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Cultivated oat (Avena satival.) is an allohexaploid (AACCDD, 2n = 6x = 42) thought to
have been domesticated more than 3,000 years ago while growing as aweed in wheat,
emmer and barley fields in Anatolia'?. Oat has alow carbon footprint, substantial
health benefits and the potential to replace animal-based food products. However, the
lack of a fully annotated reference genome has hampered efforts to deconvolute its
complex evolutionary history and functional gene dynamics. Here we present a
high-quality reference genome of A. sativa and close relatives of its diploid (Avena
longiglumis, AA,2n =14) and tetraploid (Avena insularis, CCDD, 2n = 4x = 28)
progenitors. We reveal the mosaic structure of the oat genome, trace large-scale
genomic reorganizations in the polyploidization history of oat and illustrate a
breeding barrier associated with the genome architecture of oat. We showcase
detailed analyses of gene families implicated in human health and nutrition, which
addstothe evidence supporting oat safety in gluten-free diets, and we perform
mapping-by-sequencing of an agronomic trait related to water-use efficiency. This
resource for the Avena genus will help to leverage knowledge from other cereal
genomes, improve understanding of basic oat biology and accelerate
genomics-assisted breeding and reanalysis of quantitative trait studies.

Oat is a member of Poaceae, an economically important grass family
thatincludes wheat, rice, barley, common millet, maize, sorghum and
sugarcane. Avena species exist in nature as diploids, tetraploids and
hexaploids and exhibit the greatest genetic diversity around the Medi-
terranean, Middle East, Canary Islands and Himalayas. Currently, oatis
aglobal crop with production ranking seventh among cereals (http://
www.fao.org/faostat/en/, accessed May 2021). Compared with that of
other cereals, oat cultivation requires fewer treatments with insecti-
cides, fungicides or fertilizers. Whole-grain oats are a healthy source
of antioxidants, polyunsaturated fatty acids, proteins and dietary fibre
such as 3-glucan, whichisimportantin post-meal glycaemic responses
and for preventing cardiovascular disease®>. Cereals such as wheat,

barley and rye store high amounts of gluten proteins in their grain; by
contrast, oat and rice store globular proteins in their grain.

Genome assembly and composition

We produced achromosome-scale reference sequence of oat cv. ‘Sang’
comprising 21 pseudochromosomes (Fig.1, Extended DataFig.1aand
Supplementary Table 1), with a BUSCO (v5.1.2; ref. ®) score of 98.7%
(Extended Data Fig. 2a), following the short-read strategy used for
wheat’, barley® and rye’. Inspection of Hi-C contact matrices (Sup-
plementary Fig. 1) and the consensus genetic map'® (Supplemen-
tary Fig. 2a) and their comparison with the independent assembly
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Fig.1|Structural and functionallandscape of the 21 oat
pseudochromosomes. a-f, The tracks from the outer circles towards the
centre of the diagram display the chromosome name and subgenome origin
(A, blue; C, gold; D, green) with major translocations (a); anchored oat genetic
markers®! (b); distribution of recombination rates (c); density and genomic
distribution of high-confidence genes (d); age distribution of long terminal
repeatretrotransposons (e); and median gene expressionin1-Mb windows (f).
Inner connections show the best bidirectional BLAST hits betweengenes on
homoeologous chromosomes (grey) and between genes on non-homoeologous
chromosomes (dark red). Figure generated with Circa (http://omgenomics.
com/circa).

(long-read) of hexaploid oat 0T3098 (ref.™; version 2; Supplementary
Table 2) verified the integrity of the assembly (Extended Data Fig.2band
Supplementary Fig.2). We also assembled pseudochromosomes of the
diploid Avena longiglumis and tetraploid Avena insularis, which are pre-
sumed A and CD subgenome progenitors of Avena sativa® (Extended
Data Figs. 1a and 2a and Supplementary Figs. 3 and 4). Phylogenomic
analyses (Supplementary Fig. 5) used to assign A. sativa chromosomes
to subgenomes showed that gene order is conserved in the proximal
chromosomal regions. The 21 A. sativa chromosomes, named 1A-7D
following the subgenome assignments of ref. >, were oriented to pre-
serve the orientations of core regions across homoeologues and pos-
sibly between Avena and Triticeae. Alignments to barley (Extended
Data Fig. 1b), Avena eriantha* (Supplementary Fig. 6), A. longiglumis
(Supplementary Fig. 7a) and A. insularis (Supplementary Fig. 7b) con-
firmed the validity of this revised nomenclature, whichis accepted by
the International Oat Nomenclature Committee®.

We predicted gene models in the oat genome using an automated
annotation pipeline’®, assisted by RNA-sequencing (RNA-seq) and
Iso-seq transcriptome data, protein homology and ab initio predic-
tion. Thisyielded 80,608 high-confidence protein-coding loci (98.5%
BUSCO; Extended Data Fig. 2c and Supplementary Table 3), 83.5%
of which showed evidence of transcription in at least one condition.
Another 71,727 low-confidence protein-codingloci primarily represent
gene fragments, pseudogenes and gene models with weak support. The
overallamount and composition of transposable elementsis very simi-
lar between the Sang and 0T3098 assemblies (Supplementary Tables 4
and 5 and Supplementary Fig. 8). Transposable elements accounted
for 64% of the oat genome sequence. The size difference of about1Gb
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observed between the Cand A or D subgenome probably reflects higher
transposon activity in the diploid ancestor of the C subgenome, as
evidenced by a1.3-fold increase in the number of full-length long ter-
minal repeat retrotransposons, anenrichmentin specific transposable
element-related Pfam domains and Csubgenome specific transposon
families, higher repetitivity, more tandem repeats and higher numbers
of transposable element and low-confidence genes (Extended Data
Fig.1c).Several tandem repeat subfamilies were unequally distributed
across the subgenomes, highlighting potentially rearranged genomic
regions (Extended Data Fig.1d). However, limitations of the short-read
assembly arising from lower contiguity (Supplementary Table 1) were
apparentinthe overall reduced representation of tandem repeats and
ribosomal DNA loci (Supplementary Tables 4 and 6) as well asinregions
of reduced gene density mainly in centromeric and pericentromeric
regions and unplaced genes (Supplementary Fig. 9, Supplementary
Table 7 and Supplementary Methods).

Mosaic chromosome architecture of oat

The overall structure of the oat genome is similar to that of Triticeae
genomes, although frequent genomic rearrangements in oat have
resulted in a mosaic-like genome architecture. In many oat chromo-
somes, gene and recombination density is not amonotonic function
of distance from the centromere (Extended Data Fig. 3), as is mostly
observed in the Triticeae"”. Examination of whole-genome alignments,
subgenome-specific k-mers and orthologous and homoeologous
genes clustering as syntenic blocks in genomic neighbourhoods in
four Avena species (Extended Data Figs. 1d and 4) revealed numer-
ous large-scale genomic rearrangements affecting the order of these
blocks within and between subgenomes (Fig. 2a). We detected seven
large-scale genomic rearrangementsin A. sativa and traced them back
to eight translocation events between the A, C and D subgenomes
(Fig. 2b, c, Extended Data Figs. 4a and 5a, Supplementary Fig. 10 and
Supplementary Table 8), spanning 4.3% of the genome and approxi-
mately 7.9% of the high-confidence genes. Two of the translocation
events were specific to A. sativa. Unlike those in wheat’, the oat subge-
nomes exhibit unbalanced gene counts; specifically, the C subgenome
appearsto have12% fewer genes than the A or D subgenome (Extended
DataFig.2d and Supplementary Table 9). Analysis of orthologous gene
groups (Supplementary Table 10 and Supplementary Figs. 11and 12)
showed that unbalanced gene families were associated with significant
spatial clustering (Supplementary Fig.13) ingenomic rearrangements.
Ancestral state reconstruction of the oat chromosomes revealed a
loss of at least 226 Mb of gene-rich regions from the C subgenome
to the A and D subgenomes (Supplementary Table 9). This implies
that the translocations fully account for the lower gene count in the
C subgenome and not gene loss or subfractionation after formation
of the hexaploid.

Previous molecular marker studies using oat mapping and breeding
populations have provided independent evidence for frequent trans-
locations among oat subgenomes'®’, Using the oat genome to reana-
lyse the data (Extended Data Fig. 6), we observed inter-chromosomal
pseudo-linkage in a population that segregates for the 1C transloca-
tion on 1A. Such pseudo-linkage has been implicated in the propen-
sity for cold hardiness to remain associated with non-carriers of this
translocation?®. An accompanying study® details similar associated
opportunities and barriers in genomic breeding strategies. The mosaic
nature of the oat genome may be associated with the apparentlack of an
orthologue of TaZIP4-B2 (located within the PhIlocus), whichin bread
wheat stabilizes the genome structure during meiosis and suppresses
crossovers between homoeologues®2* (Extended Data Fig. 5b and Sup-
plementary Figs.14 and 15). In contrast to wheat®, interploidy crosses
and alien introgressions have been extremely challenging in Avena®,
suggesting that incompatible genome architecture is an additional
barrier preventing genetic gains in oat.
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Fig.2|Genome organization, rearrangement and subgenomeinterplayin
oat.a, Overview of syntenic blocks across the three subgenomes®2.

b, Predicted borders of the seven major inter-subgenomic translocations in
hexaploid oat A. sativa (A.sat) and its closest tetraploid ancestor, A. insularis
(A.ins).Blue, gold and green colours represent the A-, C- and D-subgenomic
regions, respectively. ¢, Reconstruction of translocationsin A. sativa and
A.insularis using subgenome-specific k-mers and syntenic blocks and
orthoblocks. Left side, probabilities of the A-, C-and D-subgenome
classification by k-mers for chromosome 1C of A. insularis and chromosomes
3A,1Cand1A of A.sativa. The boxes above each plot show the order and
identity of colour-coded blocks of the respective orthologous homoeologous
genesaccordingto the colour barat the bottom left. Right side, illustration of
two translocation events deduced from the information at left: translocation

Oat subgenome expression is balanced

After polyploidization, sub-and neofunctionalization and gene loss modify
the gene content in the new species™?, Systematic differences in subge-
nome/homoeologue gene expression (homoeologue expression bias®)
may alsobe prevalent. Infact, quantitative variation for many agronomic
traits may reflect genetic interactions between homoeologues such as
functional redundancy (buffering) or dominant phenotypes attributed
to one homoeologue®. To investigate homoeologue expression bias in
hexaploid oat, we defined 7,726 homoeologous gene triads withal:1:1cor-
respondenceacross the three oat subgenomes (Supplementary Table11),
referred toasancestraltriads. Average expression values across transcrip-
tome samples from six tissues showed that C-subgenome genes were
slightly less expressed (32.32%) than thosein the D (33.53%) and A (33.76%)
subgenomes (Kruskal-Wallis, P=0.054). We considered six homoe-
ologous expression categories® and found that most ancestral triads
(84.1%) showed balanced expression, 3.4% showed single-homoeologue

ofblocks48and 63 from chromosome 3D to 1C, whichis shared by A. sativa and
A.insularisand occurredin their tetraploid ancestor, and the transfer of blocks
13and 19 from chromosome 1Cto1Ain A. sativa, resulting inaduplication
pattern of these blocks. Theancestral location of blocks 48 and 63 onchr3is
supported by chr3A of A. sativa (top left); chr3C of A. sativa, A. insularis and
A.eriantha; and chr3A of A. longiglumis. Bottom right, the 1Csegment of chrlA
inA. sativais cytologically highlighted. Asterisks refer to the ancestral state of
chromosomes.d, Ternary plot of the relative expression levels of 7,726
ancestral triads (23,178 genes) in hexaploid oatin acombined analysis of all
transcriptome samples. Each dotrepresents agene triad withanA,Cand D
coordinate. Subgenome-dominant categories are defined by triads in vertices,
whereas suppressed categories are associated with triads near edges and
between vertices. Grey dotsin the centreindicate balanced triads.

dominance and 12.6% showed single-homoeologue suppression. The
relative contributions of the different categories (Extended DataFig. 7a)
indicated no major overall bias for one of the subgenomes (Fig. 2d).
A co-expression network approach revealed that genes from the C sub-
genome were found in divergent expression modules more frequently
than their A- and D-subgenome homoeologues (y? test, P=2.085 x10°%;
Extended DataFig. 7b and Supplementary Table 12).

Inanother1,508 triad gene clusters containing at least one member posi-
tionedinatranslocatedregion (relocated triads; Supplementary Table13),
the overall expression patterns were similar to those of the ancestral triads
(Extended Data Fig. 7c). The C-suppressed category was slightly larger
(5.1%) in the ancestral triads compared with the A-suppressed (3.5%) or
D-suppressed (4.1%) triads, but the subgenome suppression patternswere
reversed (4.5% A,4.2% Cand 5.2% D) inthe relocated triads (y*test, P= 0.019;
Extended Data Fig. 7c). Our results indicate that translocations and rear-
rangements in the oat genome may affect global and homoeologous
gene expression patterns. Understanding how homoeologues interact
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Fig.3|Analysis of cellulose synthase and seed storage protein gene
familiesinA.sativa. a, Phylogeny of the cellulose synthase protein
superfamily in A. sativa highlighting the eight subfamilies. Outer tracks
represent the variance stabilizing-transformed transcripts per million (TPM)
values determined for early, middle and late seed-development stages.

The TPMlevel correlates with the intensity of burgundy colouring; the branch
thickness correspondsto the bootstrap values and increases with higher
bootstrap. b, Schematic representation and phylogeny of cereal storage
proteins. The proteintypes used for the analysis were: wheat gliadins,
glutenins, avenin-like proteins and ATIs’; barley hordeins, avenin-like proteins

toinfluence gene expression and identifying functional single-copy genes
showing non-balanced expression willinform cropimprovementin oats.

Soluble fibre-related gene families

Mixed-linkage B-glucans are soluble fibres present at high levels in
oat endosperm cell walls (3.8-6.1g per 100 g dry weight) that reduce
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highlightedin separatelayers. Epitopes used for the analysis included coeliac
disease (CD)-associated T cell epitopes*’. The numbers of T cell epitopes are
labelledinthe red colour scale. The number of peptides identified at the 95%
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correspondsto bootstrap values and increases with higher bootstrap. LMW,
low molecular weight. ¢, Expression of oat prolamin and globulingenesin three
stages of seed development. The variance stabilizing transformed (vst) TPM
levels correlate with the intensity of yellow to red colouring.

blood cholesterol and post-meal glycaemic responses®*. The cellulose
synthase-like gene CsFé6is central for 3-glucan biosynthesis in cereals®*,
We catalogued the cellulose synthase (G72) and callose synthase (GT48)
families of glycosyltransferases toidentify the genetic foundation under-
lying oat -glucan biosynthesis. The hexaploid oat genome encodes 134
members ofthe cellulose synthase gene superfamily (Fig.3a), represent-
ing the cellulose synthase (CesA) subfamily (Supplementary Fig. 16) and
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Fig. 4 |Single-gene mapping of an epicuticular wax mutant.

a, b, Epicuticular wax phenotypes of the glossy.I mutant (a) and the glaucous
parental cultivar (b) at the early grainfilling stage. S, sheath; F, flag leaf;

P, panicle. ¢, Sliding window of allele frequency for variants unique to glossy.1.
Awindow of 100 variants (total allelicdepth >30) was used. Green triangle,
chromosomalregion shared by the glossy.1 pool; empty triangle, location of
the contigwith the candidate gene in the assembly. Hi-C data anchor the contig
tothe1C peak.d, Mapping of the glossy.1locus. Top, genes and variants (total
allelicdepth>30) atthe 1C peak. Middle, the candidate gene (Gene-ID: AVESA.
00010b.r2.UnG1403470) encoding alipase/carboxyltransferase (L/CT),
indicated by the red vertical bar, islocated in the putative biosynthetic gene
cluster orthologousto the barley Cer-cqu cluster. The genes encoding diketone
synthase (DKS) and L/CT are orthologous to the barley Cer-c and Cer-qg genes,

seven cellulose synthase-like subfamilies, including CslA, CsIC, CsID, CslE,
CslF, CslHand CslJ. The GT48family comprised 28 members (Supplemen-
tary Fig.17). Genes within the CesA and CslF subfamilies were most highly
expressed over multiple stages of seed development (Fig. 3aand Supple-
mentary Fig.18). Investigation of differentially expressed genes between
stagesindicated specificroles for particular subfamilies such as CslE and
CslF (including the C-subgenome copy of CslF6), whichwere upregulatedin
late stages of seed development (Supplementary Fig.19),as showninbar-
ley**. Compared with other grasses, the oat cellulose synthase superfamily
showed no significant expansions apart from duplication events in the

respectively (Supplementary Figs.22 and 28). Green triangle, glossy.1
mutation; blue triangle, glossy.2 mutation. Bottom, alignment of HvCER-Qand
AsCER-Q.Known deleterious single-amino acid substitutions from barley*’ are
indicated. e, f, Scanning electron micrographs of the glume cuticle surfacein
glossy.1(e)and the glaucous parental cultivar (f) at 4,000 magnification; scale
bars,10 pm. g, Hentriacontane-14,16-dione is the major metabolite not
detectedinglossy.1(two-sided Welch t-test, Pvalues adjusted using Benjamini-
Hochberg procedure; glaucous flagleaf, n = 4; glossy flag leaf, n = 3; sheath,
n=3;glume,n=2).h,Homoeologous gene clusters onchromosomes 1C,3A and
2C.Genesare coloured according to the mean TPM value (four biological
replicates) in glaucous glumes. Myb, Myb factor; P450, cytochrome P450;
WSDI1, wax ester synthase/diacylglycerol acyltransferase 1; SDR, short-chain
dehydrogenase/reductase.

CesA, CslC, CslE and Csl/subfamilies (Supplementary Fig. 20 and Extended
DataFig. 8). These findings suggest that the high content and quality of
B-glucaninoatare not driven by major differencesin the copy number of
cellulose synthase superfamily genes relative to other grasses but rather
by allelic variation and transcription factors, as previously reported®.

Oat storage proteins and human health

Oat globulins constitute 75-80% of grain protein content, with prol-
amins (avenins) accounting for approximately 10-15%. Prolamin
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superfamily members trigger coeliac disease, food allergies and
baker’s asthma®. We identified genes encoding 25 avenins, 6 high-
molecular-weight glutenins (HMW-GS) and 61 genes representing
«-amylase/trypsin inhibitors (ATIs) and other prolamin superfamily
members related to protein accumulation and immunogenicity (Sup-
plementary Table 14). Hexaploid oat has avenin loci on chromosomes
1D,3D and 7A; seed storage globulin loci (135 genes) on chromosomes
1A,1D, 3D, 7A, 4A and 4D; and no storage protein loci mapping to the
Csubgenome (Fig. 3b and Supplementary Table 14).

Unlike that of wheat, the oat genome harboured no a- or w-gliadin
genes, and the identified avenins co-clustered with y-gliadins,
low-molecular-weight glutenins and B-hordeins (Fig. 3b). We detected
four complete, highly conserved oat HMW-GS gene models as two
distinct loci on 1A and one locus pair on 1D, with no HMW-GS genes
mappingto1C. Weidentified a prolamin type, the 19-kDa globulin-like
proteins, with an unknown function that is distinct from the avenins
yet shares sequence similarity with HMW-GS and 19-kDa globulins
(Fig.3b). The predicted oat HMW-GS and avenins were highly conserved
in their Pfam domains (Fig. 3b) and cysteine patterns (Extended Data
Fig. 9). Glutamine- and proline-rich repetitive peptides were fewer in
these oat proteins, making them shorter than those in wheat or barley
(Extended DataFig. 9).

We detected transcripts for most of the avenin genes, which showed
gene expression patterns that aligned with their wheat orthologues,
with increased transcript levels from the middle phase of seed devel-
opment* (Fig. 3c), and protein levels by using liquid chromatography
with tandem mass spectrometry (Fig. 3b). We identified inactive genes
and pseudogenes among avenin-encoding genes (Fig. 3b, c and Sup-
plementary Table 14) in asimilar proportion as in wheat y-gliadins*?%,
This indicates a lower level of gene expansion and pseudogenization
compared with the highly immunogenic wheat a-gliadin genes®. Moreo-
ver, the expression of 11S globulin genes initiated early in seed develop-
ment and was higher than that of the avenin genes (Fig. 3c). Discovery
proteomics detected thirty-six distinct 11S globulins, five globulin-1
proteinsand two 7S globulins, with an average of 83% protein sequence
coverage at a1% false discovery rate.

The oat avenins and globulins showed opposite trends compared
with their wheat orthologuesin gene copy number, protein length and
enrichmentin glutamine and asparagine residues that serve asanitro-
gen storage sink (Extended Data Fig. 10a). Together with pronounced
differencesintranscription factor-binding sites specificto the nitrate
response (Extended Data Fig. 10b and Supplementary Table 15), this
may contribute to the primary role of oat globulins in nitrogen stor-
age. These results confirm that the genomic organization, sequence
characteristics and expression patterns of oat storage proteins share
more similarities with rice and dicotyledonous plants than with wheat
and other gluten-rich cereals*>*.

We mapped previously reported coeliac disease-associated T cell
epitopesto the predicted oatavenin proteins and compared them with
the T cell epitope patterns of wheat and barley prolamins*. The results
showed that only asubset of encoded avenin proteins contain coeliac
disease-associated immune-reactive regions compared with the high
prevalence found in wheat or barley (Fig. 3b). Taken together, the low
copy number of genes encoding coeliac disease epitopes, low frequency
of detected T cell epitopes in the protein sequence, low occurrence
of other highly immunogenic proteins, proportion of avenins within
total oat protein and relative immunogenicity of avenin epitopes* all
support the inclusion of oats in gluten-free diets™.

Single-gene mapping of awax mutant

To demonstrate how an annotated reference genome enables greater
use of resources such as TILLING populations***’, we mapped the causal
mutation in the epicuticular wax mutant glossy.1I (Fig. 4a, b). Epicu-
ticular waxes have arole in biotic and abiotic stress resistance***’ and

118 | Nature | Vol 606 | 2 June 2022

provide animportant target for oat breeding. We identified homozy-
gous polymorphisms unique to the mutant, which mapped to chromo-
some 1C (Fig. 4c and Supplementary Fig. 21), and identified a single
gene annotated as an o/B-hydrolase (AVESA.00010b.r2.UnG1403470)
asalikely candidate thatis orthologous to barley Cer-q (HORVU.MORE
X.r3.2HG0097460) (Supplementary Fig. 22). Anindependent mutant
line (glossy.2) exhibited the same glossy phenotype (Fig. 4d, Supple-
mentary Fig. 23 and Supplementary Table 16). Barley Cer-g mutants*®
are deficient in the same -diketone (hentriacontane-14,16-dione)
and wax tubules that are absent in the glossy mutants (Fig. 4e-g and
Supplementary Figs. 24-26). The scaffold containing the candidate
gene was localized to the region of chromosome 1C (Fig. 4c and Sup-
plementary Table 17). The presumed glossy.I mutation introduced a
P243S substitution in the encoded protein adjacent to a deleterious
F219L substitution known to inactivate barley CER-Q* (Fig. 4d and
Supplementary Fig. 27). We identified gene clusters on oat chromo-
somes1C,2Cand 3A and inwild Avenaspecies (Supplementary Figs. 22
and 28-33) that are homologous to the barley Cer-cqu cluster*>*°. We
alsonoted genes encoding proteins with similarity to Arabidopsis wax
ester synthase/diacylglycerol acyltransferase 1(WSDI),aMyb-domain
transcription factor and a short-chain dehydrogenase/reductase (SDR)
proteinnear the Cer-cquhomologuesinthe Avena genomes. Allgenes
fromthe1C cluster except SDRwere expressed at levels 3-6 times higher
than those of the 3A cluster, with very low expression from 2C cluster
genes and with no differential expression between the glossy and glau-
cous glume tissue (two-sided Wald test, null hypothesis logarithmic
fold change = 0, adjusted P < 0.01; Fig. 4h and Supplementary Fig. 34).
Together, these results suggest that AVESA.00010b.r2.UnG1403470
is the oat Cer-g gene. The reference genome thus facilitated a major
advanceinunderstanding 3-diketone biosynthesis in oat and can help
breeders manipulate tissue-specific epicuticular wax composition in
future oat cultivars adapted for hotter climates.

Discussion

Insummary, this fully annotated hexaploid oat reference genome lays
the foundation for advancesin oat breeding and basic oat biology and
for the ongoing pan-genome project. With the chromosome rearrange-
ments in a typical spring oat cultivar now delineated, breeders and
researchers will have accessto aresource equalin calibre to Triticeae
genomes, which may help them to overcome the breeding barriers
and segregation anomalies described in numerous mapping studies.
Using the reference genome to map genes associated with agronomic
and human nutrition-related traits is a viable approach for precisely
adapting oat varieties. Known quantitative trait loci can be anchored
tothe Sangreference, and the transcriptome atlas co-expression net-
works can be leveraged to identify candidate genes in the vicinity of
specific quantitative trait loci. Modern breeding strategies such as
genome editing and gene pyramiding can now more easily be applied
in oat to develop varieties that meet the increasing global demand
for oat-derived products. Our proteogenomic investigation of oat
storage proteins confirms qualitative and quantitative differences
inthe expression of proteins compared with the more abundant and
immunogenic sequences in wheat, barley and rye, which supports
the safety of oats in gluten-free diets. The detailed genome annota-
tion and case studies presented here provide examples of the myriad
possibilities for the discovery and exploitation of functional genetic
mechanisms in oat.
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A. sativa cv. Sang (AACCDD)

A. longiglumis CN58138 (CCDD)

A. insularis BYU209 (AA)

Assembly size 11.0 Gb 3.7Gb 7.3Gb
N50 11.5 Mb 42.6 Mb 5.2 Mb
Pseudomolecule size 10.3 Gb 3.7Gb 6.9 Gb
Sequences in pseudomolecules 1,676 317 2,621
Size of unassigned sequences 741.9 Mb 52.0 Mb 332.2 Mb
b
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Ancestral subgenomes A D C
20mer frequencies (mean) 1.0 1.0
Satellite TR (%) 1.0 1.0
Minisatellite TR (%) 1.0 1.0
TE domain Pfam03078 (#) 11 1.0 20
TE genes (#) 1.0 1.1 1.8
LC genes (#) 1.0 1.0 14
fl-LTR candidates (#) 1.0 1.0 1.3
High confidence fl-LTR (#) 1.0 1.0 12
fl-LTR candidates (median age) 1.0 1.1 1.2
Microsatellite TR (%) 1.6 1.3 1.0
Pfam13976 # 14 1.5 1.0
HC genes #/Mb 1.3 1.3 1.0
A D [
extant 3,277 (31.9%) 3,125 (30.4%) 3,868 (37.7%)
Assemh:)y Size  ,ncestral 3,171 (30.9%) 3,005(29.3%) 4,094 (39.9%)
gain or loss 105.9 120.5 -226.4
High extant 26,713 (34.8%) 26,379 (42.4%) 23,657 (30.8%)
COSE::::CE ancestral 25363 (33.0%) 25359 (33.0%) 26,027 (33.9%)

gain or loss 1,526 1,260 -2,786

Extended DataFig.1|Assembly of three Avenaspecies and chromosome
organisation ofhexaploid oat. a, Summary of assembly statistics of the
hexaploid A. sativa cv. Sang, diploid A. longiglumis CN58138 and tetraploid
A.insularisBYU209 genomes. b, Gene-based collinearity of oat (A. sativa) to
barley (H.vulgare). Each data pointisanaligned gene. Genesin coreregionsare
showninred. The phylogenetically informed nomenclatureis used onthe
bottom x-axis. The top axis shows the chromosome names according to Bekele
etal. (2018)"°, (Mrg groups) and according to Sanz et al. (2010)", respectively.
Centromere positionsinoatand barley are indicated by red triangles (x axis)
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and red diamonds (y axis). ¢, Subgenome composition of hexaploid oat cv.
Sang. Subgenome-specific features related toindependent transposon
historiesinthediploid ancestors. The upper part shows the x-fold increase
compared to the lowest of the three values across subgenomes A-C. The lower
partsummarises differencesin genome size and gene number between the
extant hexaploid and the ancestral state predating the seven translocations
betweenthe tetraploid and hexaploid subgenomes. d, Tandem repeat families
in hexaploid oat cv. Sang specific to either the C or the A/D diploid ancestor or
enrichedin the extant Asubgenome (from top to bottom).
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Extended DataFig. 2| Validation and statistics of A. sativacv.Sang reference gene annotation vl.lin comparisonto theresults of recent gene
assembly and gene annotation. a, BUSCO (lineage poales_odbl0, created predictions for maize, rice and bread wheat.d, Top: overview of the number of

2020-08-05) scores of the genome assemblies of A. sativa cv.Sang, A. insularis predicted genes (HC - high confidence; LC- low confidence) for the three oat
and A. longiglumis as well as the diploid progenitors A. erianthaand A. atlantica ~ subgenomes and unplaced/unknown scaffolds. Bottom:total number of
asacomparison. b, Colinearity plot of the pseudomolecules of A. sativa cv. basepairs assembled for the respective three subgenomes and the number of
Sang (shortread assembly, y-axis) and 0T3098 (long read assembly, x-axis). basepairsinunplacedscaffolds.
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Extended DataFig. 3| Chromosome architecture of hexaploid oat.
Distribution of main features along the 21Sang chromosomes. Track 1 displays
syntenic blocks based onthe chromosome pattern of gene clusters with
exactly three members. Track 2 denotes the sub genome assignment.
Thebackground of the bottom part consists of astacked bar chart for the major
genome components. Thelinesin the front show smoothed chromosomal
distributions for mean 20-mer frequency, average recombination rate (cM/Mb)
and gene density (#/Mb), each scaled min to max per chromosome. The
population-level analysis of crossover frequency is exploredin (N.T., W.B.etal.?).
Therein we focus on average recombination rates that may result from global

chromosomerestructuring within Avena. Of particularinterest are thelong
stretches of increased recombination on the long arms of chromosomes
4Aand 4D. Theseregions coincide with stretches of high gene density and
reduced transposon frequency. Other regions containing multiple ancestral
telomericregions showed corresponding multiple peaks of gene density and
recombination. Also of interestis aregion of suppressed recombinationon
chromosome 7D whichis speculated to result fromintraspecific
rearrangements on this chromosome thatimpede meiotic pairingand
Crossovers.
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Extended DataFig. 4 |Mosaic composition of hexaploid oat chromosomes.
a, Subgenome-specifickmers and syntenic blocks in A. sativa. Probabilities of
A- (blue), C- (yellow) and D- (green) subgenome classification by subgenomic-
kmers areshown. Top rowin each subplot displays identified synteny shownin
alternative colours to emphasise block borders. From top tobottom,
chromosomes1to 7 for subgenomes A (left column), C (mid column) and D
(right column), Y-axis: kmer-probability, x-axis: chromosomal positionin Mb.
b, Ancestral subgenome origin. In the extant Sang genome seven peripheral
regionsranging from40 Mb to 106 Mb differ in their subgenome signature
fromtheir currentlocation. Five of these regions are of C genome origin: chrlA

(106 Mb), chr2D (40Mb), chr3D (79 Mb), chr4D (46 Mb), chr5D (62 Mb). Two
regions on the extant C subgenome are of D genome origin: chr1C (40 Mb) and
chr4C (67 Mb). Allinall, the transfers between subgenomes add up to 441 Mb,
withanetlossinthe Csubgenome of226 Mb. The upper tracks display
homoeologous syntenic blocks withinthe Sang genome based onthe
chromosome pattern of gene clusters with exactly three members. The pattern
Al1-A1-D1corresponds for example to a cluster with two members from chrlA
and one member from chrlD. The core denotes all seven symmetric cluster
patterns from A1-D1-Clup to A7_D7_C7 withone member oneachhomoeolog
chromosome (equivalent to the red dots in Extended Data Fig. 1b).
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Extended DataFig.5| Genomerearrangementsinoat.a, Translocation
historyinA. insularisand A. sativa cv. Sang. Top panel displays likely ancestral
syntenic blocks for Avena chromosomes1,2,3 and 6, for chromosomes 4, 5and
7weonly provide ancestral statesin the A-, D-and C-lineages separately. From
top tobottom, subsequent panels show chromosomes and translocation
operations for the initial tetraploid (directly after the hybridization of the
diploid ancestors), the ancestral tetraploid after translocations, translocation
events occurring after the split of A. insularis and oat, and the extant states.
Genomicpositions for eachinter-subgenomic translocationinthe extant tetra-
and hexaploid are provided in Supplementary Table 8. A-, C- and D-subgenomic

blocks are colouredinblue, yellow and green, respectively. Blocks contributing
totranslocationsare accented in the mid panels by darker colours. Circled
numbersrepresent translocation events: (1) represents two non-reciprocal
translocationsbetween the ancestral1ICand 3D chromosomes, (2) to (5) are
additional translocations shared by A. sativa and A. insularis, while (6) and (7)
aretranslocationdifferentiating extant oatand A. insularis. Asterisks refer to
the ancestral state of chromosomes. b, Schematic representation of syntenic
genomicregions betweenbread wheat (chromosome 5B harbouring
TaZIP4-B2) and oat (chromosomes 5A, 5C, 5D). At the syntenic position,a
TaZIP4-B2 orthologis absentin the oat genome.



Article

1A 1C 1D

Extended DataFig.6|Anexample ofahiddenbreedingbarrierinAvena
sativarevealed by recombination matricesin two oat populations. Average
pairwise recombination frequencies (r) among chromosomes1A,1C and 1D
were computed in16 Mbp windows at1 Mbp increments for two RIL
populationsand are visualised as blended colours of yellow (r = 0) tocyan
(r=0.25) toburgundy (r =0.5). Blocks of yellow along the diagonal dashed
linesindicate recombination suppression within achromosome. Blocks of
yellow offthe diagonal represent pseudo-linkage between chromosomes.
a,recombinationin the population ‘Goslin’ x ‘HiFi’, where Goslin carriesa1C-A

oocoooco
ISP NRYN Y

1A 1C 1D

translocation (like Sang) and HiFiis anon-carrier. Theresultis thatalarge
proportion of 1ICshows pseudo linkage to the part of 1A where the translocation
ispresent (large yellow rectangle in the intersection of 1Aand 1C). b, both
parents of the population (‘TX07CS-1948’ x ‘Hidalgo’) carry the same
translocationas Sang thus no pseudo linkage is observed. The1C-1A
translocationis associated with adaptation-related traits?®, with pseudo
linkage limiting the possibility of recombining different traits affected by
genesinthetranslocatedregionincrosses between translocated and
non-translocated germplasm.
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Extended DataFig.9 | Comparative analysis of coeliac disease and allergy
related epitopesin oat, wheat and barley. a, Protein sequence alignment of
avenins with y-gliadins, B-hordeins, and LMW glutenins shows the conserved
position of cysteine residues (black bars) and differencesinthe T cell epitope
prevalence and variability. Blue bars represent T cell epitopes characteristic at
y-gliadins, greenbarsindicate epitopes characteristicat LMW glutenins, pink
bars show positions of avenin-specific epitopes. Colour code on the left side

I T cell HMW glutenin [ B cell wheat allergy | Cysteine

indicates the species: oat (highlighted in pale yellow); wheat (highlighted in
paleblue); and barley (highlighted injaggedice). b, Sequence alignment of
HMW glutenins show the conserved position of cysteine residuesin the N-and
C-terminal regionsin oatand wheat HMW glutenins and barley D-hordein and
shows the complete absence of coeliac disease (highlighted inred) and wheat
allergy-related epitopes (shown asblue bars) in the sequences.
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Data collection  Custom code developed in this study can be found in the GitHub node at https://github.com/PGSB-HMGU/oatkmers.
Code developed in other studies (but used here) can be found at https://github.com/PGSB-HMGU/plant.annot.
Software for data collection included HiSeq Control Software HD 3.4.0.38/RTA 2.7.7, NovaSeq Control Software 1.7.0/RTA v3.4.4, and
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Augustus v3.3.1 and v3.3.3, EvidenceModeler v73350ce, BUSCO v3.0.2 liliopsida_odb10 created on 2017-12-01 and embryophyta_odb9
created on 2017-02-13 (protein mode), BUSCO v4.0.4 liliopsida_odb10 created on 2019-11-20 (protein mode), AHRD v3.3.3,
TandemRepeatsFinder v4.07b, vmatch dbcluster, R, Haplotag, FSHap as implemented in TASSEL v5.0, KMC tools v3, Louvain algorithm
(https://github.com/taynaud/python-louvain), Orthofinder v2.4, SciPy v1.6.1, networkx v2.5, InterProScan5, CLC Genomics Workbench v21,
ggpubr, FileMaker Pro Advanced v17, MEME suit, Morpheus R package, ProteinPilot™ 5.0.3 software (SCIEX), McScan of the jevi utility library
(https://github.com/tanghaibao/jcvi), MUSCLE v3.8.155, fasttree v2.1.10 and v2.1.11, iTol v6.3, Trimmomatic, fastp v0.20.0, Salmon v1.1.0,
tximport package v1.12.3, DESeq2 v1.24.0, ggtern, WGCNA, tidyverse v1.3.1, ggplot2 v3.3.5, vcfR v1.12.0, svglite v2.0.0, fs v1.5.0, slider
v0.2.2, tidymodels v0.1.4, treeio v1.16.1, ggtree v3.0.1, patchwork v1.1.1, gggenes v0.4.1, BWA-MEM?2 v2.2.1, MultiQC v1.10.1, DeepVariant
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For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

>
Q
—
(e
(D
©
(@)
=
S
<
-
(D
©
O
=
>
(@)
w
[
3
=
Q
A

120 Y210




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The raw sequence data used for de novo whole genome assembly are available from the European Nucleotide Archive (ENA) under accession number PRIEB44810
(A. sativa cv. Sang) and from the Sequence Read Archive (SRA) under accession number PRINA727490 (A. insularis BYU209) and PRINA726919 (A. longiglumis
CN58138). Chromosome conformation capture (Hi-C) sequencing data are available from ENA under accession PRIEB43668 (A. sativa cv. Sang), PRIEB43670 (A.
insularis BYU209) and PRIEB43669 (A. longiglumis CN58138). Chromosome-scale sequence assemblies (pseudomolecules) are available from ENA under accession
PRJEB44810 (A. sativa cv. Sang), PRIEB45088 (A. insularis BYU209) and PRIEB45087 (A. longiglumis CN58138). The raw RNA-seq and WGS data generated in this
study are available under ENA accession number PRIEB46365. Pseudomolecules, annotation data and analysis results are available in the Plant Genomics &
Phenomics (PGP) Research Data Repository at http://dx.doi.org/10.5447/ipk/2022/2. The DOI was registered using e! DAL (https://edal.ipk-gatersleben.de/).
Pseudomolecules, annotation data and associated analyses for A. sativa cv. Sang, A. longiglumis, and A. insularis are also available from GrainGenes60: Sang genome
browser: https://wheat.pw.usda.gov/jb/?data=/ggds/oat-sang; Sang data download: https://wheat.pw.usda.gov/GG3/content/avena-sang-download; A. longiglumis
genome browser: https://wheat.pw.usda.gov/jb/?data=/ggds/oat-longiglumis; A. longiglumis data download: https://wheat.pw.usda.gov/GG3/content/avena-
longiglumis-download; A. insularis genome browser: https://wheat.pw.usda.gov/jb/?data=/ggds/oat-insularis; A. insularis data download: https://
wheat.pw.usda.gov/GG3/content/avena-insularis-download. The mass spectrometry proteomics data and ProteinPilot search result files have been deposited to
MassIVE (UCSD, San Diego, CA, USA; https://massive.ucsd.edu) under accession number MSV000088727. The publicly available OT3098 oat genome data was
generated by PepsiCo and Corteva Agriscience. This dataset (annotation version 2) has been obtained and is available from GrainGenes: https://wheat.pw.usda.gov/
GG3/content/pepsico-ot3098-hexaploid-oat-version-2-genome-assembly-release-collaboration-graingenes.

Databases used in this study include PTREP release 19, Uniref download 2019-09-03, Pfam download 2019-09-03, Swiss-Prot, TAIR, TrEMBL, REdat_9.9 Poaceae
section of the PGSB transposon library, Immune Epitope Database and Analysis Resource (https://www.iedb.org), PLACE and PlantCare promoter motif databases,
and pfam2GO.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to establish sample size for genome sequencing and assembly. The two progenitor Avena accessions were
chosen as the likely descendant of the hexaploid A, C and D subgenomes based on previous marker data analysis. The Sang cultivar was
chosen as a representative Spring oat cultivar and to facilitate single gene mapping in a closely related TILLING population.

Data exclusions  All sequencing data generated and reported as raw data was used in the genome assembly and analyses.

Replication In all analyses that support the genome assemblies, gene expression, proteomics, GC/MS and SEM, the number of replicates or iterations are
indicated in materials and methods or supplemental tables. In each case, replications were successful and used.
The genome assemblies themselves were validated using multiple methods i.e. BUSCO, genetic maps, HiC, and for A. sativa multiple
comparisons to oat long-read assembly OT3098 were performed. This helped validate the other approaches.

Randomization  Randomization does not directly apply to the genome sequencing and assembly. However it does apply to some of the analyses conducted. In
these cases, the group design and data seeding for computational analysis are described in the materials and methods and adhere to widely

accepted standards. For example, bootstraping was applied to all phylogenies computed (e.g. Fig. 3a).

Blinding Blinding does not apply to this study, as the study focuses on genome sequencing. This study focuses on plants genomics and the results of
the study are not impacted by the concealment of treatment, data, or groups.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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