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Abstract
Background: The response to neoadjuvant chemotherapy (NAC) differs sub-
stantially among individual patients with non-small cell lung cancer (NSCLC).
Major pathological response (MPR) is a histomorphological read-out used to
assess treatment response and prognosis in patients NSCLC after NAC.Although
spatial metabolomics is a promising tool for evaluating metabolic phenotypes, it
has not yet been utilized to assess therapy responses in patients with NSCLC.
We evaluated the potential application of spatial metabolomics in cancer tissues
to assess the response to NAC, using a metabolic classifier that utilizes mass
spectrometry imaging combined with machine learning.
Methods: Resected NSCLC tissue specimens obtained after NAC (n = 88)
were subjected to high-resolution mass spectrometry, and these data were used
to develop an approach for assessing the response to NAC in patients with
NSCLC. The specificities of the generated tumor cell and stroma classifiers
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were validated by applying this approach to a cohort of biologically matched
chemotherapy-naïve patients with NSCLC (n = 85).
Results: The developed tumor cell metabolic classifier stratified patients into
different prognostic groups with 81.6% accuracy, whereas the stroma metabolic
classifier displayed 78.4% accuracy. By contrast, the accuracies of MPR and TNM
staging for stratification were 62.5% and 54.1%, respectively. The combination of
metabolic and MPR classifiers showed slightly lower accuracy than either indi-
vidual metabolic classifier. In multivariate analysis, metabolic classifiers were
the only independent prognostic factors identified (tumor: P = 0.001, hazards
ratio [HR]= 3.823, 95% confidence interval [CI]= 1.716–8.514; stroma: P= 0.049,
HR= 2.180, 95% CI= 1.004–4.737), whereas MPR (P= 0.804; HR= 0.913; 95% CI
= 0.445–1.874) and TNM staging (P = 0.078; HR = 1.223; 95% CI = 0.977–1.550)
were not independent prognostic factors. Using Kaplan-Meier survival analyses,
both tumor and stromametabolic classifiers were able to further stratify patients
as NAC responders (P < 0.001) and non-responders (P < 0.001).
Conclusions: Our findings indicate that the metabolic constitutions of
both tumor cells and the stroma are valuable additions to the classical
histomorphology-based assessment of tumor response.

KEYWORDS
cancer metabolism, machine learning, mass spectrometry imaging, metabolic classifier, Non-
small cell lung cancer, prognosis, spatial metabolomics, treatment response

1 BACKGROUND

Neoadjuvant chemotherapy (NAC), with or without radio-
therapy, followed by surgical resection, improves survival
in patients with locally advanced non-small cell lung can-
cer (NSCLC) compared with surgery alone, particularly
among patients with complete pathological response or
major pathological response (MPR), which is classically
defined as a residual tumor burden of<10% [1–4]. NAChas
become a vital strategy for reducing tumor size and facili-
tating surgical resection. NAC also allows for intermediate
evaluations of treatment response and prevents the devel-
opment of micrometastases [5, 6]. Along with the recent
successes reported for targeted and immune checkpoint
therapies in advanced inoperable NSCLC, recent studies
indicate that the adjuvant use of these regimens is also ben-
eficial [7, 8]. However, evidence supporting the therapeutic
efficacy of these regimens remains scarce in the neoadju-
vant setting, although preliminary outcomes reported for
immune checkpoint inhibitors [9] and epidermal growth
factor receptor (EGFR) tyrosine kinase inhibitors have
been promising [10]. The development of more accurate
biomarkers for patient stratification or use as surrogate
endpoints would likely result in the efficient identifica-
tion of patients with resectable or potentially resectable
NSCLC.

Accurate patient stratification is becoming increas-
ingly important. The pathological tumor-node-metastasis
(pTNM) classification is the most important and routinely
applied prognosis prediction tool for malignant disease.
MPR has been associated with long-term overall survival
(OS) among patients with NSCLC who undergo NAC [4,
11, 12]. MPR represents an estimate of residual tumor
cell quantity, used to evaluate tumor regression following
NAC. Generally, MPR is used to evaluate the therapeu-
tic response and is often used as a surrogate endpoint
in clinical studies of resected NSCLC following preopera-
tive therapies [13–16]. Until recently, 10% of the baseline
tumor has been used as the cutoff value for defining resid-
ual tumor, which has been associated with significant
prognostic value [4, 17-19]. However, we [20] and others
[16, 21] have shown that although a 10% cutoff is appropri-
ate for lung squamous cell carcinoma (LUSC), the cutoff
for lung adenocarcinoma (LUAD) should be greater than
50% [16, 20, 21]. The response to NAC presents substan-
tial variability, ranging from complete to subtotal residual
tumor regression, and using a cutoff value of 10%, MPR is
only achieved in 17%–33% of patients, depending on the
therapeutic strategy [13, 22, 23]. Due to clinicopathologic
heterogeneity and different biological behaviors within the
tumor, patients with NSCLC at similar pathological stages
may have notable prognostic differences [24].
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Metabolomics is recognized as a crucial scientific field,
offering a promising avenue for identifying diagnostic and
prognostic biomarkers for use in clinical practice and
may serve as a powerful method for screening poten-
tial biomarkers in LUAD [25, 26]. Spatial metabolomics
is an emerging domain of omics research. It could be
used to investigate tumor heterogeneity [27], evaluate sur-
gical resection margins [28], and contribute to tumor
classification [29]. Spatial metabolomics and its enabling
technology—matrix-assisted laser desorption/ionization
mass spectrometry imaging (MALDI-MSI)—localize hun-
dreds to thousands of different metabolites directly from
biological tissue sections with cellular spatial resolution
[30–33]. The comprehensive analysis of metabolic het-
erogeneity and the use of MALDI-MSI have improved
our understanding of tumor metabolism [34]. Previous
studies using MALDI-MSI to analyze human specimens,
including tumor tissue and body fluids, identified sev-
eral biomarkers associated with lung cancer and clin-
ical outcomes [35–38]. Our previous study found that
the high-mass-resolution matrix-assisted laser desorp-
tion/ionization Fourier-transform ion cyclotron resonance
mass spectrometry imaging (MALDI-FT-ICR-MSI) was
suitable for deciphering therapeutic effects and allowed
for the assessment of metabolic changes that occur dur-
ing the treatment of idiopathic pulmonary fibrosis [39].
The metabolic compositions of both tumor cells and
stroma were able to provide rich molecular information
and may contribute to estimating prognosis in patients
withNSCLC followingNAC. Spatialmetabolomics enables
immunophenotype-guided in situ metabolomics, facili-
tating the automated identification of histological and
functional features in intact tissue sections and the com-
prehensive analyses of metabolic constitutions of tumor
cells and the stroma [27].
To date, no published studies have examined the abil-

ity of spatialmetabolomics andmetabolite identification to
characterize treatment response and differentiate patients
into non-responders and responders in NSCLC. Therefore,
the purpose of the present studywas to investigatewhether
spatialmetabolomics could be applied for the evaluation of
NAC treatment response and prognosis in NSCLC.

2 MATERIALS ANDMETHODS

2.1 Patient samples and tissue
microarrays

This study included two retrospective single-center patient
cohorts (Figure 1), comprising cases diagnosed at the
Institute of Pathology of the University of Bern (Bern,
Switzerland) between 2000 and 2016. All eligible patients

had a pathology-confirmed diagnosis. The NAC cohort
included consecutive patients who received at least one
cycle of platinum-based chemotherapy prior to resection
[20]. All applied drug combinations for this cohort are
summarized in Table 1. The chemotherapy-naïve cohort
included consecutive patients who underwent primary
resection for NSCLCwithout prior chemotherapy or radio-
therapy and were histologically and biologically matched
with the NAC cohort, as previously described [40]. Biolog-
ical matching was accomplished by including only locally
advanced NSCLC (at least stage IIIA), ensured by medi-
astinal lymph node metastasis (pN2), which qualifies for a
multi-disciplinary treatment approach integrating neoad-
juvant or adjuvant systemic therapy. We did not statisti-
cally compare the stage distribution and pN distribution
between the neoadjuvant and chemotherapy-naïve cohorts
due to the downstaging that resulted by NAC and the
study design inherent bias towards only locally advanced
tumors in the chemotherapy-naïve cohort, chosen for bet-
ter biological comparability. Exclusion criteria included
patients who diedwithin 30 days after surgery and patients
without materials for appropriate evaluations of tumor
regression. For the NAC cohort, patients were excluded
if chemotherapy was applied without neoadjuvant intent
prior to resection.
Clinicopathological features and follow-up data were

retrieved, as previously described [20], and all data were
thoroughly re-evaluated to update pathological tumor
stages according to the Union for International Cancer
Control (UICC) and the American Joint Committee on
Cancer (AJCC) 8th edition pTNM classification guidelines
and harmonize regression grading among other scales
[41]. OS was defined as the time elapsed between treat-
ment initiation and death of any cause. Routine clinical
follow-up was performed for all patients, and all available
information regarding relapse and disease progressionwas
retrieved from the clinical files.
Response to neoadjuvant therapy was histomorpho-

logically assessed by a pathologist specialized in pul-
monary pathology (Sabina Berezowska) and a pulmonary
pathology-experienced student (Philipp Zens) for each
case, and the histological data including MPR were previ-
ously reported [20]. Residual tumor content was assessed
by the histological evaluation of all slides containing the
tumor bed, as previously described [4]. MPR was defined
as ≤10% residual tumor cells for LUSC or as ≤65% resid-
ual tumor cells for LUAD, as previously described [16, 20].
Patients were classified as NAC responders (MPR present)
and non-responders (MPR absent).
Metabolic analysis was performed on tissue microarrays

(TMAs) constructed for each cohort, as previously reported
[42]. From each patient at least two tumor-containing tis-
sue cores were collected. Briefly, 0.6-mm-diameter tissue
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F IGURE 1 Study design for the development of a metabolic classifier and the assessment of the predictive abilities of clinicopathological
features (MPR and TNM staging) and metabolic factors for stratifying patients with NSCLC. Separate metabolic classifiers were established
using the metabolic features evaluated in tumors and the stroma, resulting in individual survival risk categories, which were evaluated by
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cores were annotated on FFPE tissue blocks/slides by a
pathologist specialized in lung pathology (Sabina Bere-
zowska) and transposed into an acceptor TMA block. The
studywas approved by the Cantonal Ethics Commission of
the Canton of Bern (KEK 2017-00830), which waived the
requirement for a written informed consent from patients.

2.2 High-mass-resolution
MALDI-FT-ICR-MSI analysis

MALDI-MSI was performed as previously described [32,
43]. NSCLC TMA blocks were cut into 4-μm sections
using a microtome (HM 355S, Microm; Thermo Fisher Sci-
entific, Waltham, MA, USA) and mounted onto indium
tin oxide-coated conductive glass slides (Bruker Daltonik
GmbH, Bremen, Germany). The slides were coated in 1:1
poly-L-lysine (Sigma-Aldrich, Taufkirchen, Germany) and
0.1% Nonidet P-40 (Sigma-Aldrich) before tissue mount-
ing. The tissue sections were incubated at 60◦C for 1 h and
deparaffinized in xylene (2 × 8 min), followed by drying at
room temperature (22◦C). Subsequently, the samples were
covered with 10 mg/mL 9-aminoacridine hydrochloride
monohydrate matrix (Sigma-Aldrich) in 70% methanol
using a SunCollect sprayer (Sunchrom, Friedrichsdorf,
Germany). The matrix application was performed in eight
passes using ascending spray rates (flow rates: 10, 20, 30
μL/min for the first three layers, followed by 40 μL/min
for the remaining five layers). MALDI-FT-ICR-MSI was
performed on a Bruker Solarix 7T FT-ICRMS (Bruker Dal-
tonik) in the negative ion mode, utilizing 100 laser shots
per pixel at a frequency of 1000 Hz. Mass spectra were
acquired over amass range ofm/z 75-1000Dawith a 50-μm
spatial resolution.

2.3 Immunophenotype-guided MSI
analysis, data processing, and pathway
analysis

The Spatial Correlation Image Analysis (SPACiAL) work-
flow was used for the immunophenotype-guided MALDI-
MSI analysis of automatically annotated tumor and stroma
regions in NSCLC tissues, as previously described [27].
SPACiAL is a computational multimodal workflow that
includes a series of image and MALDI data processing
steps to combine molecular imaging data with multiplex

immunofluorescence. The SPACiAL workflow includes
MALDI and immunofluorescence data integration, multi-
ple image co-registration, image digitization, and data con-
version. After MALDI imaging, the matrix was removed
from the section surface by a 5 min incubation in 70%
ethanol, and sections were subsequently stained with
hematoxylin and eosin (H&E) in a HistoCore SPECTRA
ST multistainer (Leica, Wetzlar, Germany). To remove the
H&E stain, we incubated the sections in a Coplin jar con-
taining 100% xylene at room temperature (22◦C) for 12
h. The slides were then transferred to a second Coplin
jar containing 100% xylene for a 2-min incubation, to a
third Coplin jar containing pure propanol for 2 min, to a
fourth Coplin jar containing 100% ethanol for 2 min, and
to a fifth Coplin jar containing 1% HCl in 100% ethanol
for 5 min. The slides were then washed under running
tap water for 5 min. The tissue sections were subjected to
immunofluorescence after H&E removal and analyzed by
double staining using pan-cytokeratin (monoclonalmouse
pan-cytokeratin plus [AE1/AE3þ8/18] [1:75], cat#CM162,
Biocare Medical, Pacheco, CA, USA) and vimentin anti-
bodies (1:500, clone ab92547, Abcam, Berlin, Germany).
Signal detectionwas conducted using fluorescence-labeled
secondary antibodies (anti-rabbit IgG DyLight 633 [cat#
35563] and anti-mouse IgG Alexa Fluor 750 antibody [cat#
A-21037], Thermo Fisher Scientific), and Hoechst 33342
was used for nuclear staining.
Automated steps for the analyses and annotation of

tumor and stroma regions were applied to mass spectrom-
etry data using SPACiAL as follows: first, the epithelial
marker pan-cytokeratin (white) was used to stain tumor
cells, and vimentin was used to stain stroma regions (red);
second, single-channel images of pan-cytokeratin and
vimentin were used to annotate and separate tumor and
stromausing fluorescence imaging; third, the digitized and
co-registered fluorescence images were scaled to match
the exact MALDI resolution and converted into numerical
matrices comprised of values corresponding to the light-
ness values for each pixel; fourth, objective tissue anno-
tations were assigned based on semantics and function.
The entire workflow is applied to the same tissue section,
allowing for the automatic integration of morphological
and spatial metabolomics data for thousands of molecules.
We established this method and have successfully applied
it in previous works [27, 44-46]. Supplementary Figure S1
displays representative immunofluorescence sections used
during this process. Fluorescence stains were scanned at

Kaplan-Meier and Cox regression analyses and compared with standard clinicopathological evaluations using MPR and TNM staging.
Abbreviations: NAC, neoadjuvant chemotherapy; Chemo, chemotherapy; MALDI MSI, matrix-assisted laser desorption/ionization mass
spectrometry imaging; MPR, major pathological response; TNM, tumor-node-metastasis; NSCLC, non-small cell lung cancer; RF, random
forest
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TABLE 1 Baseline clinicopathologic characteristics of the the two cohorts of patients with NSCLC, who either have received
neoadjuvant therapy before resection (NAC) or were chemotherapy-naïve

Characteristics NAC (cases [%]) Chemotherapy-naïve (cases [%]) P value
Total 88 85
Sex 0.529
Male 59 (63.6) 53 (62.4)
Female 29 (36.4) 32 (37.6)

Smoking status 0.934
Non-smoker 12 (13.6) 9 (10.6)
Ex-smoker 29 (33.0) 26 (30.6)
Active smoker 37 (42.0) 33 (38.8)
No record 10 (11.4) 17 (20.0)

MPR NA
Present 37 (43.5) NA
Absent 51 (56.5) NA

ypTNM stage*

0 6 (6.9) NA
I 17 (19.5) NA
II 20 (23.0) NA
III 40 (44.8) 77 (90.6) 0.766
IV 5 (5.8) 8 (9.4)

ypT stage*

pT0 11 (12.5) NA
pT1 26 (29.5) 17 (20.0) 0.259
pT2 22 (25.0) 28 (32.9)
pT3 13 (15.9) 19 (22.4)
pT4 16 (18.1) 21 (24.7)

ypN stage*

pN0 35 (39.8) NA
pN1 20 (22.7) NA
pN2 31 (35.2) 83 (97.6) 0.318
pN3 2 (2.3) 2 (2.4)

ypM stage* 0.352
pM0 83 (94.3) 77 (90.6)
pM1 5 (5.7) 8 (9.4)

Subtype 0.714
LUSC 40 (45.5) 41 (48.2)
LUAD 48 (54.5) 44 (51.8)

Neoadjuvant Chemotherapy NA
Cisplatin + docetaxel 50 (56.8) NA
Carboplatin + paclitaxel 3 (3.4) NA
Cisplatin + pemetrexed 12 (13.6) NA
Cisplatin + gemcitabin 7 (8.0) NA
Cisplatin + vinorelbin 9 (10.2) NA
Others 7 (8.0) NA

*pTNM/pT/pN/pM stage for the Chemotherapy-naïve cohort.
Abbreviations: NSCLC, non-small cell lung cancer; NAC, neoadjuvant therapy; NA, not applicable; MPR, major pathological response; TNM, tumor-
node-metastasis; T, component/category coding the extension of the primary tumor; N, component/category coding regional lymph node metastases; M,
component/category coding distant metastases; p, pathological TNM staging; yp, pathological TNM staging after neoadjuvant therapy; LUSC, lung squamous
cell carcinoma; LUAD, lung adenocarcinoma
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20×magnification using an AxioScan.Z1 digital slide scan-
ner (Mirax Desk, Carl Zeiss MicroImaging GmbH; Jena,
Germany) and visualized using the software ZEN 2.3 blue
edition (Zeiss; Oberkochen, Germany).
All root-mean-square normalized mass spectra were

exported from SCiLS Lab v. 2020 (Bruker Daltonics). Peaks
in the mass range of m/z 75-1000 Da were annotated by
accurate mass matching with the Human Metabolome
Database (http://www.hmdb.ca/) [47] and METASPACE
(http://annotate.metaspace2020.eu [48]; ion mode: neg-
ative; adduct type: [M−H], [M−H−H2O], [M+Na−2H],
[M+Cl], and [M+K−2H]; mass accuracy, ≤4 ppm). Path-
way enrichment analysis was performed on tumor and
stromal tissue using MetaboAnalyst 5.0 (https://www.
metaboanalyst.ca) [49]. Pathway analysis algorithms, the
hypergeometric test for overrepresentation analysis, and
relative-betweenness centrality were selected for pathway
topology analysis. P value and impact score were calcu-
lated for each metabolic pathway, revealing substantial
differences in enriched pathways between the tumor and
the stroma.

2.4 Random forest classifiers

The random forest classification, a robust machine learn-
ing algorithm, was performed for the classifier. Leave-one-
out cross-validation (R 4.0.2) was used to predict long-
or short-term survival for each patient. The cohort was
separated into long-term (≥35months) and short-term sur-
vivors (<35 months) according to median OS. For feature
selection, molecules included in the random forest (RF)
analysis were selected based on their significance level in
the log-rank test (P < 0.05). After performing the RF anal-
ysis, the importance of each molecule was calculated as
the total reduction of the criterion brought by that feature
(Gini importance). The top 100 most important metabo-
lites according to feature selection were re-selected as the
final variables included in the RF classifiers. The anal-
ysis for each RF classifier was repeated 100 times, and
a majority vote determined the final prediction model.
The mean accuracy, sensitivity, and specificity were used
to evaluate the performance of each classifier and MPR.
Accuracy refers to the percentage of positive predictions
made by the classifier that were correct. The correct pre-
diction is determined by classifying patients with an OS
longer than median OS in the long-term group and that
shorter than median OS in the short-term group. Accu-
racy was expressed as the ratio of true positives and true
negatives to the total observations. Sensitivity was calcu-
lated by dividing true positives by all observations in the
actual class, representing the percentage of actual positive
predictions that were correctly classified by the classifier.

Specificity refers to the ratio of true negatives to total
negatives. The RF classifiers were calculated using the R
package randomForest.

2.5 Further statistical analyses

All analyses were performed using R software (version
4.0.2, https://cran.r-project.org) with suitable packages.
Survival analysis was performed using Kaplan-Meier anal-
ysis and Cox proportional hazards regression, with 95%
confidence interval (95% CI) estimates (R 4.0.2, survival).
Variables in themultivariate Cox regression were included
based on their significance in the log-rank test (P < 0.05)
during univariate Cox regression analyses. Comparisons
between tumor and adjacent normal lung tissue were per-
formed using the rank-based Mann-Whitney U-test and
Spearman’s rank-order correlation for continuous data
(R 4.0.2, corrplot). The log-rank test was used to assess
differences. P values < 0.05 were considered significant.

3 RESULTS

3.1 Patients’ characteristics

The cohort of consecutive patients with resected NSCLC
following NAC initially included 117 patients who received
at least one cycle of platinum-based chemotherapy before
surgery, as previously described [20]. After all inclu-
sion and exclusion criteria were applied, 88 NAC and
85 chemotherapy-naïve patients were identified with suf-
ficient materials available for metabolic analyses. The
median ages were 62 years (interquartile range [IQR], 42-
77 years) and 63 years (IQR, 39-84 years) for the NAC
and chemotherapy-naïve cohorts, respectively. No signifi-
cant differences in the distribution of histological subtypes,
median age, or sex were observed between the NAC and
chemotherapy-naïve cohorts. Detailed clinicopathological
patient characteristics are summarized in Table 1. A total of
59 adjacent normal lung tissue samples from patients with
NSCLC in the NAC cohort were included for analyses.

3.2 Metabolic classifiers established for
stratifying patients into prognostic risk
groups

Metabolites from tumor and stroma regions were
automatically extracted using spatial metabolomics
analysis, resulting in 5014 distinct molecular features
detected in tissues from all patient samples. In the NAC
cohort, metabolic classifiers were trained separately on

http://www.hmdb.ca/
http://annotate.metaspace2020.eu
https://www.metaboanalyst.ca
https://www.metaboanalyst.ca
https://cran.r-project.org
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metabolites identified within the tumor and those iden-
tified within stroma tissues. The top 100 metabolites for
each classifier, ranked in descending order according to
feature importance, are shown for tumors in Figure 2A
and for the stroma in Figure 2B. Postulated endoge-
nous annotations for the top 100 molecules are listed in
Supplementary Table S1.
For the metabolic tumor classifier, sphingomyelin (SM,

d18:1/15:0 or d16:1/17:0) was shown as an example of
a prognosis marker in patients with NSCLC. A high
mass intensity for SM was significantly associated with
a good prognosis (Figure 3A). Ion distribution maps
revealed the specific localization of metabolites in tumor
cell regions (Figure 3B). Boxplots displayed the variance
in mass intensity values measured for SM (Figure 3C).
For the metabolic stroma classifier, a high mass inten-
sity of m/z 480.3091, which can be postulated anno-
tated as either lysophosphatidylcholine (LysoPC, 15:0/0:0)
or lysophosphatidylethanolamine (LysoPE, 18:0/0:0), was
significantly associated with long survival (Figure 3D) and
demonstrated distinct distribution patterns (Figure 3E).
Boxplots displayed the variance in mass intensity val-
ues measured for LysoPC/LysoPE (Figure 3F). The other
important endogenous metabolites used to distinguish
between good and poor prognosis in patients with NSCLC
following NAC are presented in Supplementary Figure S2.
We have identified all of the odd-chain fatty acids

(OCFAs) included among the 100 most important
molecules used for the metabolic classifier (Supplemen-
tary Table S1). The following OCFAs were identified:
m/z 687.5425 [SM (d18:1/15:0 or d16:1/17:0)], m/z 480.3091
[LysoPC (15:0/0:0)], m/z 508.3405 [LysoPC (17:0/0:0)], and
m/z 852.6496 [PC (15:0/24:0)]. In addition, we performed
Spearman’s rank-order correlation analysis between these
OCFAs. The results indicated that LysoPC (17:0/0:0) was
positively correlated with SM (d18:1/15:0 or d16:1/17:0)
and LysoPC (15:0/0:0), whereas PC (15:0/24:0) was nega-
tively correlated with the other OCFAs (Supplementary
Figure S3).

3.3 Spatial metabolomics improved the
evaluation of therapy response compared
with major pathological response

Comparing prognostic efficacy between the two metabolic
classifiers and clinicopathological features revealed signif-
icant prognostic power for both the tumor (P < 0.001) and
stroma (P < 0.001) metabolic classifiers in the Kaplan-
Meier survival analysis, resulting in better prognostic strat-
ification performance than either MPR or TNM staging
alone (Figure 4). The tumor metabolic classifier displayed
a prediction accuracy of 81.6%, which was similar to that

of the stroma metabolic classifier (accuracy = 78.4%) in
the NAC cohort (Figure 4A and 4B). The accuracy, sensi-
tivity, and specificity for MPR were all lower than those
for either metabolic classifier (Figure 4C). The accuracies
achieved when combining the metabolic classifiers with
MPR (Supplementary Figure S4) were slightly lower than
those achieved by either metabolic classifier alone. In the
chemotherapy-naïve cohort, the accuracies of the tumor
(Figure 4D) and stroma metabolic classifier (Figure 4E)
were higher than that of TNM staging (Figure 4F).
In univariate analysis, the tumor and stroma metabolic

classifiers, MPR, and TNM staging all demonstrated sig-
nificant predictive efficacy in the NAC cohort (Table 2).
However, in the multivariate regression analysis, which
included themetabolite-based classifiers and clinicopatho-
logical parameters, the metabolic classifiers were the only
independent prognostic factors (tumor metabolic classi-
fier: P = 0.001; stroma metabolic classifier: P = 0.049),
whereas MPR and TNM staging were no longer signif-
icantly associated with prognosis. In the chemotherapy-
naïve cohort, multivariate analysis confirmed the stroma
metabolic classifier as the only independent prognostic
factor (P < 0.001), whereas the tumor metabolic classifier
and TNM staging were no longer identified as significant
factors (Table 2).
In addition, we evaluated the abilities of the metabolic

classifiers to predict patient survival in relation to the
pathological response of MPR. The Kaplan-Meier survival
analyses indicated that the metabolic classifiers were able
to further stratify patients according to MPR outcomes.
Both tumor and stromametabolic classifiers predicted sig-
nificant differences in OS between NAC responders (MPR
present; P < 0.001) and non-responders (MPR absent; P <
0.001) (Figure 5).

3.4 Metabolic classifiers were specific
to neoadjuvant therapy response

To validate whether the classifiers are specific to NAC
response, the metabolite levels measured in the NAC
cohort were compared with those measured in the
chemotherapy-naïve cohort (Figure 6). The calculated haz-
ard ratios of the top 100 identified metabolites defined
by the NAC classifier were shown for the chemotherapy-
naïve cohort. Significant differences in metabolite levels
were identified between the chemotherapy-naïve andNAC
cohorts. Of the 100 included metabolites in the tumor
classifier, 93 were significantly associated with OS in the
NAC cohort, whereas only 35 were associated with OS
in the chemotherapy-naïve cohort (Figure 6). Of the 100
metabolites included in the stroma classifier, 98 were sig-
nificantly associated with OS in the NAC cohort, whereas
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F IGURE 2 The metabolic classifiers were established for tumor cells (A) and the stroma (B) for stratifying patients with NSCLC who
received NAC followed by resection into prognostic risk groups. The forest plot shows the hazard ratio and 95% confidence intervals achieved
for best-performing metabolites for categorizing patients into prognostic risk groups. Metabolites with P < 0.05 are highlighted and ranked in
descending order of importance. The feature importance value from 0 to 6, the higher values indicated more impacted on the prediction
model. Abbreviations: NSCLC, non-small cell lung cancer; NAC, neoadjuvant chemotherapy; PA, phosphatidic acid; LysoPI,
lysophosphatidylinositol; CPA, cyclic phosphatidic acid; LysoPA, lysophosphatidic acid; PE, phosphatidylethanolamine; SM, sphingomyelin;
PC, phosphatidylcholine; LysoPE, lysophosphatidylethanolamine; LysoPC, lysophosphatidylcholine; PGP, phosphatidylglycerophosphate;
TG, triglyceride; PI, phosphoinositol; Cer, ceramide; PE-Nme, dimethylphosphatidylethanolamine; SAM, S-adenosylmethioninamine
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F IGURE 3 Endogenous metabolites included in the classifiers were used to distinguish between good and poor prognosis groups among
NSCLC patients who received neoadjuvant therapy. For tumor classifier, high level of m/z 687.5425 [SM (d18:1/15:0 or d16:1/17:0)] was
associated with a good prognosis (A). Ion distribution maps revealed the specific localization of SM in tumor cell regions for high and low
mass intensity. The corresponding H&E stains of the same tissue core were shown on the right (B). Boxplot with individual points was shown
for variance in different groups for SM (C). For stroma classifier, a high mass intensity of m/z 480.3091 [LysoPC(15:0/0:0)/LysoPE(18:0/0:0)]
was associated with a good prognosis (D). The ion map revealed the specific localization of LysoPC/LysoPE in stroma regions (E) and the
boxplot was shown for variance in different groups for LysoPC/LysoPE (F). *** P < 0.001. Abbreviations: NSCLC, non-small cell lung cancer;
SM, sphingomyelin; LysoPC, lysophosphatidylcholine; LysoPE, lysophosphatidylethanolamine

only 32 were significantly associated with OS in the
chemotherapy-naïve cohort (Figure 6). We also compared
the 100 most important metabolites between tumor and
normal tissues, which showed that 19 metabolites were
significantly upregulated and 4 were significantly down-
regulated in tumor tissues compared with normal tissues.
Most of the upregulated metabolites were identified as
lipids, including phosphatidylethanolamine (PE), phos-
phatidic acid (PA), phosphatidylglycerophosphate (PGP),
lysophosphatidic acid (LysoPA), lysophosphatidylinositol
(LysoPI), phosphoinositol (PI), LysoPC, LysoPE, and SM
(Supplementary Figure S5).

3.5 Pathway enrichment analysis

Metabolic pathway enrichment analysis was performed,
and molecules were annotated separately within the
tumor and stroma classifiers to investigate metabolic

heterogeneity in tumor and stromal tissues. Enriched
metabolic pathways in tumor tissues included fruc-
tose and mannose metabolism; amino and nucleotide
sugar metabolism; starch and sucrose metabolism; galac-
tose metabolism; inositol phosphate metabolism; the
pentose phosphate pathway; glycolysis/gluconeogenesis;
phosphatidylinositol signaling; and valine, leucine, and
isoleucine biosynthesis (Figure 7A). We identified nine
enriched pathways in stroma tissues: glycerophospho-
lipid metabolism; purine metabolism; inositol phosphate
metabolism; phosphatidylinositol signaling; fructose and
mannose metabolism; galactose metabolism; linoleic acid
metabolism; starch and sucrosemetabolism; and thiamine
metabolism (Figure 7B). For the tumor metabolic classi-
fier, the fructose and mannose metabolic pathway showed
the highest impact. However, the glycerophospholipid
metabolism pathway had the highest impact in the stroma
metabolic classifier.
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F IGURE 4 The performance of metabolic classifiers and pathological parameters for stratifying patients with NSCLC into prognostic
risk groups. For the NAC cohort, both tumor (A) and stromal (B) metabolic classifiers showed better performance for stratifying prognostic
risk groups than MPR (C). For the Chemo-naïve cohort, the performance of the tumor (D) and stroma (E) metabolic classifiers were superior
to TNM staging (F). Kaplan-Meier survival analyses were used to evaluate differences in patient overall survival. Abbreviations: NSCLC,
non-small cell lung cancer; MPR, major pathological response; NAC, neoadjuvant chemotherapy; Chemo, chemotherapy; TNM,
tumor-node-metastasis

TABLE 2 Univariate and multivariate Cox proportional analyses to identify the OS predictors for patients with NSCLC

Terms Univariate Cox analysis Multivariate Cox analysis
HR 95% CI P value HR 95% CI P value

NAC cohort
Tumor metabolic classifier 5.591 2.678-11.670 <0.001 3.823 1.716-8.514 0.001
Stroma metabolic classifier 4.626 2.446-8.749 <0.001 2.180 1.004-4.737 0.049
MPR 0.465 0.260-0.830 0.010 0.913 0.445-1.874 0.804
TNM staging 1.304 1.082-1.571 0.005 1.223 0.977-1.550 0.078

Chemo-naïve cohort
Tumor metabolic classifier 2.836 1.603-5.016 <0.001 1.767 0.971-3.217 0.063
Stroma metabolic classifier 6.118 3.219-11.630 <0.001 4.953 2.517-9.747 <0.001
TNM staging 2.570 1.200-5.502 0.015 1.417 0.653-3.075 0.379

Abbreviations: OS, overall survival; NSCLC, non-small cell lung cancer; HR, hazards ratio; CI, confidence interval; NAC, neoadjuvant chemotherapy; MPR, major
pathologic response; TNM, tumor-node-metastasis; Chemo, chemotherapy
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F IGURE 5 Metabolic classifiers sub-stratified NSCLC patients with different pathological responses into prognostic risk groups. The
tumor (A) and stroma metabolic classifiers (B) could further stratify responder (MPR present) and non-responder patients (MPR absent) into
short- and long-term survivors using the Kaplan-Meier analysis. Abbreviations: NSCLC, non-small cell lung cancer; MPR, major pathological
response

4 DISCUSSION

The findings of the present study revealed that (1)
metabolic response showed superior performance for pre-
dicting patient outcomes than the conventional clinico-
pathological features, such asMPR and TNM stage; (2) our
developed metabolic classifiers enabled the stratification
of patients within MPR categories; and (3) the metabolic
classifiers were specific to NAC-treated NSCLC compared
with chemotherapy-naïve NSCLC.
The performances of the metabolic classifiers were

primarily compared with the performance of MPR, which
assesses tumor cell quantity. The metabolic classifiers
showed superior performance for the stratification of
patient survival than MPR, with higher accuracy, sensitiv-
ity, and specificity. Our findings suggest that in addition
to the number of residual tumor cells, alterations in
the composition of tumor metabolites may determine

the treatment response and prognosis of patients with
NSCLC following NAC. The metabolites identified in the
stroma could also impact the treatment response to NAC
among patients with NSCLC. Both metabolic classifiers
could provide useful information regarding the treatment
response based on the comprehensive metabolite compo-
sition. Although the biochemical characteristics of both
the tumor and the stroma can be assessed by MALDI-
MSI, MPR assessments have limited ability to evaluate
the stroma. However, a classifier trained using both
metabolites and MPR showed slightly reduced accuracy
compared with the classifier trained on metabolites alone.
These comparable results indicate that the inclusion of
MPR had minimal impact on classifier performance. Our
developed metabolic classifiers also demonstrated the
ability to stratify patients according to metabolic response,
which is not possible using MPR alone. These results
demonstrate that metabolic assessments based on tumor
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F IGURE 6 Prognostic significance of the metabolites included in the RF classifiers informed by the NAC cohort, compared with the
chemotherapy-naïve cohort. The specificities of the metabolic classifiers were assessed for predicting survival in the NAC and
chemotherapy-naïve cohorts based on the metabolites detected in tumor (A) and stroma tissues (B).The univariate hazard ratios from Cox
regression models were calculated for the top 100 metabolites in patients with chemotherapy-naïve NSCLC, using metabolites in patients
treated with NAC as references. Each line in the plot represents the 95% confidence interval, and each row represents the same metabolite.
Metabolites with P < 0.05 are highlighted in blue or red. Abbreviations: RF, random forest; NAC, neoadjuvant chemotherapy; Chemo-naïve,
chemotherapy-naïve; NSCLC, non-small cell lung cancer



14 SHEN et al.

F IGURE 7 Pathway enrichment analysis shows the distinct metabolic profiles of the tumor and the stroma. Pathway enrichment
analysis was performed on the metabolites included in the tumor (A) and stroma classifiers (B). The Y axis indicates the names of the
enriched pathways

and stromal constitutions represent effective prognostic
indicators.
To investigate the specificity of the classifiers relative to

treatment status, themetabolites included in the classifiers
were compared between the NAC and chemotherapy-
naïve cohorts, which revealed that the majority of the

metabolites included in the classifiers were significantly
altered by NAC. These results are consistent with previous
reports describing altered expression levels of molecular
and prognostic biomarkers following neoadjuvant treat-
ment [50, 51]. We observed altered PC and PGP levels
between the NAC and chemotherapy-naïve cohorts. These
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findings indicated that high levels of PC were associated
with poor prognosis in the NAC cohort, which aligns with
a previous report that the high levels of PCwere associated
with the accumulation of energy-rich molecules, support-
ing tumor cell proliferation [52]. Our results also indicate
that increased PGP corresponded with better patient prog-
nosis. However, another study reported increased PGP in
patients with NSCLC than in a healthy control popula-
tion [53]. LysoPC is a type of lipid primarily derived from
PC. We observed that decreased LysoPC was associated
with poor prognosis in theNAC cohort butwas nonspecific
for chemotherapy-naïve patients. This finding is consistent
with plasma LysoPC levels, which are commonly reduced
in patients with advanced metastatic cancer [54, 55]. SM
is a bioactive molecule that plays key roles in regulat-
ing tumor cell signalling to manage cancer suppression or
survival [56]. Hydrolysis of SM to generate ceramide and
accumulation of ceramide results in tumour suppression
and cancer cell death [57]. Our dataset also identified that
high levels of SMwere related to good prognostic outcomes
in patients who receive NAC, whichmay be due to the reg-
ulation of the cell cycle and the inhibition of cancer cell
proliferation [58].
SM (d18:1/15:0 or d16:1/17:0) and LysoPC (15:0/0:0) are

both OCFAs, and other OCFAs were included among the
100 most important molecules in the metabolic classi-
fiers. We performed correlation analyses among various
OCFAs, revealing that LysoPC (17:0/0:0) was positively
correlated with both SM (d18:1/15:0 or d16:1/17:0) and
LysoPC (15:0/0:0), whereas PC (15:0/24:0) was negatively
correlated with other OFCAs. Because LysoPC is pri-
marily derived from PC, this negative correlation makes
intuitive sense. However, few studies have adequately
addressed the mechanisms involved in OCFA production.
Some OCFAs are likely to be expressed in human serum
at very low levels [59]. Recently, a study indicated that
serum samples from patients with myelodysplastic syn-
drome displayed reduced levels of SM species containing
side-chain OCFAs than serum samples from healthy con-
trol subjects [60], suggesting that the OCFA/even chain
fatty acid (ECFA) ratio in cancer patients was decreased.
A low OCFA/ECFA ratio reduced cell membrane fluid-
ity due to the lower melting point of OCFAs compared to
ECFAs. This suggests that membrane fluidity is lower in
patients with malignant hematological diseases. Another
study found that some OCFAs, such as heptadecanoic acid
and omega-3 polyunsaturated fatty acids, inhibited the pro-
liferation and migration of lung cancer cells by promoting
apoptosis and inhibiting the phosphatidylinositol 3-kinase
(PI3K)/Akt signaling pathway [61]. Heptadecanoic acid
was also shown to induce increased apoptosis in lung can-
cer cells and enhance the cytotoxic effects of gefitinib [62].
However, the oncogenic mechanism that leads to the pro-

duction of OCFAs remains unknown. Therefore, further
studies of OCFA production and anti-tumor mechanisms
in lung cancer remain necessary.
In addition, the comparison of metabolites between

tumor and normal tissues in the NAC cohort revealed
19 molecules that were upregulated in tumor cells, most
of which were associated with lipids metabolism spe-
cific to tumor tissues. For example, LysoPC/LysoPE, SM,
and PGP were detected at high levels in tumor tissues
compared with normal tissues, suggesting that signif-
icant changes in these metabolites may be associated
with cancerous tissues. Our results indicate that our
developed metabolic classifiers primarily depend on the
assessment of lipid metabolites. By contrast, a previous
work developing a metabolic classifier to predict the treat-
ment response in patients with gastric cancer depended
heavily on molecules associated with DNA metabolism
[46]. However, the metabolic classifier designed to assess
the treatment response in patients with NAC-treated
esophageal adenocarcinoma relied on amino acids and
their analogs [44]. These findings indicate that the impor-
tant metabolites that can be used to predict response in
patients with NSCLC and other cancer types vary substan-
tially across cancer types. The identified metabolites in the
present studywere able to determine prognosis in response
to NAC, indicating that these metabolites are specific to
patients with NSCLC who received NAC.
To elucidate metabolic heterogeneity in tumor and

stroma tissues, we performed metabolic pathway anal-
ysis on tumor cells and stroma. Pathway enrichment
analysis demonstrated distinct metabolic pathways pro-
filesbetween tumor cells and stroma. Among the pathways
included in the tumor metabolic classifier, the fructose
and mannose metabolic pathway had the highest impact
score among nine identified pathways. Cancer cells can
utilize fructose and mannose as alternative energy sources
to fuel growth, and the fructose transporter was reported
to be upregulated in LUAD to compensate for low-glucose
conditions [63, 64]. The exposure of less aggressive cancer
cells to a fructose-rich environment enhanced their migra-
tion and invasion capacities [65]. These variations can be
attributed to fructose-mediated alterations in glycosylation
structures, which have been associated with aggressive
and metastatic phenotypes [66]. By contrast, mannose
uptake by cancer cells impedes glucose flux into cen-
tral carbon metabolism pathways, inhibiting cancer cell
proliferation [67], and a recent study revealed that man-
nose supplementation has anticancer effects in NSCLC
cells, inhibiting proliferation and increasing cell death
[68]. The most important upregulated functional metabo-
lites were related tometabolic pathways involved in energy
metabolism and cell proliferation, such as glycerophos-
pholipid metabolism, which had the highest impact score
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among the pathways associated with the stroma classi-
fier. Alterations in glycerophospholipid metabolism are
increasingly recognized as prevalent metabolic hallmarks
of cancer associated with tumor progression. The synthe-
sis of glycerophospholipids, which are the main struc-
tural and functional components of cell membranes and
serve as energy resources for cells, has been associated
with tumorigenesis and progression [69, 70]. Hydrolyzed
glycerophospholipids are involved in mitochondrial β-
oxidation, which produces ATP as an important energy
resource for cell proliferation and metastasis [71]. These
results revealed that the tumor and the stroma show
metabolic heterogeneity in NSCLC patients.
However, our study has some limitations. Firstly, cases

were selected from a single institution. Although the data
were of high quality due to thorough clinico-pathological
work-up, this resulted in a relatively low sample size. Sec-
ondly, the identification and characterization ofmetabolite
structures are also limited by the analytical depth of
MSI in terms of coverage and identification capabilities
[72], and the identification of new, previously uncharac-
terized metabolites is difficult. Thridly, these identified
metabolites would be further validated by tandem mass
spectrometry or liquid chromatography–mass spectrome-
try in larger multicentre studies. Despite these limitations,
spatial metabolomics remains a powerful and very useful
tool for evaluating the treatment response in NSCLC.

5 CONCLUSIONS

In summary, our findings indicate that spatial
metabolomics, combined with machine learning, is a
powerful and promising approach and provides valuable
information on treatment response and prognosis predic-
tion independent of MPR and TNM stage. Furthermore,
we demonstrated that the metabolic response assessed
in the tumor and the stroma allows for the stratification
of NAC responder and non-responder patients into dif-
ferent prognosis groups. Therefore, spatial metabolomics
might offer an additional method for evaluating the
histopathological response in patients with NSCLC.
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