PV geometry itself [32]. It is worth mentioning that

FIGURE 6 Spectral unmixing performance of the PVc-wMB reconstruction for two in vivo datasets. Left column: Overlay of spectral

unmixing (sO2 map) of an ROI on reconstructions of dataset 1 using (a) MB, and (b) PVc-wMB algorithms. The side insets show zoomed

images of the ROI affected by the reflection artifact. Black arrows in the insets indicate sO2 signatures of reflection artifacts. Right column:

Overlay of spectral unmixing (sO2 map) of an ROI on reconstructions of dataset 3 using (c) MB, and (d) PVc-wMB algorithms. The side

insets show zoomed images of the ROI affected by the streaking artifact. Black arrows in the insets indicate sO2 signatures of the streaking

artifacts
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such streaking patterns are similar to the undersampling
artifacts caused by spatial aliasing in x-ray CT [33]. Such
artifacts are significantly aggravated when a structure of
an extraordinary intensity that is outside the normal
range is present in the field of view. This likely increases
the ill-posedness of the tomographic inversion problem
for PV geometries and manifests itself as such strong
streaking. For example, the presence of metal implants
causes severe streaking patterns around them in x-ray CT
[33]. Similarly for our OA in vivo dataset 3, the coagu-
lated blood acted as a “super” chromophore whose inten-
sity is unmatched by other chromophores in the image,
leading to streaking around it. That is why such streaking
was particularly apparent in this in vivo dataset. Suppres-
sion of such streaking artifacts is of profound importance
in cases where strong OA chromophores (e.g., black
moles) are present on the skin of animals, such as B6
mice which are widely used in brown fat studies [34].
These spots generate strong OA signals accompanied
with streaking patterns that smear the entire image and
hinder its interpretability.

Figure 3 generally demonstrated the improvement by
the PVc-wMB algorithm for reconstructing the tissue-
mimicking phantom. It can be noticed however that the
upper-left boundary of the acoustic reflector was poorly
delineated in all reconstruction results. The reason for
this is the PV geometry itself. That is; OA signals origi-
nating from background chromophores which are in the
immediate neighborhood of this area did not propagate
directly to any detector due to the absence of detectors on
the 90� upper section of the detection arc (as in
Figure 2a). Consequently, this led to loss of contrast at
that part of the image. A solution for this issue is to
employ a full-view detection geometry (i.e., 360�) to cap-
ture the full shape of the reflector. Another solution is to
utilize acoustic a priori about the locations and shapes of
strong acoustic heterogeneities during the reconstruc-
tion [35].

Perhaps an even more stringent test of the PVc-wMB
algorithm was its ability to enhance the reconstruction of
images of an entire mouse brain in vivo through the intact
skull (dataset 2). In this case, the acoustic reflector sur-
rounds the chromophores. The PVc-wMB algorithm
enhanced the overall sharpness of the reconstructed image.
This increase in sharpness likely reflects the algorithm's
ability to mitigate reflection artifacts caused by the skull.
As a result, the detected OA signals had less ambiguity,
and image features, which have apparently been blurred
by the reflection artifacts, could be more accurately
reconstructed and localized. This enhancement in the qual-
ity of the reconstruction was achieved without introducing
distortions to the upper part of the image which was not
well covered by the detection geometry. Such enhancement

can further facilitate preclinical OA investigation of the
brain activity through the intact skull, which is a main
challenge in in vivo transcranial imaging [36].

The improvement in anatomical imaging performance
was accompanied by enhanced spectral unmixing results
for the in vivo datasets 1 and 3, potentially leading to more
reliable sO2 estimates and better differentiation between
normal and malignant tissue. However, for a more rigorous
analysis of the effect of the proposed algorithm on spectral
unmixing, tissue-mimicking phantom experiments with
dyes having unique spectral signatures (e.g., Indocyanine
green) would be required so that a “ground-truth” spectral
map can be established, to which results can be reliably
compared. Such analysis is planned for future work.

Overall, the proposed PVc-wMB algorithm achieved
better reconstruction results in comparison with the con-
ventional MB algorithm by mitigating reflection and/or
streaking artifacts. This enhancement was achieved with-
out sacrificing reconstruction quality and causing distor-
tions in image sections not fully enclosed by the PV
detection geometry, in comparison with the unmodified
wMB algorithm. Additionally, the proposed PVc-wMB
algorithm maintains the inherent advantage of the wMB
algorithm of not requiring prior knowledge of the exact
locations or distribution of OA chromophores or acoustic
heterogeneities, thus giving it a wide variety of applica-
tions [12]. However, it may be possible to further improve
its reconstruction performance by including such priors.
The same statistical weighting scheme applied in the
wMB algorithm was previously integrated into a back-
projection reconstruction procedure that took into
account the locations of strong acoustic heterogeneities
as acoustic priors [37]. The inclusion of such priors
enhanced the mitigation of reflection artifacts compared
with the case where no priors were integrated. Therefore,
we expect that the proposed PVc-wMB algorithm may
also benefit from taking into account optical and acoustic
priors in order to mitigate reflection and/or streaking
artifacts more effectively. Another potential issue for
future investigation is to compare the PVc-wMB algo-
rithm with other non-negative reconstruction approaches
[38, 39] particularly for the ability to suppress streaking
artifacts in PV detection geometries.

In conclusion, in this article, we demonstrated that
augmenting the wMB OA reconstruction algorithm with a
correction scheme enhances its performance for PV geom-
etries. The augmented algorithm has the potential to
increase the quality of preclinical and clinical MSOT appli-
cations, such as tumor imaging and non-invasive brain
imaging. The ability of the proposed algorithm to improve
the reconstruction of not only anatomical but also func-
tional information can further support the integration of
OA imaging into research and clinical workflows.
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