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A B S T R A C T

Late gadolinium enhancement magnetic resonance imaging (LGE MRI) is commonly
used to visualize and quantify left atrial (LA) scars. The position and extent of LA scars
provide important information on the pathophysiology and progression of atrial fibril-
lation (AF). Hence, LA LGE MRI computing and analysis are essential for computer-
assisted diagnosis and treatment stratification of AF patients. Since manual delineations
can be time-consuming and subject to intra- and inter-expert variability, automating
this computing is highly desired, which nevertheless is still challenging and under-
researched.

This paper aims to provide a systematic review on computing methods for LA cav-
ity, wall, scar, and ablation gap segmentation and quantification from LGE MRI, and
the related literature for AF studies. Specifically, we first summarize AF-related imag-
ing techniques, particularly LGE MRI. Then, we review the methodologies of the four
computing tasks in detail and summarize the validation strategies applied in each task
as well as state-of-the-art results on public datasets. Finally, the possible future devel-
opments are outlined, with a brief survey on the potential clinical applications of the
aforementioned methods. The review indicates that the research into this topic is still in
the early stages. Although several methods have been proposed, especially for the LA
cavity segmentation, there is still a large scope for further algorithmic developments
due to performance issues related to the high variability of enhancement appearance
and differences in image acquisition.

© 2022 Elsevier B. V. All rights reserved.

1. Introduction

1.1. Clinical goals
Atrial fibrillation (AF) is the most common cardiac arrhyth-

mia encountered in the clinic, occurring in up to 2% of the
population and rising in prevalence along with advancing age
(Chugh et al., 2014). Fig. 1 presents a comparison of sinus
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rhythm and AF. One can see that there are chaotic electrical
signals in the atrium of AF patients compared to sinus rhythm,
resulting in a rapid and irregular heart rhythm. Radiofre-
quency catheter ablation via pulmonary vein isolation (PVI) is a
promising procedure for treating AF, especially for paroxysmal
AF patients (Calkins et al., 2007). The left atrium (LA) is a cru-
cial structure in the pathophysiology of AF, and the observation
of LA remodeling can be important for the initial evaluation of
AF (Tops et al., 2010). Besides, structural changes in the LA
wall (especially changes in the wall thickness) are known to

http://www.sciencedirect.com
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Fig. 1. The electrical activities of the left atrium (LA) in sinus rhythm and
atrial fibrillation (AF), respectively. The sinoatrial node (SAN) produces
an electrical impulse, which is regular in the sinus rhythm and can be
overwhelmed by disorganized electrical waves, usually originating from
the pulmonary veins.

Table 1. AF patient classification that depends on fibrosis extent (Akoum
et al., 2011).

Utah grade Percentage Success rate AF recurrence
Utah 1 (minimal) ≤ 5% 100% 0
Utah 2 (mild) 5∼20% 81.8% 28%
Utah 3 (moderate) 20∼35% 62.5% 35%
Utah 4 (extensive) ≥ 35% 0 56%

occur in AF patients (Karim et al., 2018). The wall thickness
can be used to predict the response to invasive treatment of AF
and has the potential for improving the safety of AF ablation
(Whitaker et al., 2016). The wall thickness is also important
to measure the transmurality of scars which is related to the
AF recurrence (Ranjan et al., 2011). The success of AF treat-
ments is highly related to the formation of a contiguous scar
completely encircling the veins (Ranjan et al., 2011). Unfortu-
nately, the encircling lesion is often incomplete with a combi-
nation of ablation scars and gaps of healthy tissue (Miller et al.,
2012). Therefore, the extent and distribution of both scars and
gaps are important information for AF patient selection (Ak-
oum et al., 2011), diagnosis prediction (Arujuna et al., 2012),
and treatment stratification (Njoku et al., 2018). For example,
patients were divided into four grades according to their degrees
of fibrosis (refers to preexisting scars) in Akoum et al. (2011),
shown in Table 1. Based on the scoring, various therapeutic
strategies were suggested by electrophysiologists.

Recently, late gadolinium enhancement magnetic resonance
imaging (LGE MRI) has evolved as a tool for defining the ex-
tent of fibrosis/ scars and visualizing the ablation gaps (Sieber-
mair et al., 2017; Li et al., 2020b; Nuñez-Garcia et al., 2019).
Therefore, it is crucial to develop techniques for the four pro-
gressive tasks, i.e., (1) LA cavity segmentation, (2) LA wall seg-
mentation together with wall thickness measurement, (3) scar
segmentation and quantification, and (4) ablation gap localiza-
tion from LGE MRI. Fig. 2 provides the clinical pipeline for AF
ablation procedures, where the role of LGE MRI is highlighted
and the four closely related tasks of clinical interests are pre-
sented, followed by several related clinical applications.

1.2. Challenges of LA LGE MRI computing

Manual delineations of the LA, LA wall, scars, and ablation
gaps are all labor-intensive and prone to be subjective, so their

Table 2. Search engines and expressions used to identify potential papers
for review.

Engine Google scholar, PubMed, IEEE-Xplore, and Citeseer

Term

“Atrial fibrillation” or AF and
“Late gadolinium/ delayed enhancement/ contrast en-
hanced (cardiac) magnetic resonance” or “LGE/ DE/ CE
MR(I)” or “LGE-/ DE-/ CE-MR(I)” or “LGE/ DE/ CE
CMR” or “LGE-/ DE-/ CE-CMR” and
Classif∗/ segment∗/ quantif∗/ localiz∗/ detect∗ and
“Left atrium/ atrial” or LA or
“Atrial wall/ myocardi∗” or “wall thickness” or
“Atrial scars/ fibrosis/ lesion” or “ablation pattern” or
“Ablat∗”/ lesion gaps” or “gaps in ablation lesion” or “in-
complete ablation pattern”

automation is highly desired, which nevertheless remains chal-
lenging. The challenges for automatic LA cavity segmentation
are mainly from the large variations in terms of LA shape, in-
tensity range as well as poor image quality. For the LA wall
analysis, two additional difficulties are presented, i.e., the in-
trinsic thin wall thickness and the complex structure of the LA
wall. Here, the complex structure refers to the multiple open-
ings in its 3D structure such as the pulmonary veins (PV) and
mitral valve (MV) of the LA. For the scar analysis, its unique
challenge lies in the enhanced noise from surrounding tissues.
For the gap quantification, the large variability in PV morphol-
ogy (position, orientation, size, thickness) and the robustness to
scar segmentation changes are the two major concerns. Fig. 3
illustrates and explains part of these challenges in an intuitive
way.

1.3. Study inclusion and literature search

In this work, we aim to provide the reader with a survey of
the state-of-the-art image computing techniques, important re-
sults as well as the related literature for AF studies. To ensure
comprehensive coverage, we have screened publications from
the last 10 years related to this topic. Our main sources of ref-
erences were Internet searches using engines such as Google
Scholar, PubMed, IEEE-Xplore, and Citeseer. To cover as
many related works as possible, flexible search terms have been
employed when using these search engines, as summarized in
Table 2. Both peer-reviewed journal papers and conference pa-
pers were included here. We have also followed the references
found in papers from these sites, and finally collected a com-
prehensive library of more than 130 papers. Fig. 4 presents the
distributions of papers in segmentation and quantification from
LGE MRI for AF patients per year/task. Note that we gener-
ally picked the most detailed and representative ones for this
review when we encountered several papers from the same au-
thors about the same subject.

1.4. Related review literature

Table 3 lists existing review papers related to AF. One can
see that most current AF-related review papers focused on a
clinical survey instead of the methodology of image comput-
ing, such as segmentation or quantification algorithms. Only
two reviews, Pontecorboli et al. (2017) and Jamart et al. (2020),
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Fig. 2. The pipeline of LA image computing for AF studies and the structure of this review. Top row: common image modalities for AF treatments, such
as late gadolinium enhancement magnetic resonance imaging (LGE MRI), non-enhanced MRI, transesophageal echocardiography (TEE) (image adapted
from Stanford HEALTH CARE), CT, and real-time 3D echocardiography (RT3DE) (images adapted from Regazzoli et al. (2015) with permission); Middle
row: computation and evaluation steps for LA analysis reviewed in this study (images adapted from Li et al. (2021c); Nuñez-Garcia et al. (2019) with
permission); Bottom row: possible clinical applications (images adapted from Siebermair et al. (2017) with permission).

are similar to ours in terms of the topic (LGE MRI) and style
(technical). However, only conventional thresholding methods
or only deep learning (DL)-based methods were reviewed in
each work. Fig. 5 visualizes the scopes of current reviews as
well as this review, and one can see that the scopes are different
although partial overlaps can be found. Besides, our review or-
ganizes the related works according to the clinical pipeline (see
Fig. 2), resulting in an intuitive structure of the paper.

1.5. Structure of this review

The remainder of the paper is organized as follows (com-
pare Fig. 2): Section 2 presents the current common imaging
tools used in AF ablation and the importance of LGE MRI in
the management of AF. Section 3 systematically reviews the
state-of-the-art image computing techniques and results of LA
cavity, wall, scar, and ablation gap segmentation and quantifi-
cation. Section 4 presents the public data, evaluation measures,
and state-of-the-art evaluation results on the public data for each
task. Potential clinical applications are provided in Section 5.
Discussion of current LA LGE MRI computing challenges and
future perspectives are given in Section 6, along with a conclu-
sion in Section 7.

2. Imaging of atrial fibrillation

Medical images can offer crucial information for the evalua-
tion and treatment of AF patients, and have been widely used

in the ablation process (Tops et al., 2010; Obeng-Gyimah and
Nazarian, 2020). Table 4 summarizes the common imaging
modalities used in three ablation stages (before, during, and af-
ter catheter ablation), mainly referring to Tops et al. (2010) and
Obeng-Gyimah and Nazarian (2020). One can see that diverse
imaging modalities have been introduced in the ablation pro-
cess, each of which assists in various aspects of the procedure.

2.1. Imaging for ablation procedures
Before catheter ablation (CA), the first step is to exclude con-

traindication, such as the LA appendage (LAA) thrombi which
are normally detected using transesophageal echocardiography
(TEE) (Ellis et al., 2006; Calkins et al., 2007; Pathan et al.,
2018). MRI and computed tomography (CT) can be used to
detect LA thrombi, but both tend to have a low inter-observer
agreement (Mohrs et al., 2006; Gottlieb et al., 2008). In addi-
tion, the images are statically acquired a few seconds after the
arrival of contrast to the LAA. Hence, it could be difficult to
differentiate LAA thrombi from sluggish flow (Romero et al.,
2013). To select patients expected for successful CA, the as-
sessment of LA, PVs, and fibrosis are the key steps (Berruezo
et al., 2007; Akoum et al., 2011). Three-dimensional (3D)
imaging techniques, such as CT and MRI, are generally used
for PV anatomy assessment. PV anatomy can also be measured
by TEE, achieving up to 95% concordance with MRI (Toffanin
et al., 2006). Moreover, cardiac MRI remains the gold standard
for fibrosis assessment (Obeng-Gyimah and Nazarian, 2020).
Especially, LGE MRI appears to be a promising alternative for

https://stanfordhealthcare.org/medical-tests/t/transesophageal-echocardiogram.html
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Fig. 3. The challenges of automatic segmentation and quantification of LGE MRI for AF: (a) various LA and pulmonary vein (PV) shapes; (b) two typical
LGE MRIs with poor quality; (c) thin atrial walls highlighted using bright white color in the figure; (d) surrounding enhanced regions pointed out by the
arrows, where (1) and (2) indicate the enhanced walls of descending and ascending aorta, respectively; and (3) denotes the enhanced walls of the right
atrium (RA). Images (b)-(d) adapted from Li et al. (2020b) with permission.

Table 3. Summary of the review papers related to AF. EAM: electroanatomical mapping; JAF: Journal of Atrial Fibrillation; JACC: Journal of the
American College of Cardiology; RMPBM: Magnetic Resonance Materials in Physics, Biology and Medicine; JICRM: The Journal of Innovations in
Cardiac Rhythm Management; FCM: Frontiers in Cardiovascular Medicine; CET: Cardiovascular Engineering and Technology; DL: deep learning; CT:
computed tomography.

Source Venue Scope Limitation
Cox (2003) Europace Surgical treatment of AF Clinical review
Rolf et al. (2014) JAF EAM of AF Clinical review
Dzeshka et al. (2015) JACC Mechanisms and clinical implications of AF Clinical review
Whitaker et al. (2016) Europace Wall thickness measurement for CT Target image is not LGE MRI
Peng et al. (2016) RMPBM Cardiac chamber segmentation Target partially includes LA cavity
Pontecorboli et al. (2017) Europace Fibrosis segmentation from LGE MRI Only thresholding methods are included
Siebermair et al. (2017) JACC LGE fibrosis imaging Clinical review
Obeng-Gyimah and Nazarian (2020) JICRM Imaging for AF ablation Clinical review
Jamart et al. (2020) FCM LA cavity segmentation from LGE MRI Only DL-based methods are included
Chen et al. (2020) FCM DL-based cardiac segmentation Target partially includes LA and its scars
Habijan et al. (2020) CET Whole heart and chamber segmentation Target partially includes LA cavity

pre-ablation scar visualization and quantification (Siebermair
et al., 2017).

During CA, fluoroscopy is the most commonly employed
imaging technique in the electrophysiology laboratory. Intrac-
ardiac echocardiography (ICE) offers real-time imaging of the
PVs and adjacent structures and enhances the safety of transsep-
tal puncture by visualizing inter-atrial septum and puncture nee-
dle (Jongbloed et al., 2005a). Both ICE and fluoroscopy can
visualize the LA and PVs (Saad et al., 2002). Note that the inte-
gration of different imaging modalities during CA is promising
(Tops et al., 2010), but is out of the scope of this review.

After CA and during the follow-up study, the main target
of post-procedural imaging is to monitor complications and
help predict recurrence. The most frequently occurring com-
plications of AF ablation include PV stenosis, pericardial ef-
fusion, and atrio-oesophageal fistul. Multi-slice CT and MRI
are usually used for accurate assessment of PV stenosis and
esophageal injury (Holmes et al., 2009). Transthoracic echocar-
diography (TTE) is a recommended imaging tool for screening

to detect pericardial effusion (Calkins et al., 2007). To pre-
dict recurrence, LA size and functions are important indices, as
LA ablation can lead to the formation of scars and subsequent
changes in LA anatomy (Casaclang-Verzosa et al., 2008). For
the follow-up analysis of LA volumes, TTE is typically used, but
3D techniques, such as real-time 3D echocardiography (Zhang
et al., 2017), multi-slice CT (Polaczek et al., 2019), and MRI
(Tsao et al., 2005), especially LGE MRI (McGann et al., 2014),
may provide more accurate information. For the measurement
of LA wall thickness, TEE has the advantages of high temporal
resolution and short acquisition time, but it is difficult to obtain
descriptive information on the LA wall due to its low spatial
resolution (Nakamura et al., 2011). CT is an ideal modality,
thanks to its high resolution, and MRI is widely considered to
be the gold standard for the viability assessment of wall pathol-
ogy (Karim et al., 2018).

LGE MRI has been recently widely explored for scar and ab-
lation gap quantification (Nuñez-Garcia et al., 2019; Mishima
et al., 2019). Note that T1 mapping MRI could be used to obtain
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Table 4. The role of different imaging modalities in AF ablation procedures. CA: catheter ablation; LAA: LA appendage; ICE: intracardiac echocardiog-
raphy; TTE: transthoracic echocardiography; STE: speckle tracking echocardiography.

Stage Target Imaging modality Important summary

Before CA

Assessment of LAA thrombus
TEE Clinical reference for LAA thrombi identification (Calkins et al., 2007)
CT/ MRI Low inter-observer agreement (Mohrs et al., 2006; Gottlieb et al., 2008)

Assessment of LA size and
anatomy

TTE The most commonly used imaging technique in daily clinical practice
(Tops et al., 2007)

RT3DE/STE New techniques for the assessment of LA volumes (Cameli et al., 2012)
MRI Gold standard for the assessment of LA volumes (Kuchynka et al., 2015)

Assessment of PV anatomy CT/ MRI Provides detailed 3D information on PV anatomy as a “road-map” for ab-
lation (Bhagirath et al., 2014)

Assessment of fibrosis LGE MRI The most widely used MRI protocol for LA fibrosis imaging (Siebermair
et al., 2017)

During CA

Positioning catheters Fluoroscopy Standard imaging modality in the electrophysiology laboratory; used to
visualize catheters and devices (Bourier et al., 2016)

Transseptal puncture ICE Used to enhance the safety of transseptal puncture and catheter tissue con-
tact; used to visualize inter-atrial septum and puncture needle (Jongbloed
et al., 2005a)

Visualization of LA and PVs

Fluoroscopy New rotational angiography technique to accurately identify PV anatomy
and diameters (Thiagalingam et al., 2008)

ICE Real-time assessment of PV ostium with a limitation on the detection of
small proximal branches from PVs (Saad et al., 2002; Wood et al., 2004;
Jongbloed et al., 2005b)

After CA

Assessment of PV stenosis CT/ MRI Preferably, these 3D techniques are correlated with pre-procedural images
for detection of PV stenosis (Holmes et al., 2009)

Detection of pericardial TTE Routine echocardiography should be performed before discharge and dur-
ing the follow-up study (Calkins et al., 2007)

Esophageal injury CT/ MRI Performed when atrio-oesophageal fistula is suspected (Calkins et al.,
2007)

Assessment of LA size
and function

TTE Conventional method for the detection of LA volumes and function (Blond-
heim et al., 2005)

RT3DE/CT/(LGE)
MRI

3D assessment of LA volumes allows the detection of LA reverse remod-
elling (Zhang et al., 2017; Polaczek et al., 2019; Tsao et al., 2005; McGann
et al., 2014)

Assessment of wall thick-
ness

TEE/CT/(LGE)
MRI

Increased atrial wall thickening was seen in the post-ablation scans (Naka-
mura et al., 2011; Karim et al., 2018; Habibi et al., 2015)

Assessment of scars and gaps
LGE MRI Promising in the ablation lesion visualization (McGann et al., 2008)
T1 mapping MRI New technique without contrast agent for the assessment of scars (Beinart

et al., 2013)

valuable imaging-based biomarkers for diffused cardiac fibro-
sis, which has been validated against histological studies (Sib-
ley et al., 2012). For example, it is possible with T1 mapping to
non-invasively quantify myocardium extracellular volume frac-
tion, which is a biomarker of diffuse reactive fibrosis (Taylor
et al., 2016). Nevertheless, it can be difficult to localize fibro-
sis using T1 mapping MRI, and it is therefore not appropriate
for ablation procedure guidance or ablation gap identification.
LGE MRI remains a promising method to detect focal and co-
hesive fibrosis (Pontecorboli et al., 2017).

2.2. LGE MRI for AF studies

LGE MRI is mainly used to evaluate fibrosis and scars of
AF patients before and after ablation. This is because LGE
MRI can discriminate scarring and healthy tissues by their al-
tered wash-in and wash-out contrast agent kinetics (Marrouche
et al., 2014). Scars are thus visualized as the regions of be-
ing enhanced or high signal intensity compared to healthy tis-
sues (Yang et al., 2018a). There is still no consensus on the

option and dosage of the contrast agent, nor on the timing
of image acquisition after contrast administration, as Table 5
shows. Among the listed protocols, the DECAAF (Delayed-
Enhancement MRI Determinant of Successful Radiofrequency
Catheter Ablation of Atrial Fibrillation) protocol can be consid-
ered the most widely used one for LA fibrosis imaging (Sieber-
mair et al., 2017). Considering the importance and advances of
LGE MRI in AF studies, in this review we mainly focus on the
computing works on LGE MRI.

3. Image computing

We structure the review of image computing methodology
according to the segmentation and quantification tasks in ques-
tion, as presented in Fig. 2. To understand the key elements of
methodologies, we further classify the methods applied in each
task (see Fig. 6). In the following sections, we will elaborate
and discuss these methods and the corresponding results of dif-
ferent tasks in detail.
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Table 5. Imaging parameters for the LGE scar assessment utilized in several leading centers worldwide. SA: Siemens Avanto; PA: Philips Achieva; TR:
repetition time; TE: echo time; Acq. T: acquired time after contrast agent injection; CARMA: Comprehensive Arrhythmia Research and Management;
DECAAF: Delayed-Enhancement MRI Determinant of Successful Radiofrequency Catheter Ablation of Atrial Fibrillation. Here, † refers to multiple
centers.

Source Center Scanner TR/TE (ms) Acq. T (min) Gadolinium dose Spacing (mm3)
Badger et al. (2010) Utah, USA 1.5 T, SA 5.5/2.3 15 0.1 mmol/kg 1.25 × 1.25 × 2.5
Taclas et al. (2010) Boston, USA 1.5 T, PA 3.8/1.52 15∼25 0.2 mmol/kg 1.3 × 1.3 × 4.0/5.0
Hunter et al. (2013) Imperial/Barts, UK 1.5 T, PA N/A 20 0.4 mmol/kg 1.5 × 1.5 × 4.0
Bisbal et al. (2014) Barcelona, Spain 3 T 2.3/1.4 25∼30 0.2 mmol/kg 1.25 × 1.25 × 2.5
McGann et al. (2014) CARMA† 1.5 T; 3 T, SA 5.2/2.4; 3.1/1.4 5∼9; 6∼12 0.1 mmol/kg 1.25 × 1.25 × 2.5
Fukumoto et al. (2015) John Hopkins, USA 1.5 T, SA 3.8/1.52 10∼32 0.2 mmol/kg 1.3 × 1.3 × 2.0
Harrison et al. (2015a) KCL, UK 1.5 T, PA 6.2/3.0 20 0.2 mmol/kg 1.3 × 1.3 × 4.0
Akoum et al. (2015) DECAAF† 1.5 T; 3 T 5.2/2.4; 3.1/1.4 15 0.1∼0.2 mmol/kg 1.25 × 1.25 × 2.5
Cochet et al. (2015) Bordeaux, France 1.5 T, SA 6.1/2.4 15∼30 0.2 mmol/kg 1.25 × 1.25 × 2.5
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Fig. 4. The distributions of papers of LGE MRI segmentation and quan-
tification for AF patients per year and task.

3.1. LA cavity segmentation

In recent years, many algorithms have been proposed to per-
form automatic LA cavity segmentation from medical images,
but mostly for non-enhanced imaging modalities. Conversely, a
limited number of works for the LA cavity segmentation from
LGE MRI were reported in the literature before 2018. Most of
the current studies on the LA cavity segmentation from LGE
MRI are still based on time-consuming and error-prone man-
ual segmentation methods (Higuchi et al., 2018; Njoku et al.,
2018). This is mainly because LA cavity segmentation meth-
ods in non-enhanced imaging modalities are difficult to directly
apply to LGE MRI, due to the existence of contrast agents and
low-contrasted boundaries. Existing conventional automatic
LA LGE MRI segmentation approaches generally require ad-
ditional information, such as shape priors (Zhu et al., 2013)
or other images, such as non-enhanced 3D MRI (Li et al.,
2020b) and contrast enhanced magnetic resonance angiogram
(MRA) (Ravanelli et al., 2014; Tao et al., 2016a; Roney et al.,
2020). Recently, with the development of DL in medical im-
age processing, numerous DL-based algorithms are proposed
for the automatic LA cavity segmentation directly from LGE
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MRI (Xiong et al., 2020). Table 6 summarizes the representa-
tive methods and their results in chronological order. The upper
and lower parts of the table summarize conventional (non-DL-
based methods) and DL-based methods, respectively.

3.1.1. Conventional methods for LA cavity segmentation
Conventional methods for LA cavity segmentation can be

classified into four kinds, i.e., shape models, clustering algo-
rithms, deformable models (region growing, activate contour,
and level-set), and atlas-based methods.

Shape models/ clustering algorithms. Many works incorpo-
rated anatomical or shape priors to improve the robustness
against the large variability of LA shapes and intensity dis-
tributions. For example, Gao et al. (2010) used shape learn-
ing and region-based active contour evolution for the LA cav-
ity segmentation. The shape learning aimed to utilize prior
shape knowledge, to solve the unclear boundary problem in
LGE MRI when using the active contour method. Zhu et al.
(2013) achieved the LA cavity segmentation using a variational
region growing with a moments-based shape prior. They ad-
justed the weights between the data-driven term and shape prior
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constraint to adapt for the changes in the volume of the target re-
gion. Nuñez-Garcia et al. (2018) constructed LGE MRI atlases
via multi-atlas segmentation (MAS) and then clustered the LA
shapes using principal component analysis to perform a second
MAS for the LA cavity segmentation, as presented in Fig. 7. It
remains too complicated so far to cover the large shape variation
between LA cavities of different subjects by simply imposing a
shape prior.

Deformable models. The major challenge of deformable mod-
els on the LA cavity segmentation arises from the wide vari-
ability of the intensity distribution in LGE MRI. To solve this,
Zhu et al. (2013) designed a variational region growing method
to reduce its sensitivity to the change of intensity distribution.
The seed search in their work was performed by incorporating
certain geometric information of PVs relative to the LA. In-
stead of performing global optimization, Tao et al. (2016a) and
Qiao et al. (2018) employed level-set for local refinement on
the global segmentation obtained by MAS. The advantage of
deformable models is that they do not have a prior assumption
about the object geometry and are therefore skillful at captur-
ing local shape variations, such as the PV regions of the LA.
Therefore, it is effective to combine deformable models for lo-
cal attention with other models considering the global shape in-
formation of LA. Examples include Gao et al. (2010) and Zhu
et al. (2013) where a shape prior was employed as a global con-
straint.

Atlas-based methods. An alternative way is to use atlas-based
methods that can be robust to the LA cavity with high anatom-
ical variations. For instance, Tao et al. (2016a) and Li et al.
(2020b) utilized atlas-based methods employing the label of
another image (from the same patient) with better anatomical
information to assist the LA cavity segmentation of LGE MRI.
Tao et al. (2016a) employed MAS to segment the LA cavity
from the MRA, and then mapped the generated label to LGE
MRI followed by a level-set based refinement. They compared
the results with that of solely using LGE MRI (directly employ-
ing MAS on LGE MRI) and found that the former achieved bet-
ter results. They also tested their method on the public dataset

from the Atrial Segmentation Challenge where only LGE MRI
was provided (Qiao et al., 2018), and achieved better perfor-
mance in terms of Dice compared to that in Tao et al. (2016a)
(0.88 ± 0.03 vs. 0.86 ± 0.05). This may be due to the differ-
ence in the dataset, as the public data includes both pre- and
post-ablation images. Similarly, Li et al. (2020b) employed an
auxiliary MRI sequence to assist the LA cavity segmentation
of LGE MRI using MAS methods and obtained a better Dice
score (0.898 ± 0.044) than other conventional methods. Partic-
ularly, Li et al. (2020b) and Nuñez-Garcia et al. (2018) adopted
a multi-atlas based whole heart segmentation (MA-WHS) and
then extracted the LA sub-structure. This is because the LGE
MRIs employed in their studies cover the whole heart, and MA-
WHS could be helpful to exclude surrounding sub-structures
of LA. Although in clinical routine LGE MRI may have lim-
ited field-of-view, all current public LA LGE MRI datasets
were specifically acquired to cover the whole heart with the
development of novel whole-heart high-resolution LGE tech-
niques (Toupin et al., 2021). Although auxiliary images can
provide better anatomical information, the anatomy extracted
from them may be highly deformed compared to that acquired
from LGE MRI. It may cause difficulties in the co-registration
step and lead to subsequent incorrect segmentation of the LA
cavity. Moreover, conventional atlas-based methods are gener-
ally time-consuming due to multiple image registration steps.

3.1.2. Deep learning-based methods for LA cavity segmenta-
tion

For the LA cavity segmentation, many basic neural network
architectures have been employed. To boost the feature learn-
ing ability of networks, a series of works have focused on op-
timizing network structures, investigating different loss func-
tions, and applying anatomical constraints. Here, we mainly
classify these DL-based methods according to the network ar-
chitectures, and will also discuss the loss functions and anatom-
ical constraints used to train the networks.

Architecture of network. Recently, many methods based on dif-
ferent network structures were developed with the launch of the
Atrial Segmentation Challenge in MICCAI 2018, where U-Net
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Table 6. Summary of previously published works on the automatic LA cavity segmentation from LGE MRI. CNN: convolutional neural network; MAS:
multi-atlas segmentation; MA-WHS: multi-atlas whole heart segmentation; SVM: support vector machine; KNN: K nearest neighbor; FCN: fully convo-
lutional network; HAANet: hierarchical aggregation network; ASD: average surface distance; 95HD: 95% Hausdorff distance; VO: volume overlap; Jc:
Jaccard; Acc: Accuracy; Sen: Sensitivity; Spe: Specificity; Cf: Conform; APD: average perpendicular distance; Diam. Err: antero-posterior diameter
error; Volume Err: volume error. Note that the results in studies labeled via ‡ are from the benchmark paper (Xiong et al., 2020) for a fair comparison.
The reported values in their manuscript may be inconsistent with the results reported in Xiong et al. (2020) as they may employ parts of training data from
the challenge as test data for evaluation.

Study Num Pre/ Post Algorithm Evaluation DiceLA

Gao et al. (2010) 20 Post + Pre Active contours + statistical shape learning N/A N/A
Kutra et al. (2012) 59 Pre Multi-model based fitting + SVM Acc N/A
Zhu et al. (2013) 64 Post + Pre Variational region growing + shape prior Dice, VO, 95HD, ASD 0.79 ± 0.05
Deng and Zhang (2016) 64 Post + Pre KNN + super pixel voting Dice, VO 0.81 ± 0.08
Tao et al. (2016a) 56 Pre MAS + 3D level-set Dice, ASD 0.86 ± 0.05
Nuñez-Garcia et al.
(2018)‡

154 Post + Pre MA-WHS + shape clustering Dice, HD, ASD 0.859 ± 0.061

Qiao et al. (2018)‡ 154 Post + Pre MAS + level-set Dice, APD 0.861 ± 0.036
Li et al. (2020b) 58 Post MA-WHS Dice 0.898 ± 0.044

Chen et al. (2018b) 100 Post + Pre Multi-view two-task network Dice, Acc, Spe, Sen 0.908 ± 0.031
Xiong et al. (2018) 154 Post + Pre Dual CNNs Dice, HD, Spe, Sen 0.942 ± 0.014
Chen et al. (2018a)‡ 154 Post + Pre Multi-task 2D U-Net Dice, Jc, HD, ASD 0.921 ± 0.026
Vesal et al. (2018)‡ 154 Post + Pre 3D U-Net+ dilated + residual Dice, Jc, Acc 0.925 ± 0.027
Savioli et al. (2018)‡ 154 Post + Pre 3D volumetric FCN Dice, HD 0.851 ± 0.051
Li et al. (2018a)‡ 154 Post + Pre Attention based 3D HAANet Dice 0.923 ± 0.029
Bian et al. (2018)‡ 154 Post + Pre ResNet101 + 2D pyramid Network Dice, Cf, Jc, HD, ASD 0.926 ± 0.022
Puybareau et al. (2018)‡ 154 Post + Pre VGG-16 + transfer learning + “pseudo-3D” Dice 0.923 ± 0.023
Liu et al. (2018)‡ 154 Post + Pre 2D U-Net + FCN Dice 0.903 ± 0.032
Preetha et al. (2018)‡ 154 Post + Pre 2D U-Net Dice 0.887 ± 0.031
de Vente et al. (2018)‡ 154 Post + Pre 2D U-Net Dice 0.897 ± 0.035
Jia et al. (2018)‡ 154 Post + Pre Two-stage 3D U-Net + contour loss Dice, HD, Spe, Sen 0.907 ± 0.031
Xia et al. (2018)‡ 154 Post + Pre Two-stage 3D V-net Dice 0.932 ± 0.022
Yang et al. (2018b)‡ 154 Post + Pre Two-stage 3D U-Net + transfer learning Dice, Cf, Jc, HD, ASD 0.925 ± 0.023
Borra et al. (2018) 154 Post + Pre Otsu’s algorithm + 3D U-Net Dice 0.898
Jamart et al. (2019) 154 Post + Pre Two-stage 2D V-net Dice, Jc, HD, ASD,

Diam. Err, Volume Err
0.937

Yu et al. (2019) 100 Post + Pre Uncertainty-aware model Dice, Jc, 95HD, ASD 0.889
Wang et al. (2019a) 100 Post + Pre Ensembled U-Net Dice 0.921 ± 0.020
Du et al. (2020) 100 Post + Pre Multi-scale dual-path network Dice, Cf, Jc, HD 0.936 ± 0.005
Borra et al. (2020) 100 Post + Pre 2D/ 3D U-Net Dice, HD, Spe, Sen 0.895±0.025/

0.914 ± 0.015
Xiao et al. (2020) 100 Post + Pre Multi-view network Dice, HD, ASD 0.912
Zhao et al. (2021) 100 Post + Pre ResNet101 + hybrid loss Dice, 95HD, ASD 0.918 ± 0.011
Li et al. (2021c) 60 Post Multi-task 3D U-Net + spatial encoding Dice, HD, ASD 0.913 ± 0.032

was commonly employed as the backbone. For example, Vesal
et al. (2018) employed a 3D U-Net with dilated convolutions at
the bottom of the network and residual connections between en-
coder blocks, to incorporate both local and global knowledge.
Li et al. (2018a) proposed an attention-based hierarchical ag-
gregation network for the LA cavity segmentation, and the basic
network is a 3D U-Net. Borra et al. (2020) tested both 2D and
3D U-Net for the LA cavity segmentation and found that 3D
pipelines showed significantly better performance compared to
the 2D pipelines. Wang et al. (2019a) utilized ensemble atten-
tion U-Net, dense U-Net, and residual U-Net models to seg-
ment LA. Liu et al. (2018), Preetha et al. (2018), and de Vente
et al. (2018) all employed 2D U-Net for the LA cavity segmen-
tation, and Liu et al. (2018) also tested the performance of fully
convolutional networks (FCNs). Instead of using U-Net as the
backbone, Bian et al. (2018) used ResNet101 for the LA cav-
ity segmentation and adopted a pyramid module to learn multi-

scale semantic information in the feature map. Puybareau et al.
(2018) achieved the LA cavity segmentation by transfer learn-
ing from VGG-16, a pre-trained network used to classify natural
images. Savioli et al. (2018) presented a 3D volumetric FCN for
the LA cavity segmentation. Besides the architecture, Jamart
et al. (2020) emphasized the importance of relevant loss func-
tion selection for the LA cavity segmentation. Jia et al. (2018)
proposed a novel contour loss function to include distance infor-
mation for good shape consistency. Zhao et al. (2021) employed
a hybrid loss to focus on the boundaries as much as on regions,
and therefore reduced the impact of noisy neighboring tissues.
Li et al. (2021c) introduced a spatial encoding (SE) loss to in-
corporate continuous spatial information of the LA. Their ex-
periments showed that the SE loss could be effective to remove
noisy patches in the final predicted segmentation, and therefore
evidently reduced the Hausdorff distance (HD) value. For the
loss function selection, one could refer to the review paper (Ma
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Fig. 7. A framework example for the LA cavity segmentation from Nuñez-
Garcia et al. (2018). The LA cavity segmentation was achieved via multi-
atlas whole heart segmentation (MAS-WHS) and shape modeling of the
LA. Image adapted from Nuñez-Garcia et al. (2018) with permission.

et al., 2021), where Dice-related compound loss functions were
recommended for medical image segmentation tasks.

Multi-task networks. Multi-task learning has been adopted for
the LA cavity segmentation to utilize its possible relationship
with other auxiliary tasks. For example, Chen et al. (2018b) and
Li et al. (2021c) performed simultaneous LA cavity and scar
segmentation via multi-task learning. The simultaneous opti-
mization scheme showed better performance than solving the
two tasks independently which ignored the intrinsic spatial re-
lationship between the LA cavity and scars. Chen et al. (2018a)
designed a two-task network for both LA cavity segmentation
and pre/ post ablation image classification to learn additional
anatomical information. The results indicated that multi-task
learning obtained better segmentation performance compared
to baseline U-Net method training with a single segmentation
task.

Two-stage networks. A two-stage training strategy has been
gradually employed to replace conventional pre-processing
(such as the Otsu’s algorithm employed in Borra et al. (2018))
for the region of interest (ROI) extraction. For instance, Jia
et al. (2018), Xia et al. (2018), Yang et al. (2018b), and Jamart
et al. (2019) all utilized two-stage U-Net/ V-Net and achieved
top performances in the LA cavity segmentation. The first stage
was to roughly locate the LA cavity center for ROI extraction,
while the second stage was to perform the LA cavity segmen-
tation from the cropped ROI. In this way, a memory-efficient
and accurate framework was developed, and the class imbal-
ance problem was also mitigated. It is worth mentioning that
Xia et al. (2018) obtained the first-ranked results (mean Dice
score of 0.932 ± 0.022) in Left Atrium Segmentation Challenge
by using the two-stage network.

Multi-view networks. The major drawback of 2D networks is
that they ignore the inter-slice correlation in the 3D LGE MRI.
To solve this, a number of works have employed multi-view
images as the input of networks to learn additional contextual
information, namely multi-view learning. Examples include
Chen et al. (2018b), Yang et al. (2020), and Xiao et al. (2020)

where the features learned from axial, sagittal, and coronal
views were combined for the LA cavity segmentation. Specifi-
cally, Chen et al. (2018b) and Yang et al. (2020) regarded axial
view as the main view due to its finer spatial resolution and ex-
tracted information by sequential learning; and then employed
dilated residual learning to extract complementary information
from sagittal and coronal views (with lower spatial resolution).
Instead of employing 2D networks, Xiao et al. (2020) con-
structed three 3D deep convolutional streams to extract features
from the patches of three views, and then fused the features for
the LA cavity segmentation.

Multi-scale networks. There exists inconsistency in the sizes
of LA anatomical structures such as the PVs among different
patients in LGE MRI. Multi-scale networks are therefore com-
monly used to learn both local and global features from LGE
MRI. For instance, Du et al. (2020) adopted a dual-path struc-
ture network with a multi-scale strategy for the LA cavity seg-
mentation from LGE MRI. Xiong et al. (2018) proposed an
AtriaNet consisting of a multi-scale and dual pathway archi-
tecture, to capture both local LA tissue geometries and global
positional information. They evaluated their algorithm on 154
LGE MRIs and obtained average Dice scores of 0.940 ± 0.014
and 0.942 ± 0.014 for the LA epicardium and endocardium, re-
spectively.

Uncertainty-aware models. LA structures such as the mitral
valve are difficult to segment due to the lack of a clear anatom-
ical border between the LA and the LV. The ambiguity of the
boundary gives rise to uncertainty for the LA cavity segmenta-
tion. Yang et al. (2018b) designed a composite loss to combat
uncertainty, and the main idea was to enlarge the gap between
background and foreground predictions. Yu et al. (2019) pro-
posed an uncertainty-aware self-ensembling model for semi-
supervised LA cavity segmentation. This is achieved by en-
couraging the segmentation to be consistent for the same in-
put under different perturbations of the unlabeled data. There-
fore, they could use abundant unlabeled data for training and
obtained similar performance compared to the fully supervised
methods using abundant labeled data.

3.1.3. Summary of LA cavity segmentation methods
In summary, conventional methods generally rely on the in-

formation from shape priors or additional paired MRI/ MRA
for accurate LA cavity segmentation from LGE MRI. However,
acquiring the auxiliary images requires extra work, and may
introduce further errors, i.e., misalignment between LGE MRI
and the auxiliary images. Recently, with the development of
DL and the release of public data, many methods could directly
segment the LA cavity from LGE MRI, and achieved promising
results. However, there still exist large errors in the PV and MV
regions. This is mainly due to the small size, the large variabil-
ity of PVs, including the number, position and orientation of the
PVs, and the unclear boundary of MV. Note that PVs are crucial
structures for AF analysis, as scars and ablation gaps are mainly
located around PVs after PVI procedures. To improve the per-
formance of DL-based methods, multi-task learning is effective,
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and a two-stage network is also a recommended training strat-
egy. It is also important to include shape prior or spatial infor-
mation into the DL-based framework for robust LA cavity seg-
mentation, especially when the size of training dataset is small.
Besides, the accuracy of segmentation was found to be corre-
lated to the image quality of LGE MRI (Pearson’s correlation
= 0.38, p-value = 0.005) (Xiong et al., 2020). It is interesting
that the reviewed methods show that 2D and 3D convolutional
neural networks (CNNs) had comparable performance, though
the target LGE MRI belongs to a 3D image.

3.2. LA wall segmentation

To the best of our knowledge, there are limited works re-
ported for automatic LA wall segmentation in the literature, es-
pecially from LGE MRI. Many groups estimated the LA wall
from LGE MRI just as an initialization step for the LA scar
segmentation (Karim et al., 2013; Yang et al., 2018a; Wu et al.,
2018). These works are not included in this section, as most of
them simply dilated the generated LA endocardium by assum-
ing a fixed wall thickness for approximated LA wall segmen-
tation (Karim et al., 2013). However, LA wall thickness varies
with positions of the same patient and patients with different
gender, age, and disease status (Pan et al., 2008). With an ac-
curate segmentation result, the wall thickness, which is useful
in clinic studies, could be calculated. For the review of exist-
ing techniques of wall thickness measurement, one can refer to
Table 1 of the benchmark paper (Karim et al., 2018). Consider-
ing the limited number of works reported on LA wall segmenta-
tion, in this section we further review the segmentation on other
modalities, including non-enhanced MRI and CT. Table 7 sum-
marizes the representative works and results from (LGE) MRI
and CT.

3.2.1. Conventional methods for LA wall segmentation
Morphological operations. The most straightforward method
is to perform morphological operations on the LA endocardium
by assuming a fixed wall thickness. For example, Bishop et al.
(2016) adopted morphological operations on the segmented
blood pool for wall segmentation from CT. This method ignores
the thickness variation among different LA positions.

Deformable models. In contrast, deformable models can dy-
namically adapt to the changes of wall thickness, and hence
obtain more plausible LA wall segmentation results. For exam-
ple, Tao et al. (2016b) used the level-set approach to extract the
inner and outer LA surface for the final wall segmentation. Jia
et al. (2016) adopted the region growing method for endocardial
segmentation and then utilized Marker-controlled geodesic ac-
tive contour for the epicardial segmentation. Karim et al. (2018)
presented the LA wall segmentation and thickness measure-
ment results using three conventional methods, i.e., level-set,
region growing, and watershed. The results showed that level-
set performed evidently better than the other two methods; re-
gion growing generally over-estimated thickness and performed
poorly in the wall segmentation task. They also found that algo-
rithms performed worse in MRI than in CT, which may be due
to the fact that the image quality of MRI was generally worse

than CT. However, CT has limited soft tissue contrast, so Tao
et al. (2016b) employed nonlinear intensity transformation to
enhance the LA wall region in CT.

Laplace-based solutions. Laplace-based solutions generate a
series of smooth non-intersecting field lines between two
boundaries in space and are ideal for simulating the highly
variable LA epicardial and endocardial surfaces. Wang et al.
(2019b) employed the multi-planar convex hull approach to ex-
tract the epicardial and endocardial surfaces, and then used the
coupled partial differential equations (PDE) for the wall thick-
ness measurement. They evaluated their method on both LGE
MRI and ex vivo data, and observed that wall thickness values
in LGE MRI were more difficult to measure and validate. Be-
sides, there was a discrepancy in wall thickness measured by
ex vivo data and LGE MRI. Specifically, the wall thickness val-
ues measured from ex vivo data were consistently higher than
those measured in LGE MRI. Zhao et al. (2017) calculated the
wall thickness by solving the Laplace equations on both epi-
cardial and endocardial surfaces. Despite its prominence, the
Laplace-based method still requires explicitly calculating gra-
dient as well as distance trajectories, which are time-consuming
and error-prone (Wang et al., 2019c).

Graph-based methods. Graph-based methods are promising al-
ternatives. Veni et al. (2017) proposed a shape-based generative
model namely ShapeCut, to extract epicardial and endocardial
surfaces for the LA wall segmentation from LGE MRI, as pre-
sented in Fig. 8. The model could incorporate both local and
global shape priors within a maximum-a-posterior estimation
framework, and the shape parameters could be optimized via
graph-cuts algorithm. The optimization could be executed in
two phases in an iterative manner, i.e., one for multi-surface
updates based on multi-column graphs and the other for global
shape refinement based on closed forms. For evaluation, be-
sides directly assessing the LA wall segmentation performance,
they also adopted the LA scar segmentation based on their LA
wall segmentation for further evaluation. Specifically, they ex-
tracted the scars using thresholding based on both manual and
automatic wall segmentations. Then, they plotted the fibrosis
percentage from manual annotations versus that from automatic
ones for each scan. They obtained a linear relation with a small
error, demonstrating a high overlap between the manual and
automatic scarring regions. Here, the linear relation error was
indicated using the MSE and R-square values.

3.2.2. Summary of LA wall segmentation methods
In summary, currently reported works were all based on con-

ventional methods, and no DL-based method has been reported,
to the best of our knowledge. This could be due to the lim-
ited number of relevant public datasets and the large inter- and
intra-observer variations of the manual segmentation. As Karim
et al. (2018) reported, a common error of LA wall segmenta-
tion arises from the surrounding tissue such as the neighbor-
ing aortic wall. Improving the image quality may mitigate this
problem, and the active contour-based methods with shape con-
straints and coupled level-set approaches could be helpful. One
of the main applications of LA wall segmentation is to measure
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Table 7. Overview of previously published works on the LA wall segmentation from (LGE) MRI and CT. MSE: mean square error; A: anterior; P:
posterior; Tk: thickness; GAC: geodesic active contour; PDE: partial differential equations. Note that the evaluation measures and results in Inoue and
Drangova (2016), Tao et al. (2016b) and Jia et al. (2016) are from the benchmark paper (Karim et al., 2018).

Study Data Algorithm Evaluation Result
Hsing et al. (2014) 55 LGE MRI Manual Tk Tk = 7.0 ± 1.8 mm (before ablation)

Tk = 10.7 ± 4.1 mm (after ablation)
Veni et al. (2017) 72 LGE MRI +

170 Synthetic
ShapeCut ASD, HD, clinical

evaluation
Synthetic: ASD = 0.25 ± 0.04 mm; HD =

1.95 ± 0.38 mm
LGE MRI: ASD = 0.66 ± 0.14 mm
LGE MRI scar segmentation: MSE = 3.07;
R-square = 0.83

Zhao et al. (2017) LGE MRI Laplace equation Tk Tk = 3.7 ± 1.7 mm
Wang et al. (2019b) 154 LGE MRI

+ ex vivo data
Convex hull method +

coupled PDE
Tk LGE MRI: Tk = 0.4–11.7 mm and median =

3.88 mm

Karim et al. (2018) 10 MRI
Level-set

Tk, Dice, tissue mass
Tk = 2.16 ± 0.58 mm, Dice = 0.72

Region growing Tk = 6.04 ± 3.63 mm, Dice = 0.39
Watershed Tk = 3.45 ± 3.57 mm, Dice = 0.67

Inoue et al. (2014) 5 enhanced CT Multi-region segmenta-
tion software + manual
correction

Tk, visualization Tk = 0.5-3.5 mm

Bishop et al. (2016) 10 CT Morphological operations
+ Laplace equation

Tk Errors ≤ 0.2 mm for Tk of 0.5–5.0 mm

Inoue and Dran-
gova (2016)

10 CT Mesh vertex normal
traversal

Tk, Dice, tissue mass Tk = 1.13±1.02 mm (A), 1.26±0.83 mm (P)
Dice = 0.33 (A), 0.39 (P)

Tao et al. (2016b) 10 CT Nonlinear intensity trans-
formation + level-set

Tk, Dice, tissue mass Tk = 1.34±0.89 mm (A), 0.78±0.41 mm (P)
Dice = 0.43 (A), 0.21 (P)

Jia et al. (2016) 10 CT Region growing +

Marker-controlled GAC
Tk, Dice, tissue mass Tk = 0.75±0.38 mm (A), 1.46±1.57 mm (P)

Dice = 0.30 (A), 0.50 (P)

S jth layer 
ithcolumn  

xi,j
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Fig. 8. A framework example for the LA wall segmentation from Veni et al.
(2017). The LA wall segmentation was achieved by predicting the LA epi-
cardium and endocardium respectively, so the task was converted into a
surface estimation problem. ShapeCut constructed a geometric graph to
discretize continuous parameterization of the set of possible surfaces for
global optimization. (a) continuous parameterization of the surface es-
timate S ; (b) discrete approximation of the continuous parameterization
where the surface estimation performed. Here, each layer maintained a
topology similar to the desired surface, and each column ensured that the
estimated surface traverses it; (c) shape complying properly ordered graph
construction. Picture modified from Veni et al. (2017) with permission.

wall thickness. Most of the reported algorithms relied on ruler-
based assessments via digital calipers instead of performing a
prior segmentation of the LA wall (Karim et al., 2018). Sev-
eral works employed the Laplace equation or PDE to measure
wall thickness after achieving the LA wall segmentation. Karim
et al. (2018) demonstrated that their proposed wall thickness at-
las could be effective for thickness prediction in new cases via
atlas propagation. They constructed a flat thickness map via a
surface flattening and unfolding strategy, to compare the mean
thickness in each sub-region of the LA wall. Finally, though
CT is a good modality for imaging the thin wall owing to its

high resolution, MRI could be effective to assess the wall tissue
viability. Therefore, more attention is expected to the LA wall
segmentation from MRI, especially LGE MRI.

3.3. LA scar segmentation and quantification

In the literature, a limited number of works have been re-
ported targeting the fully automatic segmentation or quantifi-
cation of LA scars, probably due to the particular challenge
of this task. Most of the methods require an accurate initial
manual segmentation of the LA cavity or LA wall for the fol-
lowing scar classification on the LA wall. For example, Left
Atrium Fibrosis and Scar Segmentation Challenge (Rhode and
Karim, 2012) provided LA cavity labels for participants to de-
velop scar segmentation algorithms. Eight research teams con-
tributed their methods to this task, including histogram analy-
sis, thresholding, k-means clustering, region-growing with EM-
fitting, active contour, and graph-cuts (Karim et al., 2013). The
benchmark study showed that semi-automatic methods initial-
ized with manual LA wall segmentation were much more re-
liable, and performed better than fully automatic approaches
(Karim et al., 2013). Currently, the most commonly used ap-
proach for the LA scar segmentation is based on threshold-
ing, which is nevertheless sensitive to intensity changes of LGE
MRI (Pontecorboli et al., 2017). Table 8 summarizes all the
works, where conventional methods are listed in the upper part
and DL-based algorithms are enumerated in the bottom part.
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Table 8. Summary of previously published works on the (semi-)automatic LA fibrosis/ scar segmentation and quantification from LGE MRI. ∼M Post: ∼
months post-ablation; Pre: pre-ablation; XOR: XOR overlap; Percentage: scar percentage; RMSE: root MSE; Volume: total scar volume; ROC: receiver
operating characteristic; BER: balanced error rate; FCC: fuzzy c-means clustering; MIP: maximum intensity projection; GMM: Gaussian mixture
model; SSAE: stacked sparse auto-encoders; MS-CNN: multi-scale CNN; EAM-c: correlation with electroanatomical mapping; FWHM: full-width-at-
half-maximum; ICC: intraclass correlation coefficients; PCC: Pearson correlation coefficient. Here, the asterisk (∗) indicates the method employed manual
LA wall segmentation.

Study Num Pre/ Post Algorithm auto? Evaluation Dicescar

Oakes et al. (2009) 81 Pre 2–4 SD semi-auto Percentage, EAM-c N/A
Badger et al. (2010) 144 3-20M Post 3 SD semi-auto Percentage, EAM-c N/A
Knowles et al.
(2010)

7 Post + Pre MIP semi-auto Percentage, EAM-c N/A

Karim et al. (2011) 9 6M Post Probabilistic intensity model auto Percentage N/A
Perry et al. (2012) 34 3M Post K-means clustering semi-auto Dice, XOR, percentage 0.807 ± 0.106

Karim et al. (2013)

60 Post + Pre Hysteresis threshold

semi-auto Dice, RMSE, volume

0.76post; 0.37pre

60 Post + Pre Region growing + EM-fitting 0.85post; 0.22pre

40 Post + Pre Graph-cuts + FCC 0.73post; 0.17pre

15 Post Active contour + EM-fitting 0.76post

30 Post + Pre Simple threshold∗ 0.84post; 0.48pre

60 Post + Pre Graph-cuts 0.78post; 0.30pre

60 Post + Pre Histogram analysis + threshold∗ 0.78post; 0.42pre

60 Post + Pre K-means clustering∗ 0.72post; 0.45pre

60 Post + Pre 2 SD

semi-auto Dice, RMSE, volume

0.58post; 0.24pre

60 Post + Pre 3 SD 0.17post; 0.16pre

60 Post + Pre 4 SD 0.14post; 0.31pre

30 1-6M Post 6 SD 0.35post

60 Post + Pre FWHM 0.59post; 0.05pre

Ravanelli et al.
(2014)

10 Pre 4 SD semi-auto Dice, EAM-c 0.600 ± 0.210

Karim et al. (2014) 15 6M Post GMM + graph-cuts semi-auto Dice, ROC, volume > 0.8
Tao et al. (2016a) 46 Pre MIP auto Qualitative visualization N/A
Veni et al. (2017) 72 Post + Pre K-means clustering auto Percentage N/A
Yang et al. (2018a) 37 Post Super-pixel + SVM auto Dice, Acc, Sen, Spe, ROC,

BER
0.790 ± 0.050

Wu et al. (2018) 36 Post Multivariate mixture model auto Dice, Acc, Sen, Spe 0.556 ± 0.187
Razeghi et al.
(2020)

207 12M Post +

Pre
MIP auto ICC, PCC, RMSE N/A

Yang et al. (2017b) 20 Post + Pre Super-pixel + SSAE auto Dice, Acc, Sen, Spe, ROC 0.776 ± 0.146
Li et al. (2018b) 100 Post + Pre Graph-cuts + CNN auto Dice, Acc, Sen, Spe 0.566 ± 0.140
Chen et al. (2018b) 100 Post + Pre Multi-view two-task network auto Dice, Acc, Sen, Spe, per-

centage
0.78 ± 0.08

Yang et al. (2020) 190 Post + Pre Multi-view two-task network auto Dice, Acc, Sen, Spe 0.870
Li et al. (2020b) 58 6M Post Graph-cuts + MS-CNN auto Dice, Acc, Sen, Spe, GDice 0.702 ± 0.071
Li et al. (2020a) 60 3-27M Post Multi-task network auto Dice, Acc, GDice 0.543 ± 0.097

3.3.1. Conventional methods for LA scar segmentation and
quantification

Thresholding. Thresholding is the most popular method for LA
scar segmentation. The threshold value is normally defined by
assuming a fixed standard deviation (SD) above the average in-
tensity value of the normal wall region or blood pool (Oakes
et al., 2009; Badger et al., 2010; Ravanelli et al., 2014). For
details, one can refer to the survey from Pontecorboli et al.
(2017), where different thresholding-based scar segmentation
techniques were reviewed and compared. These methods are
easy to implement and intuitive, but also have several disadvan-
tages. Firstly, the selection of threshold values is subjective, and
the values can differ significantly across various scans, due to
the difference of timing from gadolinium administration (Karim
et al., 2014; Chubb et al., 2018). Secondly, the performance of
scar segmentation highly relies on the accuracy of LA or LA

wall segmentation that is also challenging, and therefore thresh-
olding based LA scar segmentation was typically achieved via
semi-automatic or manual approaches (Oakes et al., 2009; Bad-
ger et al., 2010). The benchmark paper (Karim et al., 2013)
compared eight methods with the full-width-at-half-maximum
(FWHM) and n-SD methods, and all thresholding methods em-
ployed manual LA cavity segmentation as initialization and
three of them further utilized manual LA wall segmentation. In
general, all the evaluated eight methods in the benchmark paper
outperformed the FWHM and n-SD methods.

Maximum intensity projection. Similar to thresholding, max-
imum intensity projection (MIP) is also a scar quantification
scheme that employs scar intensity characteristics. However,
unlike thresholding, MIP is more robust to the inaccurate LA
cavity segmentation due to the projection step. Examples in-
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clude Knowles et al. (2010) and Tao et al. (2016a), where pro-
jection was performed at ±3 mm and ±2 mm along each normal
vector of the LA surface respectively, to consider the potential
errors of LA cavity segmentation. Razeghi et al. (2020) also
employed MIP for scar segmentation (3 mm externally and 1
mm internally). Nevertheless, the projection range of MIP must
be selected carefully, as it needs to be large enough to extend
into the LA myocardium, but not too far to include the intensity
of other regions.

Clustering algorithms. Considering the complex intensity dis-
tribution of LGE MRI, clustering algorithms could be another
solution for LA scar segmentation. This is because clustering
can provide a mechanism to statistically separate voxels into
groups that are analogous to various tissue types, such as blood
pool, healthy wall tissue, and scars. Perry et al. (2012) em-
ployed k-means clustering to segment scars from manually seg-
mented LA wall regions. Veni et al. (2017) used the same k-
means clustering method as Perry et al. (2012), and the LA
wall was automatically segmented by their proposed ShapeCut
method. Yang et al. (2018a) employed super-pixel via a linear
iterative clustering algorithm to over segment scars, and then
utilized the support vector machine algorithm to classify the
over-segmented super-pixels into scarring and normal wall re-
gions. They scored the image quality into 0 (non-diagnostic),
1 (poor), 2 (fair), 3 (good), and 4 (very good) on a Likert-type
scale, according to the level of signal to noise ratio (SNR), ap-
propriate T1, and the existence of navigator beam and ghost
artifacts. Only subjects with image quality ≥ 2 were selected
into their study for evaluation. Wu et al. (2018) combined LGE
MRI with anatomical MRI for the scar quantification based on
the multivariate mixture model (MvMM) and maximum likeli-
hood estimator (MLE). They formulated a joint distribution of
images using the MvMM (Zhuang, 2019), where the registra-
tion of the two MRIs and scar segmentation of LGE MRI were
performed simultaneously. Then, the transformation and model
parameters were optimized by an iterated conditional model al-
gorithm within the MLE framework.

Deformable models. Two deformable models were employed
to segment LA scars from LGE MRI, i.e., region growing and
active contour with EM-fitting, as reported in Karim et al.
(2013). Among the eight methods mentioned in Karim et al.
(2013), region growing with EM-fitting method obtained the
best performance on a post-ablation dataset in terms of Dice,
even better than those methods that directly employed manual
LA wall segmentation for initialization. For pre-ablation data,
the three methods with manual LA wall initialization achieved
evidently better Dice compared to the other five methods only
with manual LA initialization. Similar to Yang et al. (2018a),
Karim et al. (2013) classified the LGE MRIs into three types,
i.e., good, average, and poor, according to its SNR and con-
trast ratio (CR) for scars. They found that most methods had a
marginally lower Dice on scans with worse quality, but without
statistical significance. This could be attributed to the minor
quality difference and accurate initialization of manual LA cav-
ity segmentation.

Graph-based methods. Graph-based methods naturally con-
sider inter-dependencies by introducing links (or edges) be-
tween related objects, thus effectively capturing their long-
range relatedness. It may be an effective solution to cap-
ture these small and diffuse scars distributed on the LA wall.
Karim et al. (2011) proposed a probabilistic tissue intensity
model which was formulated as a Markov random field and
solved using graph-cuts. In their following work (Karim et al.,
2014), they presented a scar quantification method by combin-
ing the scar intensity model priors and Gaussian mixture model
(GMM). Besides, they added constraints via the graph-cuts ap-
proach to ensure smoothness and avoided discontinuities in the
final scar segmentation. The proposed method was evaluated
on both numerical phantoms and clinical datasets, and demon-
strated a good concordance between the automatic results and
manual delineations. Here, numerical phantoms could offer a
wide range of variation in scar contrast, which is usually un-
available in clinical datasets.

3.3.2. Deep learning-based methods for LA scar segmentation
and quantification

Yang et al. (2017b) was the first work applying a DL-based
classifier for the LA scar segmentation. Specifically, they
used super-pixel over-segmentation for feature extraction, and
then adopted a supervised classification step via stacked sparse
auto-encoders. However, they only used handcrafted intensity
features, which provided limited information. Similar to the
DL-based LA cavity segmentation methods, multi-scale, multi-
view, and multi-task networks were also employed for LA scar
segmentation and quantification.

Multi-scale networks. As Fig. 3 (d) shows, the surrounding en-
hanced regions can seriously disrupt the segmentation of scars.
Multi-scale learning could be an effective strategy to allevi-
ate the interference, as it provides both local and global views
when learning features of scars. Li et al. (2018b) proposed
a hybrid approach utilizing a graph-cuts framework combined
with CNNs to predict edge weights of the graph for the auto-
matic scar segmentation. They extended their work by intro-
ducing multi-scale CNN (MS-CNN) to learn local and global
features simultaneously (Li et al., 2020b), as presented in Fig. 9.
The experimental results showed that the multi-scale learn-
ing scheme (number of scales = 3) improved the performance
when compared with a single scale (Dicescar: 0.702 ± 0.071 vs.
0.677 ± 0.070). Besides, the scheme is also less dependent on
an accurate LA cavity segmentation, which makes it more ro-
bust. A major limitation of this study was the lack of an end-
to-end training style, as the framework was split into three sub-
tasks, i.e., LA cavity segmentation as an initialization, feature
learning via the MS-CNN, and optimization based on graph-
cuts. This indicated the limitation of multi-scale patch strate-
gies, which resulted in an expensive time and space complexity
and an infeasible end-to-end training on the whole graph.

Multi-task/ multi-view networks. To achieve end-to-end opti-
mization, multi-task learning is desired. Li et al. (2020a) de-
veloped a new framework where LA cavity segmentation, scar
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Fig. 9. A framework example for the LA scar quantification from Li et al.
(2020b). The scar quantification was performed on the LA surface mesh
where a graph was constructed, and the weights of a graph were explic-
itly learned via an MS-CNN. Image adapted from Li et al. (2020b) with
permission.

projection onto the LA surface, and scar quantification are per-
formed simultaneously in an end-to-end fashion based on a
multi-task network. In this framework, they proposed a shape
attention (SA) mechanism by an implicit surface projection, to
utilize the inherent spatial relationship between the LA cavity
and scars. The mechanism also alleviated the class-imbalance
problem in the scar quantification and proved to be effective
in the ablation study. Similarly, Chen et al. (2018b) and Yang
et al. (2020) adopted multi-task learning for simultaneous LA
and scar segmentation, but the spatial relationship between the
two regions was not explicitly learned in their works. Moreover,
as mentioned in Section 3.1.2, they employed multiple views as
the input of multi-task networks.

3.3.3. Summary of LA scar segmentation and quantification
methods

In summary, scar segmentation/ quantification from LGE
MRI remains an open problem. Most methods relied on in-
teractive correction/ manual initialization, or on accurate initial
estimation of LA wall segmentation for following application
of thresholding. These semi-automatic approaches generally
obtained high accuracies in terms of Dice scores. Compared
to the conventional automatic methods, DL-based algorithms
could obtain better performance. However, DL-based models
could have limited model generalization ability. In general,
pre-ablation data with fibrosis is more challenging to segment
than post-ablation data with scars. This may be attributed to
the fact that fibrosis appears more diffusely compared to post-
ablation scars (Karim et al., 2013). In addition, it is difficult to
differentiate the native fibrosis and post-ablation scars for long-
standing persistent AF patients (Yang et al., 2017a). One major
challenge for scar segmentation/ quantification is the artifacts
from the boundary regions, such as the right atrial (RA) wall
and aorta wall. A good initialization, i.e., accurate LA or LA
wall segmentation, could be helpful to counteract this problem.
Li et al. (2020b) tried to reduce the dependence on accurate
LA cavity segmentation via projection and MS-CNN, while Li
et al. (2020a) introduced a distance-based spatial encoding loss

for training a deep neural network to learn the spatial infor-
mation of scars around the LA boundary. Another challenge
arises from the imaging, including poor image quality and data-
mismatch issues in DL-based methods. Therefore, a more con-
sistent and standard image acquisition protocol is highly re-
quired. Alternatively, domain generalization algorithms need
to be considered to improve the model generalization ability
across different sites or on unseen datasets (Li et al., 2021a;
Campello et al., 2021).

3.4. LA ablation gap quantification

Gaps around PVs can be classified into electrical/ conduc-
tion gaps and anatomical ablation gaps. Conduction gaps refer
to the electrical reconnection regions with high voltages in the
electroanatomical mapping (EAM), and they can be detected
using intra-cavitary catheters during a redo procedure. Ablation
gaps indicate the gaps of healthy tissue in the (ideally continu-
ous) scars, which are typically identified by LGE MRI. There-
fore, in this section, we only focus on the developed methods
to quantify ablation gaps from LGE MRI. Note that the abla-
tion gaps do not belong to the inherent structure of the LA, but
instead are “gaps” left during the LA ablation procedure. Ta-
ble 9 summarizes representative (semi-)automatic LA ablation
gap quantification methods, results, and main findings.

3.4.1. Conventional methods for LA gap quantification
Visual detection. To the best of our knowledge, most of the
methods reported in the literature relied on visual inspection,
which could result in biased estimations of gap characteristics,
such as the number, length, and position of gaps. For instance,
Badger et al. (2010) and Mishima et al. (2019) both employed
thresholding for the scar segmentation and then detected abla-
tion gaps visually. Moreover, as ablation gaps are highly cor-
related with scars, there is a certain overlap for quantification
methods of scars and ablation gaps, such as MIP and threshold-
ing. Bisbal et al. (2014) manually segmented the LA wall for
an accurate initialization and then adopted MIP for the scar and
gap classification. Linhart et al. (2018) used the image intensity
ratio as a threshold for LA scar segmentation and defined the
gaps as the discontinued ablation line ≤ 3 mm. Several soft-
ware packages were also employed for ablation gap quantifica-
tion, such as Osirix (Ranjan et al., 2012) and Custom-written
software (Harrison et al., 2015a).

Graph-based methods. Recently, Nuñez-Garcia et al. (2019)
proposed a reproducible framework for semi-automatic gap
quantification using a graph-based method, as presented in
Fig. 10. One can see that the gap quantification was performed
via minimum path search in a graph where each node was a
scarring patch, and the edges denoted the geodesic distances
between patches. They proposed a quantitative measure to esti-
mate the percentage of gaps around a vein, namely the relative
gap measure. One major limitation of this work was that a fixed
regional parcellation was assumed, i.e., four-PV configuration
in the LA, but actually only around 70% of LA have four PVs
(Prasanna et al., 2014).

https://www.osirix-viewer.com/
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Table 9. Summary of previously published works on the (semi-)automatic ablation gap quantification from LGE MRI. # gaps: mean number of gaps; GL:
gap length; IIR: image intensity ratio; NAUC: normalized area under the curve; RSPV: right superior PV; LIPV: left inferior PV; LSPV: left superior PV.

Study Num Algorithm Evaluation Results & Main findings
Badger et al. (2010) 144 3 SD for scar segmen-

tation + visually detect
gap

Visual, EAM-c Significant relationship between gaps and recurrence;
Achieving complete circumferential lesions around the PV
is difficult.

Ranjan et al. (2012) 12 Measurement tool in
Osirix

GL, pathology cor-
relation

The correlation coefficient (R2) between the GL identified
by LGE MRI and the gross pathology was 0.95;
GL = 1.0 mm (via gross pathology) and GL = 1.4 mm (via
LGE MRI);
Real time MRI system can be used to identify gaps.

Bisbal et al. (2014) 50 Manual LA wall + MIP GL, # gaps, EAM-c # gaps = 4.4/patient; # gaps = 1.27 ± 0.41/PV
Median GL = 13.33 ± 5.8 mm/gap;
Position of highest # gaps: RSPV (=1.53);
Position of fewest # gaps: LIPV (=0.67);
The majority of patients (73.3%) had gaps in all PVs.
LGE MRI may identify non-conducting gaps that could be
related to later recurrences.

Harrison et al.
(2015a)

20 Custom-written soft-
ware

Visual, EAM-c Weak point-by-point relationship (R2=0.57) between scars
and endocardial voltage in patients undergoing repeat LA
ablation;
The mean voltage within scar region is lower than that
within normal wall region.

Linhart et al. (2018) 94 IIR for scar segmenta-
tion + gap is defined as
discontinuation of the
ablation line by ≤ 3 mm

GL, # gaps, EAM-c # gaps = 5.4/patient; Mean GL = 7.3 mm/gap;
90 out of 94 patients (96%) had at least 1 anatomic gap;
Anatomic gaps are frequently detected in LGE MRI at 3
months after first PVI;
An increase of 10% relative GL increased the likelihood of
AF recurrence by 16%.;
The total relative GL was significantly associated with re-
currence instead of # gaps.

Mishima et al. (2019) 10 2 SD for scar segmen-
tation + visually detect
gap

GL, # gaps, EAM-c Mean GL = 11.6 ± 3.9 mm/gap;
# gaps = 1.6/patient (1st ablation);
# gaps = 1.4/patient (2nd ablation);
Position of highest # gaps: RSPV (=2);
Position of fewest # gaps: LIPV (=0);
The location of electrical gaps are well matched to that on
the LGE MRI.

Nuñez-Garcia et al.
(2019)

50 Graph-based method GL, # gaps, RGM Position of highest # gaps: LSPV (=1.73);
Position of fewest # gaps: LIPV (=1.16);
No significant differences between left and right PVs;
No significant relationship between gaps and recurrence.

3.4.2. Summary of LA ablation gap quantification methods

It is considered difficult to achieve complete circumferen-
tial lesions, so the majority of patients have gaps after ablation
(Badger et al., 2010; Bisbal et al., 2014; Linhart et al., 2018).
The most common locations appearing gaps are the area be-
tween the left superior PV (LSPV) and the LAA. This may be
due to the presence of a thicker myocardium in this area, which
leads to non-transmural lesions (Galand et al., 2016). In Bisbal
et al. (2014) and Mishima et al. (2019), the largest number of
gaps occurred in right superior PV (RSPV) was reported; while
in Nuñez-Garcia et al. (2019) it appeared in LSPV. In contrast,
the fewest of gaps occurred consistently in the left inferior PV
(LIPV) (Bisbal et al., 2014; Mishima et al., 2019; Nuñez-Garcia
et al., 2019). The different distributions of gaps in different PV
positions could be attributed to the differences in imaging and
limited accuracy of scar segmentation in these regions.

The relationship between electrical gaps of EAM and
anatomical gaps of LGE MRI is still unclear. Mishima et al.
(2019) found that the location of electrical gaps was well
matched to that of the detected ablation gaps from LGE MRI.
However, Harrison et al. (2015a) claimed a weak point-by-point
relationship between scars and EAM in the patients with re-
peated LA ablation. Besides, the relationship between ablation
gaps and AF recurrence is also controversial, with positive an-
swers (Peters et al., 2009; Taclas et al., 2010; Badger et al.,
2010; Bisbal et al., 2014; Linhart et al., 2018) but also nega-
tive conclusions (Spragg et al., 2012; Harrison et al., 2015b;
Nuñez-Garcia et al., 2019). These are partially due to the lack
of an objective and consistent method for ablation gap quantifi-
cation, primarily depending on visual observation. The task has
not been properly addressed in the literature, and research on
this is still in an early stage.

https://www.osirix-viewer.com/
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Fig. 10. A framework example for the LA gap quantification from Nuñez-
Garcia et al. (2019). The gap quantification was performed through min-
imum path search in a graph where every node referred to a scarring
patch and the edges denoted the geodesic distances between patches. Image
adapted from Nuñez-Garcia et al. (2019) with permission.

3.5. Image computing and analysis on the LA LGE MRI

So far, we have presented and discussed the recent progress
in LA LGE MRI computing. Table 10 summarizes the vari-
ous properties of different targets with corresponding potential
processing schemes. The LA cavity is a relatively large target
but with variable shapes; the LA wall is equivalent to two sur-
faces with extremely small and inconsistent distance; and the
LA scars/ ablation gaps belong to small, discrete, and space-
constrained (scars and ablation gaps are localized at the LA
wall) targets with distinct features. Most of the methods sum-
marized here are customized to the corresponding attributes and
challenges of each task. For example, due to the variable shapes
of the LA cavity, many atlas-based methods were proposed to
incorporate the shape priors. Auxiliary images, uncertainty-
aware, and coarse-to-fine training schemes are also beneficial
for LA cavity segmentation. Due to the properties of the LA
wall, variants of deformable models were employed, such as
coupled level-set, region growing, and watershed algorithms.
With an accurate LA initialization, it is straightforward yet ef-
fective to adopt thresholding for the scar segmentation, as scar-
ring regions are enhanced in intensity compared to the healthy
wall. Moreover, due to the thin wall, some researchers pro-
posed to project the scars onto the LA surface ignoring the wall
thickness for scar quantification.

Nevertheless, there is a certain overlap in these reviewed ap-
proaches, mainly as the four tasks are coherent and share sim-
ilar challenges (please refer to Sec 1.2 of the manuscript for
the challenges of each task). Among the conventional methods,
several classical algorithms were commonly employed, such as
graph-based methods, deformable models, and clustering algo-
rithms. For example, Fig. 8, Fig. 9, and Fig. 10 present the
graph-based methods for LA wall segmentation, LA scar quan-
tification, and LA gap quantification, respectively. It is evident
that for different tasks the graphs were constructed in differ-
ent styles. Specifically, for LA wall segmentation a graph was
represented by a set of columns and a neighborhood structure
among adjacent columns for a multi-surface update, namely
a multi-column graph. For LA scar quantification, a graph
was designed on the LA surface mesh, and the graph weights

were learned by MS-CNN. For LA gap quantification, the scar
patches were regarded as the nodes of a graph, and the geodesic
distances between patches were denoted as the edges. Among
the DL-based methods, there are several commonalities for LA
cavity and scar segmentation/ quantification, which can be cat-
egorized into three kinds, (1) alleviating the class imbalance
problem via pre-processing, a two-stage pipeline, or weighted
sampling; (2) improving the robustness of networks via multi-
scale learning, multi-task learning, or multi-view feature fusion;
(3) forcing the network to generate more plausible segmentation
results by incorporating shape priors, applying anatomical con-
straints, or introducing uncertainty maps. It is worthwhile to
highlight that for LA cavity and scar segmentation/ quantifica-
tion, leveraging spatial relationship of LA cavity and scars via
simultaneous optimization has been explored and shown to be
beneficial for improving the accuracy.

There are apparent trade-offs between conventional and DL-
based algorithms. Conventional approaches are transparent and
well-established, while DL has potential of higher precision and
versatility but with the cost of an enormous amount of data and
computing resources (O’Mahony et al., 2019). Therefore, it is
interesting to explore hybrid approaches combining the advan-
tages of them. Several works have demonstrated their bene-
fits for LA LGE MRI computing. For example, for LA cav-
ity segmentation, Borra et al. (2018) utilized Otsu’s algorithm
to extract ROI and then performed segmentation on the ROI
via U-Net. Li et al. (2021c) employed the conventional dis-
tance transform maps to incorporate continuous spatial infor-
mation of the target label. The limited receptive view and spa-
tial awareness in the standard CNN-based methods could lead
to a noisy segmentation, especially for the target with highly
variable shapes, such as LA. Their results showed the effective-
ness of distance transform maps in the DL-based framework
removing the noisy patches of the segmentation. Statistical
shape models (SSMs) can be a promising alternative to com-
bine CNN with prior knowledge of anatomical shapes for the
LA cavity segmentation (Ambellan et al., 2019). Recently, DL-
based cross-modality MAS frameworks are promising for the
left ventricle (LV) myocardial segmentation (Ding et al., 2020),
and could be extended for the LA cavity segmentation, espe-
cially when the additional paired modalities are available. For
LA scar quantification, Li et al. (2020b) combined the conven-
tional graph-cuts algorithm and MS-CNN (LearnGC) for hy-
brid representations of structural and local features. They em-
ployed MS-CNN to learn multi-scale features of patches cor-
responding to nodes on the graph and obtained better results
than conventional graph-cuts algorithms which were based on
hand-crafted features. For LA wall segmentation and gap quan-
tification, no DL-based method has been reported, to the best of
our knowledge. However, the conventional ShapeCut algorithm
proposed by Veni et al. (2017) can be adapted for such applica-
tion, by extracting features from the intensity profiles via CNN
for more accurate LA wall segmentation. Similar schemes can
be employed on the proposed graph-based method for LA gap
quantification (Nuñez-Garcia et al., 2019). Moreover, the utility
of level-set for LA wall segmentation has been proven (Karim
et al., 2018), and the combination of DL and level-set for the
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Table 10. Summary of current computing methods on the LA LGE MRI for AF analysis.
Target Unique characteristic Potential processing strategies & future perspective
LA cavity large shape variability introducing shape prior; combining complementary informa-

tion from other paired modalities; uncertainty-aware schemes;
coarse-to-fine training

LA wall thin thickness; irregular opening; varying thickness
across the wall

level-sets; ShapeCut and its possible future version combining
DL-based feature extraction

LA scars small; diffusion; spatial constrained; intensity-related;
corresponding to the low voltage regions of EAM

multi-scale learning schemes; surface projection; multi-task
learning schemes; thresholding based on an accurate initializa-
tion

LA gaps without an unified definition; uncertain number of PVs quantitative instead of visual qualitative quantification

LV segmentation obtained accurate results with small training
sets (Ngo et al., 2017). Therefore, such combination and hybrid
approaches are expected and should be further explored in the
near future.

4. Data and evaluation measures

Validation work not only reveals the performance and limi-
tations of a proposed method, but also clarifies the scope of its
application (Jannin et al., 2006). Hence, it is essential to vali-
date an algorithm before applying it to a clinical setting. This
section examines and analyzes the validation methods used for
each aforementioned task in the literature, including the data
and performance measures. We also focus on the evaluation of
clinically relevant measures, besides the evaluation of comput-
ing accuracy of the algorithms.

4.1. Public AF related datasets
Several challenge events have been organized in recent years

at international conferences such as ISBI (International Sym-
posium on Biomedical Imaging) and MICCAI (Medical Image
Computing and Computer-Assisted Interventions), with corre-
sponding public datasets released. For example, Zhuang et al.
organized the Multi-Modality Whole Heart Segmentation Chal-
lenge, in conjunction with STACOM’17 and MICCAI’17. They
provided 120 multi-modality images covering a wide range of
cardiac diseases, such as AF, myocardial infarction, and con-
genital heart disease (Zhuang et al., 2019). Ten algorithms for
CT data and eleven methods for MRI data have been evaluated,
and most of the submitted algorithms were DL-based. The eval-
uated results showed that the LA cavity segmentation of AF
patients was particularly more accurate compared to other cat-
egories of patients. Moreover, public datasets were released
along with the challenge events focusing on a specific anatom-
ical structure instead of the whole heart. Table 11 summarizes
the public AF-related events and datasets with corresponding
download links.

For LA cavity segmentation, Tobon-Gomez et al. orga-
nized the Left Atrium Segmentation Challenge, in conjunction
with STACOM’13 and MICCAI’13. They offered a dataset in-
cluding 30 CT and 30 MRIs with the manual LA cavity seg-
mentation and presented the results of nine algorithms for CT
and eight for MRI (Tobon-Gomez et al., 2015). Their results
showed that the methodologies that combined statistical mod-
els with region-growing were the most suitable for the target

task. Zhao et al. organized the Atrial Segmentation Challenge,
in conjunction with STACOM’18 and MICCAI’18. They pro-
vided 150 LGE MRIs with manual LA cavity segmentation
generated from three experts, and the data covered both pre-
and post-ablation images (Xiong et al., 2020). To explore the
quality of the dataset, they calculated three measures, i.e., SNR,
CR, and heterogeneity, which were in agreement. The qual-
ity measurements showed that less than 15% of the data had
high quality (SNR>3), 70% had medium quality (SNR = 1∼3),
and over 15% was of low quality (SNR<1). In total, 27 teams
contributed to the automatic LA cavity segmentation, and most
of the methods were DL-based except for two MAS methods.
The results showed that two-stage CNNs achieved superior re-
sults than other single CNN methods and conventional meth-
ods. This challenge event provided a significant step towards
much-improved segmentation methods for the LA cavity seg-
mentation of LGE MRI.

For LA wall segmentation, Karim et al. organized the Left
Atrial Wall Thickness Challenge, in conjunction with STA-
COM’16 and MICCAI’16. The released images consisted of 10
CT and 10 MRIs of healthy and diseased subjects with manual
LA wall segmentation. Only two of the three participants con-
tributed to the automatic segmentation of the CT data, but no
work on the MRI data was reported (Karim et al., 2018). The
limited number of submitted algorithms generally performed
poorly compared to the inter-observer variability, which re-
vealed the difficulty of the wall segmentation task. Zhao and
Xiong (2018) and Utah (2012) released a public LGE MRI
dataset with LA wall segmentation. This segmentation was
however generated using the morphological (dilation) operation
from the LA cavity manual segmentation.

For LA scar segmentation, Karim et al. organized the
Left Atrium Fibrosis and Scar Segmentation Challenge at ISBI
2012. They provided 60 multi-center and multi-vendor LGE
MRIs with manual labels of both LA and scars, and summa-
rized the submitted algorithms from seven institutions in Karim
et al. (2013). To the best of our knowledge, no public dataset
for gap quantification and evaluation has been reported.

4.2. Evaluation measures

The methods are evaluated in different ways for different
tasks in the literature. However, all the measures are generally
designed based on the idea of comparing automatic segmenta-
tion results with reference segmentations. In this section, we
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Table 11. Summary of the public datasets whose research targets are AF patients or include AF patients. Here, the star (?) indicates that the data is
acquired from multiple centers and vendors. bSSFP: balanced steady-state free precession.

Source Year Data Target Name & Hyperlink
Utah (2012) 2012 155 LGE MRI + 3D MRI LA cavity, LA scar CARMA, University of Utah
Karim et al. (2013) 2012 60 LGE MRI? LA scar Left Atrium Fibrosis and Scar Segmentation Challenge
Tobon-Gomez et al.
(2015)

2013 30 CT, 30 bSSFP MRI LA cavity Left Atrium Segmentation Challenge

Karim et al. (2018) 2016 10 CT, 10 black-blood
MRI

LA wall Left Atrial Wall Thickness Challenge

Zhuang et al. (2019) 2017 60 CT, 60 bSSFP MRI? Whole heart includ-
ing LA cavity

Multi-Modality Whole Heart Segmentation Challenge

Xiong et al. (2020) 2018 150 LGE MRI LA cavity Atrial Segmentation Challenge

summarize common measures employed in each LA comput-
ing task. The reader is referred to Fig. 11 for an illustration of
each evaluation measure listed below.

4.2.1. LA cavity measures
For assessing the performance of LA cavity segmentation, a

range of different measures have been explored, as shown in
Table 6. The most widely used measures include the Dice coef-
ficient/ score, Jaccard index, HD, and average surface distance
(ASD). They are defined as follows,

Dice(Vauto,Vmanual) =
2 |Vauto ∩ Vmanual|

|Vauto| + |Vmanual|
, (1)

Jaccard(Vauto,Vmanual) =
|Vauto ∩ Vmanual|

|Vauto ∪ Vmanual|
, (2)

HD(X,Y) = max
[

sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)
]
, (3)

and

ASD(X,Y) =
1
2

(∑
x∈X miny∈Y d(x, y)∑

x∈X 1
+

∑
y∈Y minx∈X d(x, y)∑

y∈Y 1

)
,

(4)
where Vmanual and Vauto denote the set of pixels in the manual
and automatic segmentation, respectively; X and Y represent
two sets of contour points; d(x, y) indicates the Euclidean dis-
tance between the two points x and y; and |·| refers to the number
of pixels in set V . Dice and Jaccard are selected for volumetric
overlap measurement, where Jacquard index can be more sen-
sible and severe upon small variation compared to Dice (Jamart
et al., 2019). ASD and HD are used to evaluate the shape and
contour accuracy of the object of interest. ASD calculates the
average of the distances between all pairs of pixels between two
surfaces. HD calculates the largest error distance of the 3D seg-
mentation defined for a prediction of the target. Therefore, HD
can further measure the existence of outliers, and sometimes
95% HD will be used to eliminate the influence of a small sub-
set of outliers.

In addition, three statistical measurements are employed, i.e.,
Accuracy (Acc), Specificity (Spe), and Sensitivity (Sen), de-
fined as follows,

Acc =
T P + T N

T P + FP + FN + T N
, (5)

Spe =
T N

T N + FP
, (6)

and
Sen =

T P
T P + FN

, (7)

where T P, T N, FN, and FP stand for the number of true pos-
itives, true negatives, false negatives, and false positives, re-
spectively. Acc represents the proportion of true results (both
T P and T N) among the total number of cases examined. Spe
and Sen are used to reflect the success of the algorithm for the
foreground and the background segmentation, respectively. Be-
sides, the diameter and volume error calculations are used to
assess the medical relevance of the automatic reconstructed LA
volumes in the clinic.

4.2.2. LA wall measures
For the LA wall segmentation, wall thickness and Dice are

currently the most commonly used measures. The thickness
(Tk) of the LA wall can be calculated by averaging the thick-
ness over each pixel pi ∈ Sepi from the epicardium Sepi to the
endocardium Sendo, and therefore is defined as,

Tk =

∑
pi∈Sepi

d (pi,Sendo)

|Sepi|
. (8)

Actually, when the object size is much smaller than the back-
ground (as in the case of the LA wall), overlap-based metrics
based on the four overlap cardinalities (TP, TN, FP, FN) are
generally inappropriate (Taha and Hanbury, 2015). This is be-
cause they will provide the same metric value, regardless of the
distance between two non-overlapping regions evaluated, ulti-
mately affecting the objectivity in precision. Therefore, both
Dice and Jaccard are not suitable since they can also be repre-
sented as,

Dice =
2T P

2T P + FP + FN
, (9)

Jaccard =
T P

T P + FP + FN
. (10)

In this case, distance-based metrics are recommended, as they
consider the precision and accuracy of both the shape and local
alignment of segmented regions. Apart from its small size, the
LA wall is also accompanied by adjacent PV structures, which
also exhibit large inter-observer variation and could be regarded

http://insight-journal.org/midas/%20collection/view/197
http://www.cardiacatlas.org/challenges/left-atrium-fibrosis-and-scar-segmentation-challenge/
https://www.cardiacatlas.org/challenges/left-atrium-segmentation-challenge/
https://www.doc.ic.ac.uk/~rkarim/la_lv_framework/wall/datasets.html
http://www.sdspeople.fudan.edu.cn/zhuangxiahai/0/mmwhs/
http://atriaseg2018.cardiacatlas.org/data/
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Fig. 11. Sketch map of measures employed in LA LGE MRI computing.

as outliers. Compared to HD which is sensitive to outliers, ASD
is a better option for LA wall quantitative assessment. As the
LA wall segmentation involves the two surfaces, i.e., the epi-
cardium and endocardium, the ASD of the LA wall is defined
as,

ASDwall = max
{
ASDepi,ASDendo

}
. (11)

Apart from these measurements, tissue mass and clinical evalu-
ation are also employed for the evaluation of LA wall segmen-
tation. The tissue mass M is designed to predict the volume
error, and the difference in mass is defined as,

∆M = ρ × |V − V̂ |, (12)

where ρ = 1.053 g/ml (Vinnakota and Bassingthwaighte, 2004)
is the average wall tissue density, and V and V̂ refer to the ref-
erence and predicted volume, respectively (Karim et al., 2018).
Furthermore, Veni et al. (2017) proposed to compare the scar
percentages within the manually and automatically segmented
LA wall. The basic idea behind this is that the LA wall segmen-
tation is usually regarded as an initial step for the scar segmen-
tation as mentioned earlier.

4.2.3. LA scar measures
The optimal evaluation method to quantify scars from LGE

MRI is still controversial due to the lack of ground truth. Cur-
rently, the EAM system is regarded as the clinical standard tech-
nique for the scar assessment, as presented in Fig. 12. The
widely used bipolar voltage threshold defining the LA scars
is ≤ 0.05 mV, which has been propagated through the litera-
ture and clinical practice (Harrison et al., 2014). However, the
correlation between the LA scars identified by LGE MRI (en-
hanced regions) and EAM (low voltage regions) is still being
questioned (Floria et al., 2020). The subjective and inaccurate
scar segmentation might be one of the main reasons.

Alternatively, most algorithms employ manual segmented
LA scars as the ground truth. For this evaluation, volume over-
lap measures and scar percentage are commonly used, as Ta-
ble 8 shows. For example, Perry et al. (2012) proposed a novel
overlap measure for the scar evaluation, namely XOR overlap,

XOR(Vauto,Vmanual) =
|W | + |Vauto ⊕ Vmanual|

|W |
, (13)

where |W | is the set of voxels that belong to the LA wall, and
⊕ refers to exclusive OR. The XOR overlap measure empha-
sizes the difference between overlapping scars, and will not be
affected by the size of scars.

However, as mentioned in Section 4.2.2 volume overlap mea-
sures (such as Dice) could be highly sensitive to the mismatch
of small structures (namely scars here), so in instances it will
impose disproportionate penalties on the algorithm. To miti-
gate the effect of the small size of scars, Li et al. (2020b) pro-
posed to project the appearance of scars onto the LA surface for
both ground truth and automatic segmentation results, and then
calculate the Dice scores of scars on the projected LA surface
instead of on the 3D volume (Wu et al., 2018; Li et al., 2018b,
2020b,a). Furthermore, Li et al. (2020b,a) computed the gener-
alized Dice (GDice) of scars from the projected LA surface for
a better interpretation. GDice is defined as follows,

GDice =
2
∑Nk−1

k=0

∣∣∣S auto
k ∩ S manual

k

∣∣∣∑Nk−1
k=0 (

∣∣∣S auto
k

∣∣∣ +
∣∣∣S manual

k

∣∣∣) , (14)

where S auto
k and S manual

k indicate the segmentation results of la-
bel k from the automatic method and manual delineation on
the LA surface, respectively, Nk is the number of labels. Here,
Nk = 2, where k = 1 represents normal wall and k = 1 refers to
scarring regions.
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Fig. 12. The spatial correspondence of LGE MRI and EAM data. Image
adapted from Núñez Garcı́a et al. (2018) with permission.

Karim et al. (2013) proposed a surface-based metric, which
employed MIP to calculate the distance error between the mesh
vertex points on the LA surface. The distance error is defined
as the root mean squared error (RMSE), i.e.,

RMSE =

√√√
1
N

N∑
i=1

d
(
vauto

i , vmanual
i

)2
, (15)

where vauto
i and vmanual

i are the set of mesh vertices belonging
to scars from the prediction and ground truth, respectively. The
major limitation of the surface based metric is that targets with
a significant amount of FP scars will have a low RMSE er-
ror. Nevertheless, it can be overcome by combining the surface
measure with a volume-based index.

Scar percentage is directly related to clinical categorization
of AF patients, as presented in Table 1, and thus should be ap-
propriate as an assessment measure. Besides, one could ana-
lyze the relationship of scar percentages between manually and
automatic scar segmentations, to evaluate the performance of
automatic scar segmentation. For example, Veni et al. (2017)
quantified the scar percentage correlation using the mean square
error (MSE) and R-square value. Many works also calculate the
volume error of scars for evaluation, which is defined as,

δV = |Vauto − Vmanual| . (16)

Statistical measurements related to scar classification could be
employed for evaluation, including Acc, Sen, Spe, receiver
operating characteristic (ROC) curve, and balanced error rate
(BER).

4.2.4. LA ablation gap measures
As Table 9 shows, most gap quantification methods in the

literature employed ablation gap characteristics (i.e., number,
length, and position of gaps) for evaluation. Similar to the eval-
uation of scars, these works also analyzed the correlation with
EAM, by comparing the ablation gaps in LGE MRI to the elec-
trical gaps in EAM. However, the applicability of EAM for ab-
lation gap quantification is limited. This is mainly because: 1)

the difficulty of the gap position registration between LGE MRI
and EAM; 2) the voltage mapping does not entirely reflect scar/
gap formation; 3) the requirement of a voltage threshold for
scar/ gap classification, with the same issues as for the LGE
MRI threshold. Therefore, direct extrapolation of EAM data
to verify LGE MRI should be performed carefully, in particular
when they offer contradictory information (Nuñez-Garcia et al.,
2019). Besides, Ranjan et al. (2012) calculated the correlation
between gap length (GL) measured via LGE MRI for evalua-
tion. Nuñez-Garcia et al. (2019) proposed a quantitative index,
i.e., relative gap measure (RGM), to calculate the proportion of
the ablation gaps on a defined standard LA parcellation.

RGM =
Gap length

Encircling Path length
, (17)

where “Gap length” indicates the sum of all GLs along the “En-
circling Path”, and the “Encircling Path length” refers to the
length of the complete closed-loop on the PVs. The RGM is
between 0 and 1, which means that if RGM = 0, the vein is com-
pletely surrounded, and if RGM = 1, there are no scars around
the veins. To alleviate the effect of the scar segmentation, one
could adopt a multi-threshold scheme for the scar segmentation,
and then integrate the results into the RGM calculation (Nuñez-
Garcia et al., 2019).

4.3. Evaluation results on the AF-related public dataset

In general, the segmentation accuracy of different methods is
not directly comparable, unless these methods are evaluated on
the same dataset using the protocols. Therefore, we only sum-
marize the state-of-the-art results of reviewed LA LGE MRI
computing methods on the public dataset here, as presented in
Table 12.

For LA cavity segmentation, three public datasets are avail-
able, and Dice, ASD and HD are commonly used for evaluation.
On the dataset from Utah (2012), the state-of-the-art results
of the LA cavity segmentation in all metrics were from Zhu
et al. (2013). On the dataset from Zhuang et al. (2019), mean
Dice scores from different methods have been reported for each
pathology including AF. The methods evaluated on the public
dataset from Xiong et al. (2020) have been separated into con-
ventional methods and DL-based methods. For each metric, we
list the state-of-the-art results from conventional and DL-based
methods, and the best Dice score for the LA cavity segmenta-
tion was obtained by Xiong et al. (2018) (Dice = 0.942±0.014).
The DL-based methods demonstrated great potential, as the best
result in each metric was all obtained by DL-based methods on
this dataset.

For LA wall segmentation, there is only one available pub-
lic dataset for evaluation, which included 10 CT and 10 non-
enhanced MRIs instead of the LGE MRI. We present both the
state-of-the-art results and inter-observer variations for each
metric. One can see that the results based on semi-automatic al-
gorithms were generally comparable to the inter-observer vari-
ations for each metric. However, the size of this dataset is
small, and current semi-automatic methods are labor-intensive
and subjective.
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Table 12. Summary of representative results for LA LGE MRI computing on public AF-related datasets. CoV: coefficient of variation; CV: conventional
methods.

Public dataset source Target Representative result

Utah (2012) LA cavity
Dice = 0.79 ± 0.05, OV = 0.65 ± 0.07, ASD = 2.79 ± 2.84 mm, 95% HD = 14.4 ± 3.65 mm
(Zhu et al., 2013)

Xiong et al. (2020) LA cavity

Dice = 0.861 ± 0.036 (CV) (Qiao et al., 2018), 0.942 ± 0.014 (DL) (Xiong et al., 2018)
Jc = 0.758 (CV) (Qiao et al., 2018), 0.874 (DL) (Xia et al., 2018)
HD = 11.8 mm (CV) (Qiao et al., 2018), 8.60 mm (DL) (Chen et al., 2018a)
ASD = 1.473 mm (CV) (Nuñez-Garcia et al., 2018), 0.748 mm (DL) (Xia et al., 2018)
Sen = 0.847 (CV) (Qiao et al., 2018), 0.949 (DL) (Preetha et al., 2018)
Spe = 0.999 (CV) (Qiao et al., 2018), 1.000 (DL) (Vesal et al., 2018)

Zhuang et al. (2019)
Whole heart includ-
ing LA cavity Dice = 0.844 ± 0.097 (only on AF patients)

Karim et al. (2018) LA wall

Dice = 0.43 (A) (Tao et al., 2016b), 0.39 (P) (Inoue and Drangova, 2016), 0.67 ± 0.22
(Inter-ob) on the CT; 0.72, 0.56 ± 0.14 (Inter-ob) on the MRI
Tk error = 0 (P/A), 0.25 mm (P) and 0.20 mm (A) (Inter-ob)
Tissue mass error = 3.84∼14.63 g, 10.03 ± 4.0 g (Inter-ob)

Karim et al. (2013) LA scar
Dice = 0.85post, 0.48pre

RMSE = 6.34 ± 8.2post mm, 0.17 ± 0.1pre mm (Lu et al., 2012)
δV = 6.34 ± 8.2post ml, 1.25 ± 1.5pre ml

Utah (2012) LA scar
Dice = 0.807 ± 0.106 (semi-auto) (Perry et al., 2012)
XOR = 0.916 ± 0.035 (semi-auto) (Perry et al., 2012)
CoV = 0.62 (Andalò et al., 2018)

For LA scar segmentation, two public datasets are accessi-
ble, and typically Dice is used for evaluation. On both datasets,
only semi-automatic algorithms were applied. There was per-
formance variation among pre- and post-ablation images from
Karim et al. (2013). Specifically, the best Dice scores were
0.48 and 0.85 on pre- and post-ablation LGE MRIs, respec-
tively. However, in terms of RMSE and δV , the performance
on the pre-ablation LGE MRIs was better than that on the post-
ablation LGE MRI. The possible reason could be that the vol-
ume of post-ablation LGE MRI is generally larger than that of
pre-ablation image. Nevertheless, pre-ablation LGE MRI is still
generally more challenging for fibrosis segmentation due to its
more diffuse distributions.

5. Potential clinical applications of the developed algo-
rithms

It is essential to evaluate the clinical utility of the developed
approaches for AF. Instead of blindly improving the accuracy
of methods, researchers therefore can focus more on answering
some clinical questions related to AF. The exploration and un-
derstanding of potential clinical applications of AF can guide
the development of segmentation and quantification algorithms
and answer important clinical questions. For example, we can
employ the developed segmentation and quantification tech-
niques to compare native and ablation-induced scars (Section
5.1), inspect the regional distribution of wall thickness (Sec-
tion 5.2), fibrosis/ scars and ablation gaps from LGE MRI, and
analyze the relationship between fibrosis/ scars/ gaps and AF
recurrence (Section 5.3). Moreover, there are several other clin-
ical applications, such as analyzing the relationship between the
low-voltage regions in EAM and scars detected by LGE MRI,
the relationship between ablation parameters (power of the ra-
diofrequency signal, catheter contact force, etc.) and the created

chronic lesion detected by LGE MRI, as well as assessing the
reproducibility of LGE MRI scar imaging with respect to imag-
ing parameters. However, the latter three applications require
additional EAM data or LGE MRIs with different ablation and
imaging parameters, and therefore are out of the scope of this
review.

To the best of our knowledge, there are a limited number of
review papers targeting the clinical applications of LGE MRI.
Zghaib and Nazarian (2018) summarized the new insights into
the use of MRIs for the decision-making of AF management.
They explored LGE, native T1-weighed, T2-weighted as well
as cine MRI, and for LGE MRI they only reviewed studies on
the relationship between the extent of scars on post-ablation
LGE MRIs and the rate of AF recurrence. In this section, we
will provide a comprehensive review from the perspective of
the clinical applications for AF analysis.

5.1. Comparisons of native and ablation-induced scars

Recent studies demonstrated the differences in the extent and
distribution of fibrosis/ scars of pre-/ post-ablation LGE MRI
(Malcolme-Lawes et al., 2013; Fukumoto et al., 2015). For
instance, Malcolme-Lawes et al. (2013) found that there was
no difference of scars between ostial and LA cavity regions for
pre-ablation data, but in post-ablation data the extent of scars
in the ostia is larger than that in the LA cavity. They also re-
ported a positive association between the extent of preexisting
fibrosis and AF recurrence, which coincides with the finding
in the literature (Verma et al., 2005b; Mahnkopf et al., 2010).
However, they did not find any relationship between the amount
of ablation-induced scars and AF recurrence, which should be
negatively associated according to the studies of Peters et al.
(2009); McGann et al. (2011). Fukumoto et al. (2015) demon-
strated that ablation-induced scars are related to greater con-
trast affinity and thinner walls compared to preexisting fibro-
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sis. Yang et al. (2017a) tried to distinguish native and ablation-
induced scars via a texture based feature extraction. They stated
the difficulty of the differentiation between native and ablation-
induced scars, especially for longstanding persistent AF. There-
fore, the understanding of the characteristics of pre- vs. post-
ablation scars can be important and may inform future ablation
strategies for AF.

5.2. Regional distribution analysis of wall thickness and fibro-
sis/ scars

To date, there are already several studies on LA wall thick-
ness measurements, to analyze the relationships between wall
thickness and patient age, AF stage/ type, scar formation, and
AF recurrence (Karim et al., 2018). For example, Hall et al.
(2006) studied 34 patients of different ages and found that the
thinnest and thickest areas were the roof (1.06 ± 1.49 mm) and
septum (2.2 ± 0.82 mm), respectively. They did not find any
significant relationships between the wall thickness and age.
In contrast, Pan et al. (2008) measured the wall thickness on
180 AF patients of various ages and concluded that the thick-
ness increased with age. They also found that the anterior wall
(2.0±0.9 mm, 3.2±0.2 mm and 3.7±0.9 mm in 40∼60, 60∼80
and 80+ year olds) was thicker than the posterior wall (0.7±0.2
mm, 1.8 ± 0.2 mm and 2.4 ± 0.4 mm in 40∼60, 60∼80 and
80+ year olds) among all the age groups. Beinart et al. (2011)
and Hayashi et al. (2014) both observed that the middle supe-
rior posterior wall was the thinnest region with a thickness of
1.43±0.44 mm and 1.44±0.17 mm, respectively. Suenari et al.
(2013) analyzed the thickness of 54 AF patients, and showed
that the thickest wall area is in the left lateral ridge (4.42± 1.28
mm), while the thinnest is in the LIPV (1.68 ± 0.27 mm). Be-
sides, they found that the thickness of the left lateral ridge was
correlated to the AF recurrence (p=0.041). However, the supe-
rior right posterior wall was found to be significantly associated
with both AF recurrence (p=0.048) and electrical reconnection
(p=0.014) in Inoue et al. (2016). Despite this progress, most of
these works were based on manual segmented the LA wall, and
focused on CT images instead of LGE MRI. Note that trans-
mural lesion formation is critical to the success of AF ablation
and is dependent on the knowledge of regional LA wall thick-
ness. Therefore, the distribution analysis of wall thickness from
LGE MRI could be important and might provide insight into the
progress of the AF.

As for the regional distribution of fibrosis/ scars in the LA
LGE MRI, related information is limited and has not been com-
prehensively reported. Cochet et al. (2015) divided the LA
into four segments and reported an irregular fibrosis anatom-
ical distribution. However, they found that fibrosis generally
occurred more often on the posterior LA wall than the ante-
rior one, particularly in the area adjacent to and below LIPV.
Benito et al. (2018) manually defined the LA parcellation with
12 sub-regions: 1∼4, posterior wall; 5∼6, floor; 7, septal wall;
8∼11, anterior wall; 12, lateral wall (see Fig. 13 (a)). They se-
lected 76 consecutive AF patients for analysis and also observed
that the fibrosis was preferentially located at the posterior wall
and floor around the antrum of the LIPV, i.e., segments 3 and
5 (40.42% and 25.82% fibrosis), as Fig. 13 (b) shows. In con-

trast, segments 8 and 10 (2.54% and 3.82% fibrosis) in the ante-
rior wall contained the fewest fibrosis. Similar to the increased
wall thickness in Pan et al. (2008), they found that age (>60
years old) was also significantly correlated to increased fibro-
sis (p=0.04). Recently, (Lee et al., 2019) separated the LA into
nine segments, and also found that scars were most frequently
seen at the posterior wall around the LIPV. Besides, they studied
195 paroxysmal and 121 persistent AF patients and observed
that the presence of fibrosis assessed in LIPV from LGE MRI
was associated with the chronicity of AF. This preliminary re-
search suggests that the knowledge of preferential fibrosis/ scar
position may open further perspectives in ablation strategies,
patient selection, and AF recurrence prediction.

5.3. Relationship analysis between fibrosis/ scars/ gaps and AF
recurrence

As mentioned in Section 5.1, both the extent of preexisting
fibrosis and ablation-induced scars are correlated with AF re-
currence, but with opposite effects. Specifically, AF recurrence
is positively associated with the extent of preexisting scars, but
negatively related to that of post-ablation scars. The charac-
teristics of pre- vs. post-ablation scars may explain the seem-
ingly paradox and inform future strategies for ablation (Fuku-
moto et al., 2015). With respect to the pre-ablation scars (also
namely fibrosis), it has been regarded as a potential cause of the
abnormalities in atrial activation, which may underlie the initia-
tion and maintenance of AF. Note that AF belongs to a progres-
sive disease, and several studies revealed that causality between
AF and fibrosis may be bidirectional (Oakes et al., 2009). This
might explain why patients with a greater extent of fibrosis nor-
mally suffer much higher recurrence rates after ablation. Apart
from the extent of fibrosis, Oakes et al. (2009) investigated 81
AF patients with pre-ablation LGE MRI, and found that AF re-
currence was also related to the locations of fibrosis. In their ex-
periments, patients with recurrent AF presented fibrosis on the
whole LA, whereas patients without recurrent AF had fibrosis
only located primarily to the posterior wall and septum. As for
post-ablation scars, robust evidence supports that complete cir-
cumferential and transmural lesion formation is critical to suc-
cessful AF ablation (Cappato et al., 2003; Verma et al., 2005a;
Ouyang et al., 2005). Here, the ablation lesion just refers to
the post-ablation scars or can be named ablation-induced scars.
Therefore, patients with a smaller degree of post-ablation scars
on LGE MRI tend to recur AF after ablation. Similar to fibrosis,
the location of post-ablation scars is also an important index for
AF recurrence prediction. For example, several studies empha-
sized the importance of right inferior PV (RIPV) scars, which is
the most highly correlated to clinical ablation success (Yamada
et al., 2006; Peters et al., 2009). This could attribute to the re-
ported technical difficulty in ablating the RIPV region due to
poor catheter access, resulting in its greater variability of scars.
For example, Peters et al. (2009) studied 35 AF patients under-
going the first ablation procedure, and compared the extent of
scars on different sub-regions. They demonstrated that the PVs
of patients without recurrence had more completely circumfer-
ential scars, especially on RIPV regions. In the case of ablation
gaps, which are generally caused by incomplete PVI, the extent
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Fig. 13. Example of a LA parcellation and its corresponding fibrosis distribution: (a) the LA surface template parcellated from anatomical landmarks; (b)
the regional distribution of LA fibrosis (the same color with different transparencies refers to the same region category), where the values were obtained
from Benito et al. (2018). Illustrations designed referring to Benito et al. (2018).

and distribution of gaps are regarded to be positively associated
with AF recurrence. The identification and localization of abla-
tion gaps from LGE MRI have been used to predict AF recur-
rence and further guide repeated PVI procedures (Bisbal et al.,
2014).

6. Discussion and future perspectives

LGE MRI has attracted increasing attention in the assessment
of AF before and after an ablation procedure. Automatic seg-
mentation and quantification algorithms of LA structures and
tissues can facilitate the diagnosis and therapy of AF patients.
However, the translation of current algorithms into the clinical
environment remains challenging. In this section, we summa-
rize existing major challenges in the field of LA LGE MRI com-
puting and the solutions recently proposed. The exploration of
these challenges and related works is expected to provide useful
information for developing novel methods and applications for
AF analysis.

6.1. Surface projection and LA unfolding mapping
Recent studies have shown that the success of AF treatment

highly relies on the formation of contiguous and transmural
scars on the LA wall (Glover et al., 2018). However, the wall
thickness is difficult to measure based on current LGE MRI
techniques. In clinical practice, the location and extent of scars
are believed to have greater clinical significance and can be used
to predict outcomes of AF ablation procedures (Arujuna et al.,
2012). Therefore, several studies have been proposed to project
scars onto the LA surface to perform scar quantification (Ra-
vanelli et al., 2014; Tao et al., 2016a; Li et al., 2020b, 2021c).
Fig. 14 (a) presents an example of scar projection achieved by
MIP. By projection, the errors due to LA wall thickness can be
mitigated, and the computational complexity of algorithms can
be drastically reduced.

Nevertheless, the cross-subject comparison of 3D surface
data is still arduous. To solve this, (Roney et al., 2019) de-
veloped a universal atrial coordinate mapping system for 2D
visualization of both the LA and right atrium. Williams et al.
(2017) created a 2D LA standardized unfolding mapping (LA-
SUM) template where the MV was mapped to a disk, the PVs

to circles, and the LAA to an ellipse, as presented in Fig. 14 (b).
The target 3D LA will be registered to a 3D template and then
transferred to the 2D template via a 3D-2D template mapping.
The LA flattening of LA-SUM may result in undesired infor-
mation loss between 3D and 2D LA representations due to the
possible inaccurate registration between LA surfaces with high
shape variability. Instead of relying on a 3D registration step,
(Nuñez-Garcia et al., 2020) proposed a quasi-conformal LA
flatting scheme and employed additional regional constraints
to overcome undesired mesh self-folding. The advantages of
these LA unfolding mapping techniques include 2D visualiza-
tion, LA regional assessment, and multi-modal data combina-
tion. However, their templates were generally designed for the
most common LA topology with four PVs. We therefore expect
that more flexible templates can be developed to adapt for the
LA topological variants.

6.2. Joint optimization and independent analysis of the AF-
related tasks

The target regions of the four tasks reviewed in Section 3 are
all inherently related, particularly in the spatial information of
images, as shown in Fig. 2. Several studies employed multi-task
learning for simultaneous LA cavity segmentation and scar seg-
mentation/ quantification and proved the effectiveness of joint
optimization (Chen et al., 2018b; Li et al., 2020a). The spa-
tial information between the LA cavity and scars could simply
be learned via spatial attention, i.e., multiplying the LA cavity
feature map by the scar feature map (Chen et al., 2018b), or
projecting the scars onto the LA endocardial surface (Li et al.,
2020a). At the same time, several studies have been devoted to
reducing the correlation between the accuracy of related tasks in
LA LGE MRI computing, i.e., their conditional dependencies.
For instance, MIP schemes have been widely used in LA scar
and gap quantification to mitigate the effect of inaccurate LA
cavity segmentation (Knowles et al., 2010; Tao et al., 2016a;
Razeghi et al., 2020; Bisbal et al., 2014). Patch shift scheme
was developed to apply a random shift along the LA boundary
when performing surface projection (Li et al., 2020b). Li et al.
(2020a) learned the spatial information around the LA bound-
ary to reduce the dependence on accurate LA cavity segmenta-
tion. Despite these advances, the joint optimization and inde-
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Fig. 14. Alternative visualizations and representations of LA scars via: (a) maximum intensity projection (images adapted from Tao et al. (2016a) with
permission); (b) LA standardized unfolding mapping (images adapted from Williams et al. (2017) with permission).

pendence analysis of the AF-related tasks are yet to be explored
in further depth in the future.

6.3. Challenges with deep learning in LA LGE MRI computing

It is evident that DL-based methods have obtained promis-
ing results on the LA cavity and scar segmentation and quan-
tification. It is mainly attributed to the release of related pub-
lic datasets and the emerge of advanced network architectures.
With the release of public datasets, the research on the LA cav-
ity and scar segmentation from LGE MRI started to increase,
as Fig. 4 shows. Despite the promising results, deep neural net-
works still confront a number of challenges, such as poor in-
terpretability, scarcity of annotated data, class imbalance prob-
lems, limited domain generalization ability, and catastrophic
forgetting. One may refer to the review papers (Chen et al.,
2020; Hesamian et al., 2019) to follow these challenges and
state-of-the-art solutions for DL-based medical image segmen-
tation. Here, we mainly discuss the limited data (Section 6.3.1)
and model generalization issues (Section 6.3.2), as there exist
several unique points in the two challenges for AF studies.

6.3.1. Scarcity of (annotated) data
The scarcity of (annotated) data is a serious issue in LA LGE

MRI computing. Though this is common in many other tasks,
LGE imaging could be more challenging, due to the existence
of contrast enhancement, its complex patterns, and the large
quality and contrast variations across different patients. Es-
pecially, LGE MRI of LA wall requires substantially higher
spatial resolution, patient-specific optimization of scan param-
eters, strict criteria for contrast dosage and delay between con-
trast injection and image acquisition, compared to LGE MRI of
the LV (Siebermair et al., 2017; Chubb et al., 2018). These
precise requirements are difficult to meet in practice, result-
ing in scarcity and poor image quality of LGE MRI. It is also
complicated to collect many annotated cases of 3D LGE MRI.
However, DL-based LA LGE MRI computing typically relies
on a large number of annotated samples for training. Several
schemes have been proposed to solve this. For example, Yu
et al. (2019) employed a semi-supervised learning method for
the LA cavity segmentation from LGE MRI, to fully utilize the
unlabeled data. Li et al. (2020b) adopted a patch-wise training
for the LA scar quantification from LGE MRI, which consid-
erably increased the amount of labeled training data. Data ar-
gumentation is generally useful in deep learning with limited

training data, for example the method of partially region ro-
tation of scars was employed for LV segmentation from LGE
MRI (Campello et al., 2019). Unsupervised domain adapta-
tion has also been proven to be capable to alleviate the prob-
lem of limited annotated data from the target domain, which
has been widely used for LV LGE MRI segmentation (Zhuang
et al., 2020; Wu and Zhuang, 2020, 2021; Pei et al., 2021). Fi-
nally, the methods making full use of sparse annotation (Çiçek
et al., 2016) are promising for LA LGE MRI computing with
limited annotated data and could be further explored in the fu-
ture.

6.3.2. Limited domain generalization ability
Currently, most existing algorithms have only been eval-

uated on center- and vendor-specific LGE MRI. Though the
Left Atrium Fibrosis and Scar Segmentation Challenge offered
multi-center and multi-scanner data, the benchmark algorithms
only tested on center- and vendor-specific images. Their suit-
ability and performance had not been tested on data from other
centers or vendors (Karim et al., 2013). Note that LGE MRIs
from different centers can vary evidently in appearance, as
Fig. 15 shows. This is mainly due to the absence of standardized
LGE MRI acquisition protocols, leading to poor reproducibility
of LGE MRI (Benito et al., 2017; Sim et al., 2019). Even in the
same dataset, one could encounter a severe data mismatch prob-
lem, resulting in poor outlier results (Li et al., 2021c). Several
schemes have been employed to solve this, such as data aug-
mentation/ generation, domain-invariant representation learn-
ing, and meta-learning (Wang et al., 2021). Nevertheless, large
multi-center and multi-scanner datasets are needed to validate
the robustness and generalizability of current methods, which
is more useful in practice. It is also worthy of promoting deep
models with efficient inherent generalization abilities for the
LGE MRI data processing from different centers and vendors
(Li et al., 2021b). Moreover, it could be interesting to study the
domain shift between pre- and post-ablation LGE MRIs from
the same center, and the label variations of LGE MRIs from
different centers.

7. Conclusion

We have presented and discussed the current progress of LGE
MRI computing for LA studies, particularly for the four tasks,
including segmentation and (or) quantification of LA cavity,
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Fig. 15. Multi-center pre- and post-ablation LGE MRIs, where LA cavity
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wall, scars, and ablation gaps. Though LGE MRI has been
proven to be a powerful diagnostic and prognostic tool in the
study of AF, a standardized imaging protocol should be fur-
ther investigated. Furthermore, a limited number of works have
been reported focusing on image computing tasks, especially
for automatic LA wall segmentation and ablation gap quantifi-
cation. Most research relies on manual delineation for further
analysis and clinical applications. Therefore, more accurate and
robust automatic methods are desired for overall wide and in-
telligent use in the clinical setting. The data-driven approaches
have shown great potential for the LA cavity and scar segmenta-
tion and quantification, thanks to the development of deep neu-
ral networks. The joint optimization of these related tasks can
be a new direction for the utilization of their spatial relationship.
To research for a broader clinical application, well-controlled
and large-cohort studies are expected to better guarantee the re-
producibility of measurements, refine the evaluation methods,
and validate the impact on clinical outcomes as well as the com-
puting accuracy.

Although we limit our survey related to AF analysis in the ar-
ticle, the described methodologies can be useful to other clinical
applications. We described in detail the characteristics of tar-
gets, which motivated the methodologies. Consequently, such
methods can be used for other targets sharing similar charac-
teristics as the targets in AF studies. For instance, tumor le-
sions are also small and diffuse targets, so the review on the scar
segmentation and quantification methods could inspire the de-
velopment of methods on tumor lesion segmentation, and vice
versa. We believe that this review has the potential to help re-
searchers to design appropriate frameworks according to their
problems and be aware of similar challenging issues and state-
of-the-art solutions.
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