
BioSimulators: a web-based registry of simulation engines and
services for multiscale modeling – Supplementary data
Bilal Shaikh 1, Lucian P. Smith 2, Dan Vasilescu 3, Gnaneswara Marupilla 3, Michael
Wilson 3, Eran Agmon 4, Henry Agnew 5, Steven S. Andrews 2, Azraf Anwar 6, Moritz E.
Beber 7, Frank T. Bergmann 8, David Brooks 9, Lutz Brusch 10, Laurence Calzone 11, Kiri
Choi 12, Joshua Cooper 13, John Detloff 14, Brian Drawert 13, Michel Dumontier 15, G. Bard
Ermentrout 16, James R. Faeder 16, Andrew P. Freiburger 17, Fabian Fröhlich 18, Akira
Funahashi 19, Alan Garny 9, John H. Gennari 20, Padraig Gleeson 21, Anne Goelzer 22,
Zachary Haiman 23, Jan Hasenauer 24, Joseph L. Hellerstein 2, Henning Hermjakob 25, Stefan
Hoops 26, Jon C. Ison 27, Diego Jahn 10, Henry V. Jakubowski 28, Ryann Jordan 1, Matúš
Kalaš 29, Matthias König 30, Wolfram Liebermeister 22, Rahuman S. Malik Sheriff 25, Synchon
Mandal 31, Robert McDougal 32, J. Kyle Medley 33, Pedro Mendes 3, Robert Müller 10, Chris
J. Myers 34, Aurelien Naldi 35, Tung V. N. Nguyen 25, David P. Nickerson 9, Brett G.
Olivier 36, Drashti Patoliya 37, Loïc Paulevé 38, Linda R. Petzold 39, Ankita Priya 40, Anand
K. Rampadarath 9, Johann M. Rohwer 41, Ali S. Saglam 16, Dilawar Singh 42, Ankur Sinha 43,
Jacky Snoep 41, Hugh Sorby 9, Ryan Spangler 44, Jörn Starruß 10, Payton J. Thomas 45, David
van Niekerk 41, Daniel Weindl 46, Fengkai Zhang 47, Anna Zhukova 48, Arthur P. Goldberg 1,
Michael L. Blinov 3, Herbert M. Sauro 2, Ion I. Moraru 3 and Jonathan R. Karr 1,*

1Icahn School of Medicine at Mount Sinai, New York, NY 10029, US, 2University of Washington,
Seattle, WA 98105, US, 3University of Connecticut School of Medicine, Farmington, CT 06030,
US, 4Stanford University, Stanford, CA 94305, US, 5LibreTexts, US, 6New York University,
Brooklyn, NY 11201, 7Unseen Bio ApS, 2100 København Ø, DK, 8Heidelberg University, 69120
Heidelberg, DE, 9University of Auckland, 1010 Auckland, NZ, 10Technical University of Dresden,
01187 Dresden, DE, 11Institut Curie, 75248 Paris, FR, 12Korea Institute for Advanced Study,
02455 Seoul, KR, 13University of North Carolina, Asheville, Ashville, NC 28804, US,
14Independent, Madison, WI 53705, US, 15Maastricht University, 6200 Maastricht, NL,
16University of Pittsburgh, Pittsburgh, PA 15260, US, 17University of Victoria, Victoria, BC V8P
5C2, CA, 18Harvard Medical School, Boston, MA 02115 US, 19Keio University, Yokohama
223-8522, JP, 20University of Washington, Seattle WA 98019, US, 21University College London,
London WC1E 6BT, UK, 22Université Paris-Saclay, INRAE, MaIAGE, 78350 Jouy-en-Josas, FR,
23University of California, San Diego, La Jolla, CA 92093, US, 24Universität Bonn, 53115 Bonn,
DE, 25European Molecular Biology Laboratory - European Bioinformatics Institute, Hinxton,
Cambridge CB10 1SD, UK, 26University of Virginia, Charlottesville, VA 22904, US, 27CNRS,
UMS 3601, Institut Français de Bioinformatique, IFB-core, 91000 Évry-Courcouronnes, FR,
28College of Saint Benedict and Saint John’s University, St. Joseph, MN 56374, US, 29University
of Bergen, 5020 Bergen, NO, 30Humboldt University of Berlin, 10115 Berlin, DE, 31Technical
University of Dresden, 01069 Dresden, DE, 32Yale University, New Haven, CT 06511, US,
33Autodesk, Inc., San Rafael, CA 94903, US, 34University of Colorado at Boulder, Boulder CO,
80309, US, 35Inria Saclay - Île-de-France Research Centre, 91120 Palaiseau, FR, 36Vrije
Universiteit Amsterdam, 1081 HZ Amsterdam, NL, 37Sarvajanik College of Engineering &
Technology, Surat, Gujarat 395001, IN, 38Centre National de la Recherche Scientifique, 33400
Talence, France, 39University of California, Santa Barbara, Santa Barbara, CA 93106, US, 40Birla
Institute of Technology, Mesra, Jharkhand 835215, IN, 41Stellenbosch University, Stellenbosch,
7600, ZA, 42Subconscious Compute Pvt. Ltd., Bangalore, IN, 43University College London,
London, WC1E 6BT, UK, 44Allen Institute for Cell Science, Seattle, WA 98109, US, 45University
of Utah, Salt Lake City, UT 84112, US, 46Helmholtz Zentrum München GmbH and German
Research Center for Environmental Health, 85764 Neuherberg, DE, 47National Institutes of
Health, Bethesda, MD 20892, US and 48Institut Pasteur, 75015 Paris, FR.

*Correspondence: karr@mssm.edu

https://orcid.org/0000-0001-5801-5510
https://orcid.org/0000-0001-7002-6386
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0001-5892-6074
https://orcid.org/0000-0003-1279-2474
https://orcid.org/0000-0003-1447-6045
https://orcid.org/0000-0002-4576-8107
https://orcid.org/
https://orcid.org/0000-0003-2406-1978
https://orcid.org/0000-0001-5553-4702
https://orcid.org/0000-0002-6758-2186
https://orcid.org/0000-0003-0137-5106
https://orcid.org/0000-0002-7835-1148
https://orcid.org/0000-0002-0156-8410
https://orcid.org/
https://orcid.org/
https://orcid.org/0000-0002-0543-8189
https://orcid.org/0000-0003-4727-9435
https://orcid.org/0000-0002-5854-0654
https://orcid.org/0000-0001-8127-609X
https://orcid.org/0000-0002-7288-535X
https://orcid.org/0000-0002-5360-4292
https://orcid.org/0000-0003-0605-239X
https://orcid.org/0000-0001-7606-5888
https://orcid.org/0000-0001-8254-4957
https://orcid.org/0000-0001-5963-8576
https://orcid.org/0000-0003-2222-6142
https://orcid.org/0000-0001-6175-5050
https://orcid.org/0000-0002-4935-3312
https://orcid.org/0000-0003-0802-4069
https://orcid.org/0000-0001-8479-0262
https://orcid.org/0000-0001-8503-8371
https://orcid.org/0000-0001-6666-1520
https://orcid.org/0000-0001-6774-5507
https://orcid.org/0000-0002-9629-9339
https://orcid.org/
https://orcid.org/0000-0002-1509-4981
https://orcid.org/0000-0003-1725-179X
https://orcid.org/0000-0002-2568-2381
https://orcid.org/0000-0003-0705-9809
https://orcid.org/0000-0002-1212-5279
https://orcid.org/0000-0001-6394-3127
https://orcid.org/0000-0002-1509-4981
https://orcid.org/0000-0001-6507-9168
https://orcid.org/
https://orcid.org/0000-0002-8762-8444
https://orcid.org/0000-0002-6495-2655
https://orcid.org/0000-0002-2876-6046
https://orcid.org/0000-0003-4667-9779
https://orcid.org/0000-0002-5293-5321
https://orcid.org/
https://orcid.org/0000-0002-7219-2027
https://orcid.org/0000-0001-6251-6078
https://orcid.org/
https://orcid.org/0000-0001-8830-6212
https://orcid.org/0000-0001-6288-8904
https://orcid.org/0000-0002-6513-8401
https://orcid.org/0000-0002-4645-3211
https://orcid.org/0000-0001-7568-7167
https://orcid.org/0000-0002-0405-8854
https://orcid.org/0000-0001-8991-4703
https://orcid.org/
https://orcid.org/0000-0003-3649-2433
https://orcid.org/0000-0002-5075-3911
https://orcid.org/0000-0003-2200-7935
https://orcid.org/0000-0001-9963-6057
https://orcid.org/0000-0001-7112-9328
https://orcid.org/0000-0003-2200-7935
https://orcid.org/0000-0003-2772-1484
https://orcid.org/0000-0002-9363-9705
https://orcid.org/0000-0002-3659-6817
https://orcid.org/0000-0002-3746-9676
https://orcid.org/0000-0002-2605-5080
mailto:karr@mssm.edu

Contents

S1 Biosimulation tools registered with BioSimulators 3

S2 Foundational conventions that enable BioSimulators 3
S2.1 Simulation projects: COMBINE archive, SED-ML, and other community resources . 5
S2.2 Reports of simulation results: Schema for encoding results and metadata into HDF5 10
S2.3 Visualizations of simulation results: PDF and other domain-independent formats . . 11
S2.4 Logs of the execution of simulations: New YAML schema 11
S2.5 Simulation tools: Containerized command-line programs 12
S2.6 Lower level simulation capabilities: Python APIs . 12
S2.7 Capabilities of simulation tools and the results of their verification: New JSON schema 13

S3 Foundational tools for validating simulation projects and simulation tools 13
S3.1 Validation of simulation experiments described with SED-ML 14
S3.2 Validation of metadata about simulation projects described with RDF-XML 14
S3.3 Validation of entire simulation projects . 14
S3.4 Validation of logs of the execution of simulation projects 14
S3.5 Validation of the specifications of the capabilities of simulation tools 14
S3.6 Validation of containerized interfaces to simulation tools 15

S4 Foundational tools for working BioSimulators’ conventions 16
S4.1 KiSAO library: Python package for working with KiSAO 16
S4.2 BioSimulators-utils: Python package for building interfaces to simulators 17
S4.3 Automated services for recommending simulation algorithms and tools 17
S4.4 runBioSimulations: web application for running BioSimulators tools 18

S5 Workflow for creating and registering standardized simulation tools 19
S5.1 Map the inputs and outputs of the simulation tool to community conventions 19
S5.2 Encapsulate the tool into a command-line program 20
S5.3 Encapsulate the command-line interface to the tool into a Docker image 21
S5.4 Push the Docker image for the tool to a public Docker registry 21
S5.5 Annotate the capabilities of the simulation tool and other metadata 21
S5.6 Verify that the simulation tool adheres to BioSimulators conventions 22
S5.7 Submit the tool to the BioSimulators registry . 22
S5.8 Automate the submission of subsequent versions of the tool to BioSimulators 23

S6 Architecture, implementation, testing, and deployment of BioSimulators 23
S6.1 Architecture . 23
S6.2 Implementation, testing, and deployment . 23

S7 Case study: Assessing the reusability of simulation experiments 25

S8 Comparison of BioSimulators with other resources 27

S9 Availability of BioSimulators 28

S10 Community feedback, input, and contributions to BioSimulators 29

S11 Author contributions 29

S12 Funding 31

S13 Acknowledgements 32

Acronyms 32

References 33

2

S1 Biosimulation tools registered with BioSimulators

As of March 13, 2022, BioSimulators includes 54 simulation tools (Table S1) which support 13 model
formats (Table S2), 14 modeling frameworks (Table S3), and 91 simulation algorithms. Importantly,
BioSimulators includes standardized interfaces to 21 of these simulation tools (Table S4). Collec-
tively, these 21 standardized interfaces support 11 model formats, 11 modeling frameworks, and 58
simulation algorithms (Table S5). Detailed, up-to-date information about these tools is available at
https://biosimulators.org.

S2 Foundational conventions that enable BioSimulators

To enable software tools to execute simulations consistently, BioSimulators embraces a set of con-
ventions, including formats, ontologies, software tools, and registries, for capturing simulation tools,
their inputs (simulation projects) and outputs (reports and visualizations of simulation results), logs
of their execution, and specifications of their capabilities (e.g., the simulation algorithms and model
formats that they support) (Figure S1). As much as possible, BioSimulators embraces existing do-
main and domain-independent conventions. In particular, BioSimulators embraces several existing
domain formats for capturing the inputs to simulation tools (e.g., model formats such as CellML
(54)), and BioSimulators leverages several existing domain-independent formats for capturing sim-
ulation tools and their outputs (e.g., Docker and HDF5 (104)). Where necessary, we have refined
these domain formats and customized these domain-independent formats.

First, BioSimulators uses Docker to encapsulate simulation tools and their dependencies into portable
images that provide consistent command-line programs. The inputs to these containerized command-
line programs are COMBINE archives (105) that use Simulation Experiment Description Markup
Language (SED-ML; 106–108) files to describe simulation experiments involving models described
in model formats such as BNGL, CellML, or SBML and simulation algorithms described using
the Kinetic Simulation Algorithm Ontology (KiSAO; 109, 110). The outputs of these container-
ized command-line programs are Hierarchical Data Format 5 (HDF5) (104) and Portable Document
Format (PDF) files that capture reports and plots of simulation results that are specified in the
input SED-ML files and Yet Another Markup Language (YAML) files that capture logs of their ex-
ecution, such as the algorithm that the simulator used to execute each simulation and its console
output. The HDF5 files of simulation results facilitate further visualization and analysis using tools
such as Vega (111). When simulations do not succeed as intended, the YAML logs can provide valu-
able feedback for improvement. Both to help investigators develop these command-line programs
and to enable consistent lower-level access to simulation capabilities, BioSimulators also defines a
convention for Python APIs for simulation tools and provides a template for containerizing such
APIs. To help investigators find tools that can execute specific types of models, we created a JSON
schema for capturing the capabilities of simulation tools. This format uses the thE Data And Meth-
ods ontology (EDAM; 112, 113), the KiSAO ontology, the Systems Biology Ontology (SBO; 110),
and the Semanticscience Integrated Ontology (SIO; 114) to capture the model formats, modeling
frameworks, and simulation algorithms that each simulation tool supports.

This section summarizes these formats and ontologies. Detailed information about these formats
and examples is available at https://docs.biosimulations.org.

3

https://biosimulators.org
https://docs.biosimulations.org

Table S1: Overview of the specifications of the simulation tools registered with BioSimulators as of
March 13, 2022. Detailed, up-to-date information is available at https://biosimulators.org.

Name Ref Model formats Model. frameworks Sim. algorithms Std. interface
AMICI 1 SBML g 2
BioNetGen 2 BNGL, SBML g, h, i 4
BioUML 3 SBML a, g, h 9
BoolNet 4 SBML f 3
boolSim 5 SBML f 2
Brian 2 6 NeuroML/LEMS g 3
CBMPy 7 SBML a 4
CellNetAnalyzer 8 SBML a, f 5
COBRA Toolbox 9 SBML a, c, d 12
COBRApy 10 SBML a 4
COPASI 11 SBML b, g, h, n 10
E-Cell 4 12 SBML h, m 4
EpiLog 13 SBML f
Escher-FBA 14 SBML a 1
FlexFlux 15 SBML a, c 3
Fluxer 16 SBML a 1
Genetic Network Analyzer 17 SBML f
genYsis 18 SBML f 2
GillesPy2 19 SBML g, h 8
GINsim 20 SBML, ZGINML f 7
iBioSim 21 SBML a, b, g, h 14
jNeuroML 22 NeuroML/LEMS g 2
JSim 23 CellML, SBML g, l 11
JWS Online 24 SBML a, g 2
Kappa 25 Kappa i 1
Lattice Microbes 26 m 1
LibSBMLSim 27 SBML g 9
MaBoSS 28 SBML f 1
MASSpy 29 SBML, SBML g 4
MCell 30 SBML j
MetaNetX 31 SBML a 2
mlxM 32 pharmML g
mlxR 32 pharmML g
Morpheus 33 MorpheusML, SBML g, h, l, m, n 11
NetPyNe 34 NeuroML/LEMS, HOC g 1
NEURON 35 NeuroML/LEMS, HOC g 1
Open Knee 36 l 1
OpenCOR 37 CellML g 6
OpenSim 38
OptFlux 39 SBML a 5
pyNeuroML 22 NeuroML/LEMS g 2
PySB 40 BNGL,Kappa, SBML g, h, i 11
PySCeS 41 SBML g 2
RAVEN 42 SBML a 2
RBApy 43 RBA XML k 1
SBSCL 44 SBML a, g, h, n 14
Simmune 45 SBML i
SimVascular 46 m
Smoldyn 47 Smoldyn j 1
Tellurium 48 SBML g, h 6
The Cell Collective 49 SBML, SBML a, f 6
Virtual Cell (VCell) 50 SBML, VCML e, g, h, i, l 14
winBEST-KIT 51 SBML g
XPP 52 XPP ODE g, h 15

https://biosimulators.org

Table S2: Overview of the model formats specified for the interfaces to simulation tools registered
with BioSimulators as of March 13, 2022. Detailed, up-to-date information is available at https://biosimula
tors.org.

Modeling Simulation Simulation
Name Acronym Refs frameworks algorithms tools
BioNetGen Language BNGL 53 3 10 2
CellML 54 3 25 3
GINsim Markup Language ZGINML 20 1 7 1
High Order Calculator HOC 35 1 1 2
Kappa language 25 1 1 2
Morpheus Markup Language MorpheusML 33 5 11 1
NeuroML/Low Entropy Model Specification NeuroML/LEMS 22, 55 1 4 5
Resource Balance Analysis XML Format RBA XML 43 1 1 1
Smoldyn simulation language 47 1 1 1
Systems Biology Markup Language SBML 56 13 84 31
Flux Balance Constraints Package SBML-fbc 57 3 15 13
Hierarchical Model Composition Package SBML-comp 58 3 3 1
Multistate, Multicomponent and

SBML-multi 59 2 4 2
Multicompartment Species Package

Qualitative Models Package SBML-qual 60 2 8 6
VCell Markup Language VCML 50 4 14 1
XPP ODE format 52 2 15 1

Table S3: Overview of the modeling frameworks specified for the interfaces to simulation tools reg-
istered with BioSimulators as of March 13, 2022. Table S1 uses the values in the ‘Label’ column to indicate
the frameworks supported by each simulation tool. Detailed, up-to-date information is available at https://biosimu
lators.org.

Model Simulation Simulation
Label Name formats algorithms tools
a Flux balance 1 12 13
b Hybrid deterministic continuous-discrete non-spatial 1 3 1
c Hybrid flux balance-deterministic continuous non-spatial 1 2 3
d Hybrid flux balance-logical-deterministic continuous non-spatial 1 1 1
e Hybrid stochastic continuous-discrete non-spatial 2 3 1
f Logical 2 7 5
g Non-spatial continuous 9 36 23
h Non-spatial discrete 4 14 11
i Particle-based discrete non-spatial 3 2 3
j Particle-based discrete spatial 3 1 2
k Resource balance 1 1 1
l Spatial continuous 3 5 2
m Spatial discrete 1 3 1
n Stochastic non-spatial continuous 2 2 2

S2.1 Simulation projects: COMBINE archive, OMEX, SED-ML, KiSAO, EDAM,
and other formats and ontologies

BioSimulators embraces existing community standards for describing simulations. The primary
inputs to BioSimulators simulation tools are COMBINE archives that contain one or more SED-ML
files that describe one or more simulation experiments of one or more models and Open Modeling

5

https://biosimulators.org
https://biosimulators.org
https://biosimulators.org
https://biosimulators.org

Table S4: Overview of the standardized interfaces to simulation tools registered with BioSimulators
as of March 13, 2022. The ‘Modeling framework’ and ‘Model format’ columns indicate the modeling frameworks
and model formats that each tool supports. Detailed, up-to-date information is available at https://biosimulators.
org.

Modeling framework Modeling format

Simulator Ref. Fl
ux

ba
la
nc
e

H
yb
rid

de
t
co
nt
-d
isc

no
n-
sp
at
ia
l

H
yb
rid

st
oc
ha
st
ic
co
nt
-d
isc

no
n-
sp
at
ia
l

Lo
gi
ca
l

N
on
-s
pa
tia

l c
on
tin

uo
us

N
on
-s
pa
tia

l d
isc
re
te

Pa
rt
ic
le
-b
as
ed

di
sc

no
n-
sp
at
ia
l

Pa
rt
ic
le
-b
as
ed

di
sc

sp
at
ia
l

R
es
ou
rc
e
ba
la
nc
e

Sp
at
ia
l c
on
tin

uo
us

St
oc
ha
st
ic
no
n-
sp
at
ia
l c
on
tin

uo
us

B
N
G
L(
53
)

C
el
lM

L
(5
4)

ZG
IN
M
L
(2
0)

N
eu
ro
M
L/
LE

M
S
(2
2)

R
B
A
X
M
L
(4
3)

SB
M
L
(5
6)

Sm
ol
dy
n
(4
7)

V
C
M
L
(5
0)

X
PP

O
D
E
(5
2)

AMICI 1
BioNetGen 53
BoolNet 4
Brian 2 6
CBMPy 7
COBRApy 10
COPASI 11
GillesPy2 19
GINsim 20
LibSBMLSim 27
MASSpy 29
NetPyNe 34
NEURON 35
OpenCOR 37
pyNeuroML 22
PySceS 41
RBApy 43
Smoldyn 47
Tellurium 48
VCell 50
XPP 52

EXchange (OMEX; 105) files that capture metadata about the COMBINE archive, such as the
organisms, pathways, reactions, proteins, and genes which the simulations in the archive represent;
journal articles which reported the simulations in the archive; and the authors of the archive. These
COMBINE archives and SED-ML files rely on SED-ML URNs and URIs for model formats such as
BNGL, CellML, and SBML to describe the models involved in each simulation and ids for KiSAO
concepts to describe the algorithms that should be executed for each task and their parameters.

To achieve our goal of making it easier for investigators to execute simulations, these conventions
must support a broad range of simulations, and the conventions must be used consistently across
the community. Toward that end, we significantly refined and expanded SED-ML, KiSAO, and

6

https://biosimulators.org
https://biosimulators.org

Table S5: Overview of the simulation algorithms supported by the standardized interfaces to simula-
tion tools registered with BioSimulators as of March 13, 2022. Detailed, up-to-date information is available
at https://biosimulators.org.

Simulation algorithm Model formats Simulation tools
Adams-Bashforth method 61 2 2
Adams-Moulton method 62 2 2
Adaptive explicit-implicit tau-leaping method 63 1 1
Asynchronous logical model simulation method 64 2 2
Backward differentiation formula 65 2 2
BDD logical model trap space identification method 2 1
Brownian diffusion Smoluchowski method 66 3 2
Cash-Karp method 67 1 1
Crank-Nicolson method 68 1 1
CVODE 69 8 9
CVODES 70 1 1
Dormand-Prince 8(5,3) method 71 2 2
Dormand-Prince method 71 2 2
Euler backward method 72 2 2
Euler forward method 61 6 8
Explicit fourth-order Runge-Kutta method 73 6 8
Fehlberg method 74 2 4
Flux balance analysis (FBA) 75 1 2
Flux variability analysis (FVA) 76 1 2
Fully-implicit regular grid finite volume method 77 2 1
Geometric flux balance analysis 78 1 1
Gibson-Bruck next reaction algorithm 79 2 2
Gillespie direct algorithm 80 3 5
Heun method 61 2 2
Hybrid adaptive Gibson-Milstein method 81 2 1
Hybrid Gibson-Bruck Next Reaction method/LSODA method 82, 83 1 1
Hybrid Gibson-Bruck Next Reaction method/RK-45 method 82, 83 1 1
Hybrid Gibson-Bruck Next Reaction method/Runge-Kutta method 82, 83 1 1
Hybrid Gibson-Euler-Maruyama method 81 2 1
Hybrid Gibson-Milstein method 81 2 1
Hybrid tau-leaping method 19 1 1
IDA 84 2 2
KINSOL 84 1 1
Klarner ASP logical model trap space identification method 85 2 1
LSODA 86 1 2
LSODA/LSODAR hybrid method 11 1 1
Midpoint method 87 5 3
Naldi MDD logical model stable state search method 88 2 1
NFSim agent-based simulation method 89 1 1
NLEQ2 90, 91 1 1
Numerical Recipes in C “quality-controlled Runge-Kutta” method 92 1 1
Numerical Recipes in C “stiff” Rosenbrock method 92 1 1
Parsimonious enzyme usage FBA (minimum sum of absolute fluxes) 93 1 2
Parsimonius FBA (minimum number of active fluxes) 94 1 1
Partitioned leaping method 95 1 1
Partitioned Runge-Kutta method 96 1 1
Probabilistic logical model simulation method 64 2 2
Radau method 97 1 1
Resource Balance Analysis 98 1 1
Rosenbrock method 99 1 1
Second order backward implicit product Euler scheme 1 1
Semi-implicit regular grid finite volume method 77 2 1
Sequential logical simulation method 2 1
Stochastic second order Runge-Kutta method 100, 101 1 1
Synchronous logical model simulation method 64 2 2
tau-leaping method 102 1 2
VODE 103 1 1
ZVODE 103 1 1

https://biosimulators.org

Simulation projects
COMBINE

Simulation
experiments

SED-ML

Models
e.g., BNGL,

SBML

Algorithms
& parameters

KiSAO

Simulation results
HDF5

Visualizations
Vega

Plots
PDF

Execution logs
JSON

Simulation tools
Docker

Capabilities,
test results

JSON

SBO: Modeling frameworks
EDAM: Modeling formats

SIO: Independent variables

Figure S1: BioSimulators standardizes the simulation of a broad range of models by leveraging sev-
eral new and existing formats and ontologies to encapsulate the details of individual model formats,
modeling frameworks, and simulation algorithms. Specifically, BioSimulators standardizes simulation tools
as Docker images whose primary inputs are COMBINE archives that contain descriptions of simulation of experi-
ments and whose primary outputs are reports and plots of the results of these simulation experiments in HDF5 and
PDF formats and metadata about their execution in BioSimulators’ YAML log format. To help investigators find
tools that can execute specific types of models, BioSimulators uses a new JSON schema to describe their capabilities.
The grey box indicates the primary inputs and outputs of BioSimulators-standardized simulation tools. Orange and
purple indicate existing modeling formats and ontologies that BioSimulators embraces for the inputs to simulation
tools; orange indicates resources that BioSimulators embraces without modification; purple indicates resources that
we refined or expanded to enable BioSimulators. Green indicates existing domain-independent formats and resources
that we customized for simulation tools and their outputs. Blue indicates new resources that we developed to enable
BioSimulators.

EDAM as outlined below.

S2.1.1 Refinement of the SED-ML format for simulation experiments

To enable us to use SED-ML to consistently execute a broad range of simulation experiments with
a broad range of model formats, simulation algorithms, and simulation tools, we worked with the
community to significantly clarify, enhance, expand, and formalize SED-ML. This resulted in a new
version of SED-ML (L1V4), which was released last year (108).

These enhancements included expanding SED-ML’s registry of model formats, generalizing the
targets of model changes and simulation observables to support non-XML languages and XML
languages that use conventions other than XML XPaths to address parameters and observables,
and introducing a new class for capturing analyses of models beyond the calculation of steady
states and simulation of uniform time courses such as simulations of adaptive time courses and
calculations of attractors.

To make it easier for investigators to exchange simulation experiments between simulation tools
and enable modular execution of simulation experiments by collections of tools, we revised the
specifications of SED-ML to be more concrete. For example, this included clarifying how XML
XPaths for model changes and simulation observables should be interpreted and detailing how
repeated tasks should be interpreted.

8

In particular, we added rules for SED-ML documents to the specifications of SED-ML. Each rule
includes a unique code that software tools that validate SED-ML documents can use to direct
users to further information about particular issues. The majority these rules formalize existing
conventions for using SED-ML. For example, this includes rules that ensure that each model can
be resolved to a specific URI and that repeated tasks can be resolved to a set of concrete tasks. As
described below, we developed software to validate SED-ML documents according to these rules.
This software enables investigators to quickly find errors in SED-ML documents. This software is
available as a web application, REST API, command-line program, and Python API. This software
is also embedded into most of the BioSimulators interfaces to simulation tools. Furthermore, we
revised the canonical SED-ML examples to adhere to these rules.

To ensure that BioSimulators interfaces to simulation tools interpret SED-ML consistently, we
developed more concrete guidelines for using SED-ML. For example, these guidelines outline how
each model language should be used in conjunction with SED-ML, how the values of non-scalar
algorithm parameters should be encoded into SED-ML, how reports should be encoded in HDF5, and
where outputs should be exported. These guidelines are available at https://docs.biosimulations.org.

Currently, the majority of BioSimulators interfaces to simulation tools support (a) the subset of
L1V4 that was part of L1V3, with the clarifications, enhancements, and formalization introduced in
L1V4 and (b) styles for plots which were introduced in L1V4. Going forward, we plan to encourage
simulation software developers to fully support L1V4. This will include advancing BioSimulators-
utils to support L1V4.

S2.1.2 Refinement and expansion of the KiSAO ontology of simulation methods

To enable investigators to find simulation tools with the specific capabilities required to execute
particular simulation projects, we significantly refined and expanded the KiSAO ontology. First, we
added 150 (28%) more concepts to capture the algorithms and algorithm parameters registered with
BioSimulators. Second, we refined the parent-child and other relationships between the simulation
algorithms to enable us to query the ontology for groups of similar algorithms, such as pairs of
mathematically-equivalent algorithms (e.g., Gillespie’s Direct Method (80) and the Gibson-Bruck
Next Reaction Method (79)), pairs of algorithms that closely approximate the same mathematics
(e.g., Gillespie’s Direct Method and the tau-leaping method (102)), pairs of algorithms that make
dissimilar approximations to the same mathematics (e.g., tau-leaping method and CVODE (69)),
and pairs of algorithms that predict similar variables despite solving different mathematical problems
(e.g., FBA and pFBA). Third, we added 39 (7%) more concepts to capture the outputs of simulation
methods, such as fluxes and concentrations.

S2.1.3 Expansion of the EDAM ontology of formats and SED-ML registry of model
formats

To enable consistent descriptions of the model formats involved in COMBINE archives, the model
formats which particular simulation tools can execute, and the formats of the outputs of simulations,
we have proposed 53 additional concepts. To enable the modeling community to better utilize
EDAM, we also filled gaps in the annotation of several existing concepts for modeling formats, such
as annotating additional media types and file extensions and refining the categorization of modeling
formats. We similarly expanded the SED-ML registry of model formats to enable SED-ML to

9

https://docs.biosimulations.org

describe simulations involving a broader range of model formats, such as BNGL and the XPP ODE
format.

S2.1.4 Expansion of the SIO ontology of physical, processual, and informational en-
tities

To enable consistent descriptions of the dimensions of the outputs of simulations, we also added a
few concepts to the SIO ontology, such as to describe a dimension that represents instances of an
ensemble of runs of a stochastic simulation.

S2.2 Reports of simulation results: Schema for encoding results and metadata
into HDF5

The primary outputs of simulation tools are data sets of the predictions of the steady-states, dynam-
ical trajectories, or other properties of biological systems. These data sets are typically represented
as tables, or more generally, as multidimensional matrices. For example, dynamical trajectories of
the concentrations of proteins predicted by a continuous kinetic simulation could be represented
as a two-dimensional table whose columns represent individual proteins and whose rows represent
the time points of the predicted trajectories of the concentrations of those proteins. An ensem-
ble of dynamical trajectories of the counts of RNAs predicted by a set of 3-dimensional Monte
Carlo simulations could be represented as a five-dimensional matrix whose dimensions represent the
mRNA species; the time points of the predicted trajectories; and the x, y, and z coordinates of the
simulated subvolumes. Reaction fluxes predicted by a FBA simulation could be represented as a
one-dimensional vector whose entries represent the predicted flux of each reaction.

Because the predictions of simulations are the starting point for visualizations and other analyses,
investigators need to be able to obtain simulation predictions in a consistent format that facilitates
further analysis. To enable investigators to use a single format with a wide range of simulations,
this format must be able to capture multidimensional data. To help investigators interpret simu-
lation results, this format must also be able to capture metadata about the semantic meaning and
provenance of simulation results, such as labels for each axis and labels for each slice of each axis.

SED-ML’s report class can describe the data sets that simulation experiments should generate,
including the specific predictions (e.g., trajectories of species produced by a continuous kinetic
simulation or reaction fluxes produced by a flux balance simulation) that should be included in each
data set. However, SED-ML does not detail the data structures that should be used to represent
reports, which formats reports should be exported to, or what metadata should be bundled with
such reports.

BioSimulators uses HDF5 to capture the values of reports specified in SED-ML documents. To
ensure that simulation tools produce consistent results that can be consistently visualized and
analyzed with downstream tools, we adopted the following conventions for encoding simulation
results into HDF5 files. (a) Simulation tools should produce a single HDF5 file per COMBINE
archive. These HDF5 files should contain the results of all of the reports specified in all of the
SED-ML documents in the archive. (b) Each SED-ML report should be saved to a separate HDF5
data set. The key of each HDF5 data set for each SED-ML report should be the concatenation of
the location of its parent SED-ML document within its parent COMBINE archive and the id of

10

the SED-ML report. (c) The values of SED-ML reports should be encoded into multidimensional
HDF5 data sets. The first dimension (rows) of these HDF5 data sets should capture the SED-ML
data sets of each SED-ML report. For simulation experiments that involve repeated SED-ML tasks,
the next dimensions of these HDF5 data sets should capture successive layers of repeated tasks
and their subtasks; HDF5 datasets should use two dimensions to capture each pair of layers of
repeated tasks and their subtasks. The final dimensions of these HDF5 data sets should capture the
independent dimensions of each atomic SED-ML simulation task (e.g., time for non-spatial kinetic
simulations; time, x, y, and z coordinates for spatial kinetic simulations). (d) Before concatenating
the values of the SED-ML data sets of a SED-ML report into a multidimensional matrix, values
that have different shapes should be right-padded with ‘NaN’ into a common shape. The number
of dimensions of this common shape should be equal to the maximum number of dimensions of the
values of the individual SED-ML data sets. The length of each dimension of this common shape
should be equal to the maximum length of the dimension over the values of the individual SED-ML
data sets. (e) Simulation tools should encode metadata about the value of each SED-ML report into
the attributes of the corresponding HDF5 data set. The ids, labels, shapes, data types of the slices
of the first dimension of each HDF5 data set should be encoded into HDF5 attributes whose keys
are ‘dataSetIds,’ ‘dataSetLabels,’ ‘dataSetShapes,’ and ‘dataSetDataTypes’ and whose values are
arrays of the ids, labels, shapes, and NumPy dtypes of the SED-ML data sets of the corresponding
SED-ML report.

S2.3 Visualizations of simulation results: PDF and other domain-independent
formats

Frequently, investigators use plots to gain insights from simulation predictions. SED-ML’s plot
classes can describe plots that simulation experiments should generate. However, SED-ML does
not detail the format in which plots should be exported. To enable simulation tools to produce
plots consistently, BioSimulators stipulates that simulation tools should export SED-ML plots in
PDF format, that these PDF plot files should be bundled into a zip archive, and that the PDF files
should be saved to paths within the zip archives equal to the concatenation of the location of their
parent SED-ML documents within their parent COMBINE archives and their SED-ML ids.

By requiring simulation tools to produce consistent reports of simulation results, BioSimulators also
makes it easier for investigators to use other tools to produce additional types of plots that cannot be
described with SED-ML. In particular, we encourage investigators to visualize simulation predictions
using tools such as ggplot2 (115), Vega (111), and Vega-Lite (116) that enable transparent, reusable
data visualizations.

S2.4 Logs of the execution of simulations: New YAML schema

As simulation experiments continue to grow more complex, it will be important for investigators to
be able to quickly pinpoint problems with specific simulations within potentially large experiments
that involve many individual simulations. To help investigators debug simulation experiments, we
developed a new YAML schema for logs of the execution of COMBINE archives. This format
can capture granular metadata about the execution of each simulation and output in each SED-
ML document in a COMBINE archive. This includes the status of each task (scheduled, running,
succeeded, failed, or skipped); the standard output and error of each completed task; and the wall

11

time of each completed task. For skipped and failed tasks, the schema can also capture the reason
for their skip or failure.

In addition, the schema can capture the algorithm that the simulation tool executed for each SED-
ML simulation, the function that the tool used to execute the simulation, and the arguments that
the tool executed this function with. When SED-ML files specify classes of algorithms rather than
particular algorithms (e.g., a Gillespie-like method rather than the Gibson-Bruck Next Reaction
Method) or the simulation tool supports different algorithms than those specified in the SED-ML
files (e.g., CVODE versus LSODA), these logs record the specific algorithms that the simulation tool
executed for each simulation task. We believe this information makes the execution of simulations
more transparent to investigators, which in turn, we anticipate will help investigators reproduce
and debug simulations.

S2.5 Simulation tools: Containerized command-line programs

BioSimulators standardizes simulation tools as Docker images whose entry points are standardized
command-line programs that have two primary input arguments for (a) the path to the standardized
simulation project in COMBINE archive format that the simulation tool should execute and (b) the
path to save its output reports, plots, and logs in HDF5, PDF, and BioSimulators’ YAML schemas.

To ensure that simulation tools can be run on high-performance computing (HPC) systems, we en-
courage developers to create Docker images that can be converted to the Singularity Image Format
(SIF; 117). In particular, developers should avoid granting permissions to specific users, and devel-
opers should avoid installing software into $HOME and $TMP, paths that HPC systems often map
to user home and temporary directories.

For broader compatibility beyond BioSimulators, we also encourage developers to use BioContainers
(118) and Open Container Initiative (OCI) labels to encapsulate basic metadata about tools into
their Docker images. These labels enable images to capture basic metadata, such as the name and
version of the software in the image, a URL that contains further information about the software
in the image, and contact information for the maintainer of the image.

S2.6 Lower level simulation capabilities: Python APIs

To help investigators develop containerized command-line interfaces to simulation tools, we devel-
oped a convention for consistent Python APIs for simulation tools; BioSimulators-utils, a Python
library for building such APIs; and a template for creating a containerized command-line interface
from such an API. These conventions, library, and template are particularly useful to developers of
simulation tools that are implemented in Python or provide Python interfaces. Due to the popular-
ity of Python in biological modeling, this encompasses the majority of simulation tools, including
17 (80%) of the standardized tools presently registered with BioSimulators.

Importantly, these Python APIs also provide investigators consistent programmatic access to sim-
ulation capabilities, including both high-level access to the execution of entire COMBINE archives
and lower-level access to the execution of individual simulation tasks. For example, these APIs could
be used to develop web applications for interactively executing simple simulations and visualizing
their results, or to combine multiple simulations of individual scales into multiscale simulations,
such as using the Vivarium simulation composition framework (119, 120).

12

These Python APIs and the command-line programs built on top of them are available from PyPI
at https://pypi.org/user/biosimulators.

S2.7 Capabilities of simulation tools and the results of their verification: New
JSON schema

Due to the numerous modeling formats, modeling frameworks, and simulation algorithms used in
biomodeling, it is often difficult to find simulation tools that can execute specific simulations. To
help investigators find simulation tools with specific capabilities (e.g., tools that support specific
model formats, modeling frameworks, and/or simulation algorithms), we developed a JSON schema
for capturing the capabilities of simulation tools. This format uses EDAM concepts to describe
the model formats that tools support, SBO concepts to describe the modeling frameworks that
tools support, KiSAO concepts to describe the simulation algorithms that tools support and the
parameters that tools support for each algorithm, and SIO concepts to describe the dependent
variables of each algorithm. The format can also capture the data type of each algorithm parameter,
the default value of each parameter, and, optionally, a recommended range for the value of each
parameter. To help investigators use simulation tools to execute SED-ML, the schema can also
capture the SED-ML targets that simulation tools support for model changes and observables.

The schema can also capture a variety of metadata about a simulation tool. This includes the
location of the Docker image for the tool, the version of the tool, a description of the tool, URLs and
references that have additional information about the tool and each algorithm, the interfaces that
the tool provides (e.g., API, console, desktop), the programming languages that the tool provides
APIs for, the operating systems that the tool supports, the dependencies of the tool, the license for
the tool, the authors of the tool and their Open Researcher and Contributor IDs (ORCIDs) (121),
and the funding agencies which supported the development of the tool.

In addition, the schema can capture information about how the capabilities of a simulation tool
were verified. Specifically, the schema can capture the results of the test cases of our test suite
for simulation tools. For each test case, the schema can capture the id of the case; whether the
simulation tool passed the case, failed the case, or the case was skipped because the tool is not
expected to have the capabilities that the case probes; the standard output and error generated by
the execution of the case; and the duration of the execution of the case. For failed cases, the schema
can also capture the reason why the case failed. Similarly, the schema can capture the reasons why
cases were skipped.

S3 Foundational tools for validating simulation projects and simu-
lation tools

To help investigators use the conventions described in the previous section, we also developed
several tools for validating that simulation projects and simulation tools are consistent with these
conventions.

13

https://pypi.org/user/biosimulators

S3.1 Validation of simulation experiments described with SED-ML

To help investigators find errors in SED-ML documents and use SED-ML consistently, we developed
a set of rules for validating SED-ML documents and implemented them into a Python API and
command-line program with the BioSimulators-utils package described below. For example, these
rules enable BioSimulators-utils to identify invalid relationships among SED-ML entities, invalid
model changes such as using incompletely specified or invalid XPaths, and infinite repeated tasks.
The rules also enable BioSimulators-utils to provide investigators warnings about potential mistakes,
such as reports with repeated row headings and empty plots that lack curves.

S3.2 Validation of metadata about simulation projects described with RDF-
XML

To ensure investigators annotate simulation projects correctly, consistently, and thoroughly, we
developed a program for validating metadata about simulation projects encoded into Resource
Description Framework - Extensible Markup Language (RDF-XML) files. This program uses li-
bOmexMeta (122) to validate that files are syntactically consistent with the RDF-XML format,
uses the Identifiers.org registry of namespaces (123) to validate that each Identifiers.org identifier
is syntactically valid within its namespace, and evaluates whether the file provides the minimum
required metadata, such as a title for the parent COMBINE archive.

S3.3 Validation of entire simulation projects

To help investigators develop COMBINE archives that are consistent with BioSimulators’ conven-
tions, we developed a program for validating entire COMBINE archives, including the manifests of
the archives, the SED-ML files in the archives, the models involved in SED-ML files, metadata en-
coded in RDF-XML files in archives, and images referenced by those RDF-XML files. This program
integrates validation performed by several individual tools into a single interface. This includes
using libCOMBINE to validate the manifests in archives; using the programs described above to
validate SED-ML files and metadata about simulation programs; and using libCellML, libSBML,
pyBioNetGen, pyNeuroML (22), the Python interfaces to GINsim (124) and Smoldyn (125), and
XPP (52) to validate the models involved in the SED-ML files in archives.

S3.4 Validation of logs of the execution of simulation projects

To ensure that simulation tools produce consistent logs of the execution of simulation projects,
we developed a program to validate such logs. This program checks that logs are syntactically
consistent with the schema for logs and that each referenced KiSAO id is an id of an algorithm.
This program is available through BioSimulators’ REST API.

S3.5 Validation of the specifications of the capabilities of simulation tools

To help investigators document the capabilities of their tools, we developed a program for validating
the specifications of the capabilities of simulation tools. For example, the program checks that

14

specifications are syntactically consistent with the schema for the specifications of simulation tools,
that each annotated algorithm has a unique KiSAO id, that each annotated parameter of each
algorithm has a unique KiSAO id, and that the default value of each parameter is consistent with
its annotated data type. This program is available through BioSimulators’ REST API.

S3.6 Validation of containerized interfaces to simulation tools

To ensure that simulation tools execute simulations consistently with BioSimulators’ conventions
(interpret SED-ML consistently and produce consistent outputs), we developed a test suite for val-
idating simulation tools. The test suite is organized similarly to unit testing frameworks and test
runners such as Python’s unittest and pytest. Similar to such frameworks, the test suite is com-
posed of several separate tests that verify the compatibility of individual aspects of simulation tools
with BioSimulators’ conventions. This includes tests that verify that (a) the entry points of con-
tainerized simulation tools are command-line programs; (b) these command-line programs support
the arguments outlined above, correctly execute simulation experiments described with model for-
mats such as SBML and KiSAO concepts in SED-ML documents in COMBINE archives, produce
results in BioSimulators’ HDF5 schema, produce plots in PDF format, and produce logs in BioSim-
ulators’ YAML schema; and (c) interfaces to simulation tools are annotated using BioSimulators’
JSON schema.

The test cases that verify support for SED-ML, KiSAO, OMEX, and the COMBINE archive format
execute example COMBINE archives and check that the expected reports and plots are created with
the expected file names, shapes, values, and metadata. Each test case uses one or more example
COMBINE archives that probe support for one or more specific features of SED-ML, HDF5, OMEX,
or the COMBINE archive format. The most basic test case checks that the simulation tool correctly
produces an HDF5 report of the results of the execution of a COMBINE archive that contains a
single SED-ML file that describes a single simulation task and a single report. More advanced test
cases check that simulation tools support additional features of SED-ML, HDF5, and COMBINE
archives, such as multiple SED-ML files per COMBINE archive, models that must be resolved from
URLs, model changes, multiple simulation tasks per SED-ML document, repeated tasks, algorithm
parameters, and multiple reports and plots.

To minimize the number of manually curated COMBINE archives needed to test simulation tools,
the test suite computationally generates COMBINE archives that are appropriate for testing each
simulation tool from a small set of curated archives based on published simulation experiments.
These curated archives contain individual SED-ML documents that describe individual simulation
tasks and reports. First, the test suite uses the annotation of the simulation tool to determine
which curated archives the tool should be able to execute. Second, the test suite uses this subset of
archives as the basis for additional archives that test more advanced features of SED-ML, HDF5,
and COMBINE and their combinations. For example, the test suite can use a curated COMBINE
archive to create an additional archive that tests for support for multiple simulation tasks per
SED-ML document by copying the simulation task in the curated archive, assigning it a distinct
identifier, and appending data sets for the second simulation task to the report described in the
curated archive.

Importantly, this design makes it easy to extend the test suite to additional model formats, modeling
frameworks, and simulation algorithms. In most cases, only a single additional curated archive is
needed to extend the test suite to an additional model format; at worst, extending the test suite

15

to an additional model format requires curating one COMBINE archive per unique combination of
model format and simulation algorithm. For example, the test suite is able to test support for five
flux balance simulation algorithms and three logical simulation algorithms with just one curated
COMBINE archive each for the SBML-fbc and SBML-qual packages.

We provide two mechanisms for executing the test suite. First, developers can execute the test
suite by submitting an issue to the BioSimulators GitHub repository that contains a URL where
the specifications of their simulation tool can be retrieved. Developers can create issues either using
the template available from the GitHub website or using the GitHub REST API. The latter enables
developers to test their tools programmatically. The creation of each issue triggers a GitHub action
which retrieves the specifications for the simulation tool, pulls the Docker image from the location
described in the retrieved specifications, and executes the test suite on the Docker image. These
actions communicate information about whether the simulation tool is valid via messages to the
same GitHub issue. This cloud deployment enables developers to test their tools without installing
any software. In addition, this cloud deployment enables the BioSimulators Team to monitor issues
that developers are encountering and help them.

Alternatively, developers can install a command-line program for executing the test suite from PyPI
and execute this program on their own machines. This program enables developers to either execute
all of the tests or execute individual tests. The latter makes it easy for developers to quickly debug
inconsistencies with BioSimulators’ conventions by iteratively correcting issues with their simulation
tool and using the test suite to verify their implementation.

S4 Foundational tools for working BioSimulators’ formats and on-
tologies

To help investigators work with the foundational formats and ontologies for BioSimulators, we de-
veloped two Python libraries: a library for querying the KiSAO ontology and identifying sets of
similar algorithms and BioSimulators-utils, an integrated collection of methods for working with the
foundational formats for BioSimulators. In addition, we have created several automated services
for recommending simulation algorithms and simulation tools and we have created a web appli-
cation which makes it easy for investigators to use the BioSimulators simulation tools to execute
simulations.

S4.1 KiSAO library: Python package for reasoning simulation methods

To help developers work with the KiSAO ontology, we developed a Python library for querying the
ontology and identifying sets of similar algorithms. First, the library enables investigators to con-
duct basic queries, such as extracting the annotation of a specific algorithm, determining the parents
of the algorithm, and identifying related algorithms that share common characteristics or parame-
ters. Second, the library provides a method for identifying sets of similar algorithms and classifying
their similarity into nine levels ranging from algorithms that execute mathematically equivalent al-
gorithms (e.g., Gillespie’s Direct Method (80) and the Gibson-Bruck Next Reaction Method (79))
to algorithms that differently approximate the same mathematics (e.g., CVODE (69) and Euler’s
method) to algorithms that use different mathematics to predict the same observable (e.g., FBA and
pFBA). These methods use the parent-child relationships (e.g., the Gibson-Bruck Next Reaction

16

Method is a child of the Gillespie-like class of simulation algorithms) and relationships among al-
gorithms and characteristics of algorithms (e.g., the Gibson-Bruck Next Reaction Method performs
mathematically-equivalent simulation to Gillespie’s direct method; tau-leaping approximates Gille-
spie’s direct method) encoded into the KiSAO ontology. On top of this method, the library provides
another method for identifying the most similar alternative algorithm to a given algorithm among
a set of algorithms. When users request simulations involving unsupported algorithms, the BioSim-
ulators interfaces to simulation tools use this method to automatically identify the best alternative
algorithm, notify the user that an alternative algorithm will be executed, execute the alternative al-
gorithm, and log which algorithm was executed so that the user can transparently inspect what the
simulation tool did. This method also provides users an option to control the degree to which al-
gorithms can be substituted with alternative ones before errors are raised. This library is available
at https://pypi.org/project/kisao.

S4.2 BioSimulators-utils: Python package for building standardized interfaces
to simulators

To help developers create standardized biosimulation software tools, we developed BioSimulators-
utils, a high-level Python library for working with COMBINE archive, HDF5, OMEX, and SED-ML
files and BioSimulators’ schema for logs of the execution of COMBINE archives. BioSimulators-utils
provides methods for reading and writing these formats, validating that documents are syntactically
and semantically consistent with these formats, orchestrating the execution of SED-ML documents
in COMBINE archives, and logging the execution of COMBINE archives. This includes methods for
resolving models defined in SED-ML from local file paths, URI fragments, and external URLs; modi-
fying models according to all of the types of changes that can be described with SED-ML; orchestrat-
ing the execution of individual simulation tasks with specific algorithms and specific values of their
parameters; orchestrating the execution of repeated simulation tasks over all of the types of ranges
that can be described with SED-ML; generating SED-ML reports and plots; saving reports to HDF5
files and saving plots to zip archives of PDF files; and compiling logs of the execution of individual
SED-ML tasks, reports, and plots into a single log for each COMBINE archive. BioSimulators-utils
also provides methods for implementing command-line interfaces to simulation tools, pushing and
pulling Docker images that contain standardized simulation tools to and from the BioSimulators
Docker registry, and using these Docker images to execute COMBINE archives. Further information
about BioSimulators-utils is available at https://biosimulators.github.io/Biosimulators_utils/.

Several lower-level libraries are also available for working with the individual formats and ontologies
used by BioSimulators. This includes libCOMBINE for reading and writing COMBINE archives
and OMEX files; libSEDML and jlibSEDML for reading and writing SED-ML documents and
executing basic operations described by SED-ML documents; libKiSAO for querying HDF5 (126);
and libHDF5, H5Py, hdf5r, rhdf5, and JHDF5 for reading and writing HDF5 files.

S4.3 Automated services for recommending simulation algorithms and tools

To help investigators identify appropriate tools for their work, we have also developed four modes
of automatically recommending simulation algorithms and tools. These services utilize the KiSAO
ontology of simulation algorithms, the methods in the KiSAO Python library described above, and
the BioSimulators database of the capabilities of simulation tools.

17

https://pypi.org/project/kisao
https://biosimulators.github.io/Biosimulators_utils/

• As described above, our KiSAO library and REST API provide methods for identifying all
of the algorithms that are similar to a given algorithm and the degree of similarity of each
alternative algorithm.

• BioSimulators provides a web form for using this information to get recommendations for tools
for executing particular algorithms. First, the user selects a particular simulation algorithm
that they would like to execute. Second, the form uses KiSAO to identify all of the similar al-
gorithms and the degree of their similarity. Third, the form uses the BioSimulators database
of the capabilities of simulation tools to determine the maximum degree of algorithmic sim-
ilarity to which each simulation tool can execute the selected algorithm. Fourth, the form
sorts the simulation tools by their maximal degree of algorithmic similarity. Finally, the form
displays the most similar simulation tools and indicates the most similar algorithm that each
tool supports.

• runBioSimulations provides a web form which can recommend appropriate simulation tools
for a specific COMBINE archive. First, the user selects a COMBINE archive. Second, the
form analyzes the archive to determine the simulation algorithms and model formats involved.
Third, the user chooses the degree to which the specified simulation algorithms could be sub-
stituted to alternative methods. Fourth, the form uses the KiSAO ontology and the BioSim-
ulators database of simulation tools to determine the tools which support the required model
formats and which support simulation algorithms that are at least as similar to the specified
simulation algorithms as the chosen minimal degree of similarity. Finally, the form reports
the list of appropriate simulation tools to the user.

• As described above, each BioSimulators interface to a simulation tool automatically executes
the most similar algorithms that it supports to the algorithms specified in the requested
COMBINE archive. When simulation tools execute alternative algorithms, they warn users
about this and log the algorithms that they executed. Users can also control the degree of
dissimilarity at which an error rather than a warning should be raised.

In addition, the BioSimulators web application provides tools for comprehensively exploring the
capabilities of all of the registered tools and identifying tools that support particular combinations
of model changes, observables, simulation algorithms, algorithm parameters, model formats, and
other attributes of simulation tools. For example, this can be used to identify all of the tools that
support algorithms for a particular modeling framework.

S4.4 runBioSimulations web application for executing simulations and visual-
izing and sharing their results

To make it easy for investigators to use BioSimulators simulation tools to execute simulations, we
have also developed runBioSimulations (127), a web application that provides users a simple web
interface where they can create, validate, and execute COMBINE/OMEX archives and visualize the
results of their simulations. runBioSimulations also provides investigators capabilities to track their
simulation runs and privately share simulation runs, such as with colleagues and peer reviewers.

18

S5 Workflow for creating and registering standardized simulation
tools

BioSimulators supports a straightforward workflow for creating standardized simulation tools and an
automatable workflow for submitting and updating them to BioSimulators’ registry (Figure S2). (1)
Developers must map the inputs and outputs of their simulation tool to community conventions,
including SED-ML and the COMBINE archive format. (2) Developers must encapsulate their
tool into a command-line program in a Docker image and push the image to a public Docker
image registry, such as Docker Hub or GitHub Container Registry. (3) Developers must document
the capabilities of their tool, including the model formats, modeling frameworks, and simulation
algorithms that it supports, in BioSimulators’ JSON schema. (4) Developers must submit their
simulation tool to BioSimulators. (5) BioSimulators will then verify the tool using a combination
of automated testing and manual review. (6) BioSimulators will save valid tools to its database.

To maximize the community’s ability to use BioSimulators to share information about simulation
tools, we also welcome submissions of non-standard simulation tools. In this case, developers only
need to submit metadata about their tool. Note, the BioSimulators curators cannot verify the
capabilities of such non-standard simulation tools, and the BioSimulators website will inform the
community that the capabilities of these non-standard tools have not been verified. This strategy
makes it easy both for developers to contribute tools to BioSimulators and for users to find and use
verified tools.

This section summarizes the process for standardizing a simulation tool and submitting it to Bio-
Simulators. More detailed guides to standardizing simulation tools and submitting them to BioSim-
ulators are available at https://docs.biosimulations.org. The BioSimulators Team is also available
to help investigators develop standardized interfaces to their tools. We encourage investigators to
contact the BioSimulators Team at info@biosimulators.org support.

S5.1 Map the inputs and outputs of the simulation tool to community conven-
tions

To provide the community with standardized access to a simulation tool, first, the developers must
map its inputs and outputs to several community formats. The input to each simulation tool must
be a COMBINE archive (105). Simulation tools must be able to execute simulation experiments
described in SED-ML in COMBINE archives involving models described in formats such as BNGL,
CellML, or SBML and algorithms indicated using KiSAO concepts. Simulation tools must save all
of the results of all of the reports in the SED-ML documents in a COMBINE archive to a single
HDF5 file. Simulation tools should save all of the plots described in the SED-ML documents in
COMBINE archives in PDF format. Furthermore, simulation tools should bundle these PDF files
into a single zip archive file. Within each HDF5 file and zip archive, each report and plot should be
saved to a path equal to a tuple of the location of its parent SED-ML document within its parent
COMBINE archive and the id of the report or plot. In addition, simulation tools are encouraged to
output logs of the executions of COMBINE archives in BioSimulators’ YAML schema.

The BioSimulators-utils Python package provides developers with several high-level methods for
working with COMBINE archives, SED-ML documents, HDF5 files, and zip archives. A template
for using BioSimulators-utils to build a standardized interface to a simulation tool is available from

19

https://docs.biosimulations.org
mailto:info@biosimulators.org

BioSimulators registry
MongoDB,

GitHub Container Registry

Standardized
simulation project

Standard
results

Standard
logs

Simulation
tool

Standardized
& documented

tool

Simulation standards
SED-ML, KiSAO, COMBINE,
Results (HDF5), plots (PDF)

logs (JSON), capabilities (JSON)

Standardized
model

e.g., CellML,
SBML

?

Standardized
CLI

Standardized
image

St
an

da
rd

iz
e

an
d

do
cu

m
en

t s
im

ul
at

io
n

to
ol

Ve
rif

y
to

ol
R

eg
is

te
r t

oo
l

Automatically
test tool

Test suite
GitHub issues

& actions

Manually review tool
Curators

GitHub issues

Figure S2: BioSimulators supports a straightforward workflow for creating and registering standard-
ized simulation tools for a broad range of model formats, modeling frameworks, and simulation algo-
rithms. (1) Developers map the inputs and outputs of their tools to formats such as SED-ML, BioSimulators’ HDF5
schema, and BioSimulators’ YAML schema for logs of the execution of simulations. (2) Developers create standard-
ized command-line interfaces for tools and containerize them. (3) Developers curate the capabilities of their tools.
(4) Developers submit their tools to BioSimulators. Developers can submit tools manually or programmatically. The
latter makes it easy for developers to automatically push new versions of their tools to BioSimulators. (5) BioSimu-
lators’ test suite automatically verifies that tools execute simulations consistently with BioSimulators’ conventions.
(6) BioSimulators’ curators check that tools are annotated accurately and thoroughly. (7) The BioSimulators test
suite and team communicate issues with tools to their developers. (8) Once tools are valid, their Docker images and
metadata about their capabilities are automatically saved to BioSimulators’ database. Importantly, this workflow
supports a broad range of model formats, modeling frameworks, and simulation algorithms by abstracting their de-
tails into COMBINE archives, ontology concepts, and Docker images. Grey indicates simulation tools. Orange and
purple indicate existing modeling formats and ontologies that BioSimulators uses for the inputs to tools; orange indi-
cates resources that BioSimulators uses without modification; purple indicates resources that we refined or expanded
to enable BioSimulators. Green indicates existing domain-independent formats that we customized for simulation
tools and their outputs. Blue indicates BioSimulators’ new schemas and other new resources that standardize tools
and logs of their execution.

the BioSimulators GitHub organization.

S5.2 Encapsulate the tool into a command-line program

To make it easy for investigators to execute their simulation tool, developers must next encapsulate
their tool into a command-line program. Command-line programs for simulation tools should have
two arguments: a path to the COMBINE archive that the tool should execute and the path where
the simulation tool should save the outputs of the execution of the archive (a single HDF5 file

20

with the results of each report described in each SED-ML document in the COMBINE archive, a
zip archive with a PDF file for each plot described in each SED-ML document in the COMBINE
archive, and a YAML-formatted log of the execution of the archive).

S5.3 Encapsulate the command-line interface to the tool into a Docker image

To make it easy to execute simulation tools across a wide range of computational environments, the
developers must next encapsulate the command-line program for their tool and its dependencies
into a Docker image. To facilitate usage in HPC clusters, developers should create Docker images
that are compatible with Singularity. The entry point for the image must be the command-line
program for the tool. BioSimulators also encourages developers to use BioContainers (118) and
Open Container Initiative (OCI) labels to annotate their images (e.g., the name, version, license,
and developers of the software in the image).

S5.4 Push the Docker image for the tool to a public Docker registry

To make the Docker image for their simulation tool accessible to BioSimulators, developers should
next push their image to a public Docker registry such as Docker Hub, GitHub Container Registry,
or Quay. Developers should use distinct tags to manage multiple Docker images for multiple versions
of their tool.

S5.5 Annotate the capabilities of the simulation tool and other metadata

Next, developers must use BioSimulators’ JSON schema and several community ontologies to de-
scribe the capabilities of their simulation tool, including the model formats (e.g., BNGL, SBML),
modeling frameworks (e.g., flux balance, logical, discrete kinetic), and simulation algorithms (e.g.,
flux balance analysis, Gillespie’s direct method) that the simulation tool supports; the independent
and dependent simulation variables that each simulation algorithm supports; the parameters of each
simulation algorithm; and the data type, default value, and recommended range of values of each
parameter. Developers must use concepts in the EDAM ontology to describe the model formats
that their tool supports. Developers must use the SBO ontology to describe the modeling frame-
works that their tool supports. Developers must use the KiSAO ontology to describe the simulation
algorithms that their tool supports and their parameters. Developers must use the SIO ontology
to describe the independent variables (e.g., time, x-coordinate) that each algorithm supports. Bio-
Simulators allows developers to describe the dependent model variables that can be recorded for
each simulation algorithm and the targets that users can use to record specific variables in conjunc-
tion with model variables in SED-ML documents. For XML-based model formats (e.g., CellML,
SBML), BioSimulators recommends that the targets of model variables be their XML XPATHs in
the XML descriptions of their parent models.

Developers can also use BioSimulators’ schema for the capabilities of simulation tools to capture
metadata about their tools, such as the interfaces (e.g., command-line, desktop) that tools provide,
the operating systems that tools support, the programming languages that tools provide libraries
for, hyperlinks to further information about tools, licenses for tools, citations for tools, and the
authors of tools. Developers can use SPDX identifiers to describe the licenses of their tools.

21

S5.6 Verify that the simulation tool is packaged and annotated consistently
with BioSimulators’ conventions.

Next, developers can use the BioSimulators test suite described above to verify that their simulation
tool and its specifications are consistent with BioSimulators’ conventions. As described above,
developers can execute the test suite on their own machines using its command-line interface or
use the deployment of the test suite that is hosted through GitHub issues and actions as described
below.

S5.7 Submit the tool to the BioSimulators registry

Next, developers can submit their tool to BioSimulators by creating an issue for the BioSimula-
tors GitHub repository, whose body contains a URL where the specifications for the simulation tool
can be retrieved. Developers can create issues either using the issue template available through the
GitHub website or using the GitHub REST API. Similar to the simulator verification system de-
scribed in the previous section, the creation of each issue triggers a GitHub action which retrieves
the specifications of the simulation tool, pulls the Docker image for the simulation tool from the
location indicated in the specifications, uses the test suite to verify the Docker image for the simula-
tion tool, and saves a report of the verification of the tool as a JSON-formatted file. If the simulator
fails the test suite, the test suite reports its failures via messages to the same GitHub issue. After
addressing the issues identified by the test suite, developers can re-start this submission workflow
by editing the body of the GitHub issue. This will trigger the test suite to review the simulator
again.

The first time each simulation tool passes the test suite, the test suite will assign the BioSimulators
Team to review the simulator manually. The BioSimulators Team will then use the same GitHub
issue to discuss any issues that the developers must address to make their simulation tool consistent
with BioSimulators’ conventions. Once the developers have addressed the issues identified by the
BioSimulators Team, the BioSimulators Team will add the ‘Approved’ label to the GitHub issue.
This will trigger another GitHub action which will add a standardized tag to the Docker image for
the simulator, push this tag to BioSimulators’ Docker image registry so that BioSimulators retains
a copy of the image for the community, and use BioSimulators’ API to save the capabilities of the
simulator and its verification record to BioSimulators’ database. Subsequent versions of the same
simulation tool will be automatically approved and immediately saved to BioSimulators’ database
once they pass the test suite.

We believe this quality control scheme has several advantages. First, this combination of automated
tests executed using GitHub actions and manual review organized with GitHub issues both ensures
that the majority of our review is fair and objective, and it enables us to manually review complex
issues that are challenging to verify computationally, such as the completeness of the annotation of
the capabilities of simulation tools. This combination also makes it possible for us to rigorously re-
view each version of each simulation tool with a modest amount of effort. Second, the GitHub API
makes it easy for developers to programmatically submit each version of their tools to BioSimula-
tors. Third, GitHub automatically tracks the provenance of each submission, including the people
who submitted and reviewed each tool and when the simulator was submitted, reviewed, and ap-
proved. Fourth, the open nature of GitHub issues and actions makes the review of simulation tools
transparent to the community. Fifth, we anticipate this system will make it easy for us to identify

22

issues that developers are struggling with and help developers resolve these issues.

S5.8 Automate the submission of subsequent versions of the tool to BioSimu-
lators

To enable the community to use specific versions of simulation tools, we encourage developers to
submit each version of their simulation tools to BioSimulators. We recommend that developers
achieve this by creating continuous deployment workflows that use the GitHub REST API to auto-
matically create issues that submit their tool to BioSimulators each time they release a new version
of their tool. An example GitHub actions workflow is available from the BioSimulators GitHub
organization.

S6 Architecture, implementation, testing, and deployment of Bio-
Simulators

S6.1 Architecture

BioSimulators is compromised of (a) a set of formats and specifications for the inputs and outputs of
simulation tools which enable simulation tools to provide investigators a simple, consistent interface
for executing simulations, (b) a library for working with these formats, including validating that
documents are consistent with these formats, (c) a schema for metadata about the capabilities of
simulation tools, (d) a test suite for verifying that simulation tools follow these conventions, (e) a
web service for running this test suite in the cloud, (f) a database of metadata about simulation
tools, (g) a registry for Docker images for standardized simulation tools, (h) an OpenAPI-compliant
REST API for modifying and querying the database, (i) a web application for manually reviewing
simulation tools submitted to the database, and (j) a graphical user interface (GUI) for browsing the
database, getting recommendations for simulation algorithms and tools, and validating modeling
projects (Figure S3).

S6.2 Implementation, testing, and deployment

BioSimulators is implemented as a collection of modular components, each implemented with dif-
ferent tools as appropriate. We used GitHub to coordinate the development of these components.

S6.2.1 Schemas for the capabilities of simulation tools, the verification of simulation
tools, and logs of the execution simulation projects

We used NestJS and OpenAPI to define and document these schemas and implement methods for
validating that documents are consistent with the schemas.

23

Capabilities of tools,
test suite results

MongoDB
Mongo Atlas

Test suite
Python

Manual review
by curators

Images of tools
GitHub Container

Registry

Registry of simulation tools
Nest JS, OpenAPI

Google Cloud

Quality control of simulation tools
GitHub issues and actions

GUI
Angular
Netlify

Simulation projects
COMBINE, SED-ML,
models e.g., SBML

Simulation results
HDF5

Library for creating standardized tools
Python

REST API

Logs of simulations
JSON schema

Standardized simulators
Docker image

Common formats for simulators
and their inputs and outputs

Capabilities of tools
JSON schema

Test suite results
JSON schema

Projects
Import & export

(libCOMBINE), execute

CLI handling
cement

Plotting
Compile, export &
import (Matplotlib)

Experimentation
Import & export

(libSED-ML), execute

Logging
Capture (capturer),

export

Reporting
Compile, export
& import (H5py)

Figure S3: BioSimulators’ modular, standards-driven architecture enables BioSimulators to provide
the community standardized tools for a wide range of model formats, modeling frameworks, and
simulation algorithms. The BioSimulators ecosystem includes a set of formats for simulation tools and their
inputs and outputs; a library for creating standardized simulation tools that support these formats; a test suite for
verifying that simulation tools execute these formats consistently; an open registry of standardized simulation tools
and metadata about their capabilities; an online system for quality controlling submissions to the registry which
employs this test suite and further manual review; and a GUI for browsing the registry, getting recommendations
for simulation algorithms and tools, and validating modeling projects. Importantly, these components facilitate
the standardization of simulation tools for a wide range of model formats, modeling frameworks, and simulation
algorithms by abstracting their details into COMBINE archives, ontology concepts, and Docker images. Orange and
purple indicate existing modeling formats and ontologies that BioSimulators embraces for the inputs to simulation
tools; orange indicates resources that BioSimulators embraces without modification; purple indicates resources that
we refined or expanded to enable BioSimulators. Green indicates existing domain-independent formats and resources
that we customized for simulation tools and their outputs. Blue indicates new schemas and other resources that we
developed to enable BioSimulators.

S6.2.2 Schema for the results of SED-ML reports

The schema for the results of SED-ML reports is implemented as a set of guidelines for using HDF5.
These guidelines simply outline the paths where the results of SED-ML reports should be located
within HDF5 files and how metadata about SED-ML reports should be encoded into the attributes
of HDF5 data sets. These guidelines are described in the BioSimulators documentation, and the
test suite checks that simulation tools follow these guidelines.

S6.2.3 KiSAO library

The KiSAO library is implemented in Python using the pronto library. The library was tested using
pytest, and the coverage of the tests was evaluated with CodeCov.

S6.2.4 BioSimulators-utils library

BioSimulators-utils is implemented in Python using several packages including capturer, H5py,
libCellML, libCOMBINE, libOmexMeta, libSBML, libSEDML, lxml, Matplotlib (128), NetworkX
(129), NumPy (130), pyBioNetGen, pyNeuroML, and XPP. BioSimulators-utils was tested using

24

pytest, and the coverage of the tests was evaluated with CodeCov.

S6.2.5 Test suite for interfaces to simulation tools

The test suite is implemented in Python using BioSimulators-utils and several additional packages,
including capturer and Cement. The test suite was tested using pytest, and the coverage of the
test suite was evaluated with CodeCov. As described above, the cloud version of the test suite is
deployed as a GitHub action that is triggered by the creation, editing, and tagging of issues for the
BioSimulators GitHub repository.

S6.2.6 Database of the capabilities of simulation tools and their verification

We implemented the database using MongoDB and used Mongoose and NestJS to define the schema
for the database and validate submissions to the database. The database is deployed using MongoDB
Atlas.

S6.2.7 Docker registry of containerized simulation tools

BioSimulators uses the GitHub Container Registry to store a copy of each Docker image accepted
to the BioSimulators registry. This design ensures that these Docker images will remain accessible
to the scientific community even if the original authors delete their copies of the images.

S6.2.8 REST API

We implemented the API in TypeScript using NestJS, Auth0, and OpenAPI. We used NestJS to
organize the API, we used Auth0 to manage access to the API, and we used OpenAPI to document
the API. The API is deployed using a Kubernetes cluster running on Google Cloud.

S6.2.9 Graphical user interface (GUI)

We implemented the GUI in TypeScript using the Angular framework and the Material user interface
component library. We tested the GUI using Jest. The GUI is deployed using Netlify. Errors
encountered during deployment are logged using Google Cloud Error Reporting.

S7 Case study: Assessing the practical reusability of published sim-
ulation experiments to individual investigators

In this section, we present a case study that illustrates the utility of the capability to use BioSimu-
lators to execute a broad range of simulations.

A promising way to create comprehensive, predictive simulations is to combine simulations of indi-
vidual subsystems developed by individual research groups. As a first step, this requires investigators

25

to be able to reuse individual simulations.

Recently, the BioModels curators, who have experience reusing models and the time to debug
problems, found that they could reuse 61% of models reported in publications (131). However,
individual investigators need to be able to reuse models quickly with modest effort. Furthermore,
investigators need to be able to use simulations in addition to models. Due to greater support
for community model formats among simulation software tools than for SED-ML, the findings of
studies such as Tiwari et al. may not reflect the ability of individual investigators to reuse published
simulation experiments.

To estimate the reusability of published simulation experiments to individual investigators, we used
the standardized simulation tools available through BioSimulators to execute the curated simulation
experiments available from BioModels (132), one of the largest collections of published simulation
experiments. BioSimulators is ideal for this purpose because BioSimulators makes it easy to execute
a broad range of simulation experiments. First, we used BioModels’ REST API to determine which
BioModels entries include simulation experiments in SED-ML format. As of the time of this study
(Spring 2020), we determined that 214 BioModels entries included simulation experiments. Second,
we used BioModels’ REST API to download these experiments as COMBINE archives that contain
SED-ML files. Third, we used the standardized simulation tools registered with BioSimulators to
execute these experiments. This revealed that only two (< 1%) of these simulation experiments
could be executed.

Fourth, we used the execution logs of these simulation experiments to dissect the proximate reasons
why most of these COMBINE archives cannot be executed. We found that 84% of the SED-ML
files in the COMBINE archives have broken references to model files (the model in the COMBINE
archive is located at a different path than that indicated in the SED-ML file) and that 15% of the
SED-ML files in these archives are syntactically invalid, most frequently due to lacking required
attributes, having duplicate values of attributes which must be unique, and having attributes with
invalid values. We also found additional issues that prevent the execution of an additional 1% of
these simulation experiments.

We also examined the results of the two COMBINE archives that did successfully execute to gain
insights into best practices for publishing reproducible simulation experiments. This revealed an-
other issue, that the simulation experiments in one of the COMBINE archives reference models
outside the archive. While this mistake enables simulation tools to execute this COMBINE archive,
this design is inconsistent with BioModels’ goal of exporting COMBINE archives that standalone,
containing all of the information required to execute the simulation experiment.

Fifth, we used BioSimulations-utils to dissect these COMBINE archives and identify additional
issues beyond those identified above that would prevent their successful execution. This revealed
additional issues with 20% of the simulation experiments. Many of these issues fall into the same
categories outlined above. In addition, some of the simulation experiments have invalid entity
references (e.g., references to undefined models).

Going forward, we aim to help the developers of BioModels address these issues.

26

S8 Comparison of BioSimulators with other resources

Several resources have been developed to help developers build and share interoperable simulation
tools and help investigators find and use these tools. This includes formats such as SBML and SED-
ML which enable investigators to execute the same models and simulations with multiple simulation
tools; formats such as HDF5, netCDF (133), N5, NuML (134, 135), and Zarr which can capture
simulation results; test suites that help developers build simulation tools that generate consistent
predictions (136, 137); registries of scientific software tools that help investigators find specific tools
for specific tasks such as bio.tools (138), CoLoMoTo Docker (124), the PETab (139) feature support
guide, the SBML Software Guide, and SciCrunch (140); repositories of scientific software packages
such as Bioconda (141), BioContainers (118), and Dockstore (142); management systems for plugins
to platforms such as BioUML (3), Galaxy (143), and KBase (144); and web-based simulation tools
such as The Cell Collective (49), JWS Online (24), SBMLWebApp (145), and StochSS (19).

Nevertheless, it has remained difficult for investigators to share, reuse, and compose models and
simulations, especially across biological subsystems and scales, due to gaps within and among these
resources. For example, prior to BioSimulators EDAM lacked concepts for several popular modeling
formats, KiSAO lacked concepts for many popular simulation algorithms; SED-ML did not specify
a specific format for the results of simulation experiments; only a few simulation tools could execute
simulation experiments described with SED-ML; simulation tools provided heterogeneous interfaces
for executing simulation experiments; the scientific software registries were siloed from ontologies
such as KiSAO that can capture the capabilities of simulation tools with sufficient granularity to
help investigators find tools that can execute specific algorithms; the software registries that have
metadata about the capabilities of simulation tools were siloed from registries of packages and Docker
images of these tools; the test suites that help developers identify inconsistencies between their
simulation tools and community model formats were siloed from the software registries that help
investigators find tools; and the test suites did not verify that simulation tools execute simulation
experiments described in SED-ML consistently.

BioSimulators unifies this siloed landscape by filling in gaps in these resources and linking them
together. (a) We contributed numerous additional concepts to the EDAM ontology of scientific
formats, the KiSAO ontology of simulation algorithms and their parameters, and the SIO ontology of
physical, processual, and informational entities. (b) We filled in gaps in the specifications of SED-ML
with a variety of concrete guidelines, such as for using XML namespaces and XPATHs for describing
targets to model elements. (c) We introduced a schema for the results of simulation experiments, a
schema for logs of the execution of simulation experiments, specifications for command-line interfaces
and Docker images for simulation tools, a schema for the capabilities of simulation tools, and a
test suite for verifying that simulation tools execute SED-ML documents and COMBINE archives
consistently. (d) We created a new registry for simulation software tools. (e) We linked our registry
to EDAM and KiSAO to capture granular information about the capabilities of each tool, we
integrated our registry with a Docker image repository to capture Docker images of each tool, and
we combined our registry with automated testing and manual review to quality control submissions
to our registry. Furthermore, we deployed this testing in the cloud to enable developers to routinely
push new versions of their tools to BioSimulators.

27

S9 Availability of BioSimulators

The various components of BioSimulators are freely and openly available at the locations listed
below. All of these components are available under the MIT license, except some of the standardized
simulation tools, which are available under the open-source licenses noted at https://biosimulators.
org.

• GUI for browsing the registry and getting recommendations for tools: https://biosimulators.org
– Source code: https://github.com/biosimulations/Biosimulations
– Tutorial and help: https://docs.biosimulations.org
– Guide to contributing: https://github.com/biosimulations/Biosimulations

• REST API: https://api.biosimulators.org
– Source code: https://github.com/biosimulations/Biosimulations
– Documentation: https://api.biosimulators.org
– Guide to contributing: https://github.com/biosimulations/Biosimulations

• Backend database
– Source code: https://github.com/biosimulations/Biosimulations
– Guide to contributing: https://github.com/biosimulations/Biosimulations

• Tools for validating simulation projects and their components
– Web application: https://biosimulators.org
– REST API: https://combine.api.biosimulations.org
– Command-line application: https://pypi.org/project/biosimulators-utils
– Python API: https://pypi.org/project/biosimulators-utils
– Source code: https://github.com/biosimulators/Biosimulators_utils
– Documentation: https://biosimulators.github.io/Biosimulators_utils
– Guide to contributing: https://github.com/biosimulators/Biosimulators_utils

• Interfaces to simulation tools
– Docker images: https://github.com/biosimulators
– Command-line programs: https://pypi.org/user/biosimulators
– Python APIs: https://pypi.org/user/biosimulators
– Source code: https://github.com/biosimulators
– Documentation and guides to contributing: https://docs.biosimulations.org

• Library for creating standardized interfaces to simulation tools (BioSimulators-utils)
– Python package: https://pypi.org/project/biosimulators-utils
– Source code: https://github.com/biosimulators/Biosimulators_utils
– Documentation: https://biosimulators.github.io/Biosimulators_utils
– Guide to contributing: https://github.com/biosimulators/Biosimulators_utils

• Template for a standardized interface to a simulation tool
– Source code: https://github.com/biosimulators/Biosimulators_simulator_template
– Documentation and guide to contributing: https://github.com/biosimulators/Biosimulators_

simulator_template

• Test suite for verifying that simulation tools are consistent with BioSimulators’ conventions

28

https://biosimulators.org
https://biosimulators.org
https://biosimulators.org
https://github.com/biosimulations/Biosimulations
https://docs.biosimulations.org
https://github.com/biosimulations/Biosimulations
https://api.biosimulators.org
https://github.com/biosimulations/Biosimulations
https://api.biosimulators.org
https://github.com/biosimulations/Biosimulations
https://github.com/biosimulations/Biosimulations
https://github.com/biosimulations/Biosimulations
https://biosimulators.org
https://combine.api.biosimulations.org
https://pypi.org/project/biosimulators-utils
https://pypi.org/project/biosimulators-utils
https://github.com/biosimulators/Biosimulators_utils
https://biosimulators.github.io/Biosimulators_utils
https://github.com/biosimulators/Biosimulators_utils
https://github.com/biosimulators
https://pypi.org/user/biosimulators
https://pypi.org/user/biosimulators
https://github.com/biosimulators
https://docs.biosimulations.org
https://pypi.org/project/biosimulators-utils
https://github.com/biosimulators/Biosimulators_utils
https://biosimulators.github.io/Biosimulators_utils
https://github.com/biosimulators/Biosimulators_utils
https://github.com/biosimulators/Biosimulators_simulator_template
https://github.com/biosimulators/Biosimulators_simulator_template
https://github.com/biosimulators/Biosimulators_simulator_template

– Cloud deployment: https://github.com/biosimulators/Biosimulators/issues/new/choose
– Python package: https://pypi.org/project/biosimulators-test-suite
– Source code: https://github.com/biosimulators/Biosimulators_test_suite
– Documentation: https://biosimulators.github.io/Biosimulators_test_suite
– Guide to contributing: https://github.com/biosimulators/Biosimulators_test_suite

• Library for working with the KiSAO ontology of simulation algorithms
– Python package: https://pypi.org/project/kisao
– Source code: https://github.com/SED-ML/KiSAO
– Documentation: https://github.com/SED-ML/KiSAO
– Guide to contributing: https://github.com/SED-ML/KiSAO

S10 Community feedback, input, and contributions to BioSimula-
tors

We welcome community feedback, input, and direct contributions to all of the components of Bio-
Simulators. Simulation tools can be contributed by creating issues for the BioSimulators GitHub
repository, https://github.com/biosimulators/Biosimulators. Guides to contribute to the other com-
ponents of BioSimulators are available at the links above. We also encourage developers to use the
BioSimulators API to develop additional applications.

S11 Author contributions

Agnew: Conventions for Python APIs for simulation tools and simulation results.

Andrews: Interface to Smoldyn and its capabilities.

Anwar: Interface to COBRApy.

Beber: Interface to COBRApy.

Bergmann: Enhancement of SED-ML and libSED-ML, bug fixes to libCOMBINE, bug fixes to
COPASI, development of the interface to COPASI, specifications of COPASI.

Blinov: Conception, interface to Virtual Cell and its specifications.

Brooks: Inteface to OpenCOR.

Brusch: Specifications of Morpheus.

Calzone: Specifications of MaBoSS.

Choi: Interface to tellurium.

Cooper: Bug fixes to GillesPy2, interface to GillesPy2, automated releasing of GillesPy2.

Detloff: User interface.

Drawert: Bug fixes to GillesPy2, interface to GillesPy2, automated releasing of GillesPy2, capa-
bilities of GillesPy2.

Dumontier: Ontology terms for describing the outputs of simulations in SIO.

Ermentrout: Interface to XPP and its specifications.

29

https://github.com/biosimulators/Biosimulators/issues/new/choose
https://pypi.org/project/biosimulators-test-suite
https://github.com/biosimulators/Biosimulators_test_suite
https://biosimulators.github.io/Biosimulators_test_suite
https://github.com/biosimulators/Biosimulators_test_suite
https://pypi.org/project/kisao
https://github.com/SED-ML/KiSAO
https://github.com/SED-ML/KiSAO
https://github.com/SED-ML/KiSAO
https://github.com/biosimulators/Biosimulators

Faeder: Interface to BioNetGen, capabilities of BioNetGen, and example models.

Freiburger: Example models and data visualizations, conventions for simulation results and data
visualizations.

Fröhlich: Interface to AMICI and its capabilities.

Funahashi: Interface to libSBMLsim and its capabilities.

Garny: Interface to OpenCOR and its capabilities, validation of CellML files.

Gennari: Conventions for meta data about simulation projects and their components.

Gleeson: Interfaces to Brian 2, pyNeuroML, NEURON, and NetPyNe; validation for NeuroML
and LEMS files.

Goelzer: Interface to RBApy and its capabilities.

Goldberg: Conception.

Haiman: Interface to MASSpy and its specifications.

Hasenauer: Interface to AMICI and its capabilities.

Hellerstein: Conventions for specifications of simulation tools.

Hermjakob: Curation of namespaces for annotating simulation projects.

Hoops: Capabilities of COPASI.

Ison: Curation of modeling and simulation formats in EDAM.

Jahn: Specifications of Morpheus.

Jakubowski: Conventions for Python APIs for simulation tools and simulation results.

Jordan: Curation of modeling and simulation formats.

Kalaš: Curation of modeling and simulation formats in EDAM.

Karr: Conception, conventions, ontologies, validation tools, interfaces to simulation tools and their
specifications, backend, user interface, manuscript.

König: Improvements and clarifications to SED-ML, interface to tellurium.

Liebermeister: Interface to RBApy and its capabilities.

Malik Sheriff: Input to validation of simulation projects and user interface.

Mandal: Automated releasing of COBRPApy.

Marupilla: Interface to Virtual Cell, input into validation tools.

McDougal: Interface to XPP.

Medley: Interface to tellurium and its capabilities, conventions for specifications of simulation
tools.

Mendes: Capabilities of COPASI.

Moraru: Conception, interface to Virtual Cell and its specifications, conventions, deployment.

Müller: Specifications of Morpheus.

Myers: Specifications of iBioSim.

Naldi: Interface to GINsim.

Nguyen: Validation of simulation projects.

Nickerson: Enhancement of SED-ML, interface to OpenCOR, validation of CellML files.

30

Olivier: Interfaces to CBMPy and PySCeS.

Patoliya: Curation of modeling and simulation formats in EDAM.

Paulevé: Interface to mPBN and its specifications, curation of algorithms and algorithm parame-
ters for logical simulation.

Petzold: Interface to GillesPy2.

Priya: Curation of modeling and simulation formats in EDAM.

Rampadarath: Input into conventions for specifications of simulation tools and meta data about
simulation projects.

Rohwer: Interface to PySCeS.

Saglam: Interface to BioNetGen, validation of BNGL files, example BNGL files.

Sauro: Conception, interface to tellurium and its specifications.

Shaikh: Conventions, backend, user interface, deployment, manuscript.

Singh: Interface to Smoldyn, specifications of Smoldyn, automated releasing of Smoldyn.

Sinha: Validation of NeuroML; interfaces Brian 2, pyNeuroML, NEURON, NetPyNe.

Smith: Conventions, enhancement of SED-ML, validation of SBML files and simulation projects,
interface to tellurium and its specifications.

Snoep: Conventions for Python APIs for simulation tools.

Sorby: Validation of CellML files.

Spangler: Conventions for Python APIs for simulation tools.

Starruß: Specifications of Morpheus.

Thomas: Specifications of iBioSim.

van Niekerk: Conventions for Python APIs for simulation tools.

Vasilescu: Interface to Virtual Cell, input into validation tools.

Weindl: Interface to AMICI and its specifications.

Wilson: Deployment.

Zhang: Specifications of Simmune.

Zhukova: Curation of algorithms and algorithm parameters in KiSAO.

S12 Funding

This work was supported by French National Research Agency award ANR-20-CE45-0001 to Paulevé;
German Federal Ministry of Education and Research awards 031L0104A and 01ZX1916A to Weindl;
German Research Foundation award 391070520 to Brusch; Human Frontier Science Program award
LT000259/2019-L1 to Fröhlich; US National Cancer Institute award U54CA225088 to Fröhlich;
National Institute of Allergy and Infectious Disease to Zhang; US National Institute of Bioengi-
neering and Bioimaging awards P41EB023912 to Gennari, Karr, Moraru, Nickerson, and Sauro and
R01EB014877 to Drawert and Petzold; US National Institute of General Medical Sciences awards
R24GM137787 to Moraru and R35GM119771 to Karr; and Wellcome Trust award 212941 to Glee-
son.

31

S13 Acknowledgements

We thank Manuel Bernal Llinares (European Molecular Biology Laboratory - European Bioinfor-
matics Institute) for assistance expanding the Identifiers.org database of namespaces for entities
for biological research. We thank Jan Hasenauer (Universität Bonn) for help specifying the capa-
bilities of the AMICI continuous kinetic simulation program. We thank James C. Schaff (Applied
BioMath) for helping conceive BioSimulators. We thank Ciaran Welsh (University of Auckland) for
help using libOmexMeta to validate the metadata inside simulation projects.

Acronyms

API application programming interface

BNGL BioNetGen Language

EDAM thE Data And Methods ontology

FBA flux balance analysis

FVA Flux Variability Analysis

GUI graphical user interface

HDF5 Hierarchical Data Format 5

HPC high-performance computing

JSON JavaScript Object Notation

KiSAO Kinetic Simulation Algorithm Ontology

OCI Open Container Initiative

OMEX Open Modeling EXchange

ORCID Open Researcher and Contributor ID

PDF Portable Document Format

pFBA Parsimonious FBA

RDF Resource Description Framework

SBML Systems Biology Markup Language

SBML-comp SBML hierarchical model composition package

SBML-fbc SBML flux balance constraints package

SBML-qual SBML qualitative models package

SBO Systems Biology Ontology

SED-ML Simulation Experiment Description Markup Language

32

SIF Singularity Image Format

SIO Semanticscience Integrated Ontology

URI Uniform Resource Identifier

URL Uniform Resource Locator

URN Uniform Resource Name

XML Extensible Markup Language

YAML Yet Another Markup Language

References

1. Fröhlich,F., Weindl,D., Schälte,Y., Pathirana,D., Paszkowski,Ł., Lines,G. T., Stapor,P. and
Hasenauer,J. (04, 2021) AMICI: High-Performance Sensitivity Analysis for Large Ordinary
Differential Equation Models. Bioinformatics, btab227.

2. Harris,L. A., Hogg,J. S., Tapia,J.-J., Sekar,J. A., Gupta,S., Korsunsky,I., Arora,A., Barua,D.,
Sheehan,R. P. and Faeder,J. R. (2016) BioNetGen 2.2: advances in rule-based modeling. Bioin-
formatics, 32, 3366–3368.

3. Kolpakov,F., Akberdin,I., Kashapov,T., Kiselev,l., Kolmykov,S., Kondrakhin,Y., Kutu-
mova,E., Mandrik,N., Pintus,S., Ryabova,A. et al. (2019) BioUML: an integrated environ-
ment for systems biology and collaborative analysis of biomedical data. Nucleic Acids Res.,
47, W225–W233.

4. Müssel,C., Hopfensitz,M. and Kestler,H. A. (2010) BoolNet—an R package for generation,
reconstruction and analysis of Boolean networks. Bioinformatics, 26, 1378–1380.

5. Garg,A., Mohanram,K., Di Cara,A., De Micheli,G. and Xenarios,I. (2009) Modeling stochas-
ticity and robustness in gene regulatory networks. Bioinformatics, 25, i101–i109.

6. Stimberg,M., Brette,R. and Goodman,D. F. (2019) Brian 2, an intuitive and efficient neural
simulator. Elife, 8, e47314.

7. Olivier,B. G., Swat,M. J. and Moné,M. J. (2016) Modeling and simulation tools: from systems
biology to systems medicine. Syst. Med., pp. 441–463.

8. Klamt,S., Saez-Rodriguez,J. and Gilles,E. D. (2007) Structural and functional analysis of cel-
lular networks with CellNetAnalyzer. BMC Syst. Biol., 1, 1–13.

9. Heirendt,L., Arreckx,S., Pfau,T., Mendoza,S. N., Richelle,A., Heinken,A., Haraldsdóttir,H. S.,
Wachowiak,J., Keating,S. M., Vlasov,V. et al. (2019) Creation and analysis of biochemical
constraint-based models using the COBRA Toolbox v.3.0. Nat. Protoc., 14, 639–702.

10. Ebrahim,A., Lerman,J. A., Palsson,B. O. and Hyduke,D. R. (2013) COBRApy: constraints-
based reconstruction and analysis for Python. BMC Syst. Biol., 7, 1–6.

11. Bergmann,F. T., Hoops,S., Klahn,B., Kummer,U., Mendes,P., Pahle,J. and Sahle,S. (2017)
COPASI and its applications in biotechnology. J. Biotechnol., 261, 215–220.

12. Dhar,P. K., Takahashi,K., Nakayama,Y. and Tomita,M. (2006) E-Cell: Computer Simulation
of the Cell. Rev. Cell. Biol. Mol. Med.,.

33

13. Varela,P. L., Ramos,C. V., Monteiro,P. T. and Chaouiya,C. (2018) EpiLog: A software for the
logical modelling of epithelial dynamics. F1000Res., 7.

14. Rowe,E., Palsson,B. O. and King,Z. A. (2018) Escher-FBA: a web application for interactive
flux balance analysis. BMC Syst. Biol., 12, 1–7.

15. Marmiesse,L., Peyraud,R. and Cottret,L. (2015) FlexFlux: combining metabolic flux and reg-
ulatory network analyses. BMC Syst. Biol., 9, 1–13.

16. Hari,A. and Lobo,D. (2020) Fluxer: a web application to compute, analyze and visualize
genome-scale metabolic flux networks. Nucleic Acids Res., 48, W427–W435.

17. Batt,G., Besson,B., Ciron,P.-E., de Jong,H., Dumas,E., Geiselmann,J., Monte,R., Mon-
teiro,P. T., Page,M., Rechenmann,F. et al. (2012) Genetic Network Analyzer: a tool for the
qualitative modeling and simulation of bacterial regulatory networks. In Bacterial Molecular
Networks pp. 439–462 Springer.

18. Garg,A., Di Cara,A., Xenarios,I., Mendoza,L. and De Micheli,G. (2008) Synchronous versus
asynchronous modeling of gene regulatory networks. Bioinformatics, 24, 1917–1925.

19. Drawert,B., Hellander,A., Bales,B., Banerjee,D., Bellesia,G., Daigle Jr,B. J., Douglas,G.,
Gu,M., Gupta,A., Hellander,S. et al. (2016) Stochastic simulation service: bridging the gap
between the computational expert and the biologist. PLoS Comput. Biol., 12, e1005220.

20. Naldi,A., Hernandez,C., Abou-Jaoudé,W., Monteiro,P. T., Chaouiya,C. and Thieffry,D. (2018)
Logical modeling and analysis of cellular regulatory networks with GINsim 3.0. Front. Physiol.,
9, 646.

21. Watanabe,L., Nguyen,T., Zhang,M., Zundel,Z., Zhang,Z., Madsen,C., Roehner,N. and My-
ers,C. (2018) iBioSim 3: a tool for model-based genetic circuit design. ACS Synth. Biol., 8,
1560–1563.

22. Cannon,R. C., Gleeson,P., Crook,S., Ganapathy,G., Marin,B., Piasini,E. and Silver,R. A.
(2014) LEMS: a language for expressing complex biological models in concise and hierarchical
form and its use in underpinning NeuroML 2. Front. Neuroinform., 8, 79.

23. Butterworth,E., Jardine,B. E., Raymond,G. M., Neal,M. L. and Bassingthwaighte,J. B. (2013)
JSim, an open-source modeling system for data analysis. F1000Res., 2.

24. Peters,M., Eicher,J. J., van Niekerk,D. D., Waltemath,D. and Snoep,J. L. (2017) The JWS
Online simulation database. Bioinformatics, 33, 1589–1590.

25. Boutillier,P., Maasha,M., Li,X., Medina-Abarca,H. F., Krivine,J., Feret,J., Cristescu,I.,
Forbes,A. G. and Fontana,W. (2018) The Kappa platform for rule-based modeling. Bioin-
formatics, 34, i583–i592.

26. Roberts,E., Stone,J. E. and Luthey-Schulten,Z. (2013) Lattice Microbes: High-performance
stochastic simulation method for the reaction-diffusion master equation. J. Comput. Chem.,
34, 245–255.

27. Takizawa,H., Nakamura,K., Tabira,A., Chikahara,Y., Matsui,T., Hiroi,N. and Funahashi,A.
(2013) LibSBMLSim: a reference implementation of fully functional SBML simulator. Bioin-
formatics, 29, 1474–1476.

28. Stoll,G., Caron,B., Viara,E., Dugourd,A., Zinovyev,A., Naldi,A., Kroemer,G., Barillot,E. and
Calzone,L. (2017) MaBoSS 2.0: an environment for stochastic Boolean modeling. Bioinfor-
matics, 33, 2226–2228.

29. Haiman,Z. B., Zielinski,D. C., Koike,Y., Yurkovich,J. T. and Palsson,B. O. (2021) MASSpy:

34

Building, simulating, and visualizing dynamic biological models in Python using mass action
kinetics. PLoS Comput. Biol., 17, e1008208.

30. Stiles,J. R., Bartol,T. M. et al. (2001) Monte Carlo methods for simulating realistic synaptic
microphysiology using MCell. Comput. Neurosci., pp. 87–127.

31. Moretti,S., Martin,O., Van Du Tran,T., Bridge,A., Morgat,A. and Pagni,M. (2016)
MetaNetX/MNXref–reconciliation of metabolites and biochemical reactions to bring together
genome-scale metabolic networks. Nucleic Acids Res., 44, D523–D526.

32. Swat,M., Moodie,S., Wimalaratne,S., Kristensen,N., Lavielle,M., Mari,A., Magni,P., Smith,M.,
Bizzotto,R., Pasotti,L. et al. Pharmacometrics Markup Language (PharmML): opening new
perspectives for model exchange in drug development. (2015).

33. Starruß,J., De Back,W., Brusch,L. and Deutsch,A. (2014) Morpheus: a user-friendly modeling
environment for multiscale and multicellular systems biology. Bioinformatics, 30, 1331–1332.

34. Dura-Bernal,S., Suter,B. A., Gleeson,P., Cantarelli,M., Quintana,A., Rodriguez,F.,
Kedziora,D. J., Chadderdon,G. L., Kerr,C. C., Neymotin,S. A. et al. (2019) NetPyNE, a tool
for data-driven multiscale modeling of brain circuits. Elife, 8, e44494.

35. Hines,M. L. and Carnevale,N. T. (1997) The NEURON simulation environment. Neural Com-
put., 9, 1179–1209.

36. Erdemir,A. (2016) Open Knee: open source modeling & simulation to enable scientific discov-
ery and clinical care in knee biomechanics. J. Knee Surg., 29, 107.

37. Garny,A. and Hunter,P. J. (2015) OpenCOR: a modular and interoperable approach to com-
putational biology. Front. Physiol., 6, 26.

38. Seth,A., Hicks,J. L., Uchida,T. K., Habib,A., Dembia,C. L., Dunne,J. J., Ong,C. F., De-
Mers,M. S., Rajagopal,A., Millard,M. et al. (2018) OpenSim: Simulating musculoskeletal dy-
namics and neuromuscular control to study human and animal movement. PLoS Comput.
Biol., 14, e1006223.

39. Rocha,I., Maia,P., Evangelista,P., Vilaça,P., Soares,S., Pinto,J. P., Nielsen,J., Patil,K. R.,
Ferreira,E. C. and Rocha,M. (2010) OptFlux: an open-source software platform for in silico
metabolic engineering. BMC Syst. Biol., 4, 1–12.

40. Lopez,C. F., Muhlich,J. L., Bachman,J. A. and Sorger,P. K. (2013) Programming biological
models in Python using PySB. Mol. Syst. Biol., 9, 646.

41. Olivier,B. G., Rohwer,J. M. and Hofmeyr,J.-H. S. (2005) Modelling cellular systems with
PySCeS. Bioinformatics, 21, 560–561.

42. Agren,R., Liu,L., Shoaie,S., Vongsangnak,W., Nookaew,I. and Nielsen,J. (2013) The RAVEN
toolbox and its use for generating a genome-scale metabolic model for Penicillium chrysogenum.
PLoS Comput. Biol., 9, e1002980.

43. Bulović,A., Fischer,S., Dinh,M., Golib,F., Liebermeister,W., Poirier,C., Tournier,L., Klipp,E.,
Fromion,V. and Goelzer,A. (2019) Automated generation of bacterial resource allocation mod-
els. Metab. Eng., 55, 12–22.

44. Panchiwala,H., Shah,S., Planatscher,H., Zakharchuk,M., König,M. and Dräger,A. (2022) The
Systems Biology Simulation Core Library. Bioinformatics, 38, 864–865.

45. Angermann,B. R. and Meier-Schellersheim,M. (2019) Using Python for Spatially Resolved
Modeling with Simmune. In Modeling Biomolecular Site Dynamics pp. 161–177 Springer.

46. Updegrove,A., Wilson,N. M., Merkow,J., Lan,H., Marsden,A. L. and Shadden,S. C. (2017)

35

SimVascular: an open source pipeline for cardiovascular simulation. Annal. Biomed. Eng., 45,
525–541.

47. Andrews,S. S. (2017) Smoldyn: particle-based simulation with rule-based modeling, improved
molecular interaction and a library interface. Bioinformatics, 33, 710–717.

48. Choi,K., Medley,J. K., König,M., Stocking,K., Smith,L. P., Gu,S. and Sauro,H. M. (2018)
tellurium: an extensible python-based modeling environment for systems and synthetic biology.
Biosystems, 171, 74–79.

49. Helikar,T., Kowal,B. and Rogers,J. (2013) A cell simulator platform: the Cell Collective. Clin.
Pharmacol. Ther., 93, 393–395.

50. Moraru,I. I., Schaff,J. C., Slepchenko,B. M., Blinov,M., Morgan,F., Lakshminarayana,A.,
Gao,F., Li,Y. and Loew,L. M. (2008) Virtual Cell modelling and simulation software envi-
ronment. IET Syst. Biol., 2, 352–362.

51. Sekiguchi,T., Hamada,H. and Okamoto,M. (2019) WinBEST-KIT: Biochemical reaction sim-
ulator that can define and customize algebraic equations and events as GUI components. J.
Bioinform. Comput. Biol., 17, 1950036.

52. Ermentrout,B. (2012) XPPAUT. In Computational Systems Neurobiology pp. 519–531
Springer.

53. Faeder,J. R., Blinov,M. L. and Hlavacek,W. S. (2009) Rule-based modeling of biochemical
systems with BioNetGen. In Systems Biology pp. 113–167 Springer.

54. Clerx,M., Cooling,M. T., Cooper,J., Garny,A., Moyle,K., Nickerson,D. P., Nielsen,P. M. and
Sorby,H. (2020) CellML 2.0. J. Integr. Bioinform., 17, 20200021.

55. Gleeson,P., Crook,S., Cannon,R. C., Hines,M. L., Billings,G. O., Farinella,M., Morse,T. M.,
Davison,A. P., Ray,S., Bhalla,U. S. et al. (2010) NeuroML: a language for describing data
driven models of neurons and networks with a high degree of biological detail. PLoS Comput.
Biol., 6, e1000815.

56. Keating,S. M., Waltemath,D., König,M., Zhang,F., Dräger,A., Chaouiya,C., Bergmann,F. T.,
Finney,A., Gillespie,C. S., Helikar,T. et al. (2020) SBML Level 3: an extensible format for the
exchange and reuse of biological models. Mol. Syst. Biol., 16, e9110.

57. Olivier,B. G. and Bergmann,F. T. (2018) SBML level 3 package: flux balance constraints
version 2. J. Integr. Bioinform., 15, 20170082.

58. Smith,L. and Hucka,M. (2010) SBML Level 3 hierarchical model composition. Nat. Preced.,
pp. 1–1.

59. Zhang,F. and Meier-Schellersheim,M. (2018) SBML level 3 package: multistate, multicompo-
nent and multicompartment species, version 1, release 1. J. Integr. Bioinform., 15.

60. Chaouiya,C., Bérenguier,D., Keating,S. M., Naldi,A., Van Iersel,M. P., Rodriguez,N.,
Dräger,A., Büchel,F., Cokelaer,T., Kowal,B. et al. (2013) SBML qualitative models: a model
representation format and infrastructure to foster interactions between qualitative modelling
formalisms and tools. BMC Syst. Biol., 7, 1–15.

61. Hairer,E., Nørsett,S. and Wanner,G. (2008) Solving Ordinary Differential Equations I: Nonstiff
Problems, Springer Series in Computational MathematicsSpringer Berlin Heidelberg, .

62. Hairer,E., Nørsett,S. P. and Wanner,G. (1993) Solving ordinary differential equations I: Non-
stiff problems, Springer Verlag, Berlin, 2nd edition.

63. Cao,Y., Gillespie,D. T. and Petzold,L. R. (2007) Adaptive explicit-implicit tau-leaping method

36

with automatic tau selection. J. Chem. Phys., 126, 224101.

64. Schwab,J. D., Kühlwein,S. D., Ikonomi,N., Kühl,M. and Kestler,H. A. (2020) Concepts in
Boolean network modeling: What do they all mean?. Comput. Struct. Biotechnol. J., 18,
571–582.

65. Curtiss,C. F. and Hirschfelder,J. O. (1952) Integration of stiff equations. Proc. Natl. Acad. Sci.
U. S. A., 38, 235.

66. Smoluchowski,M. V. (1917) Versuch Einer Mathematischen Theorie der Koagulationskinetik
kolloider Lösungen. Zeitschrift Physik. Chemie., XCII, 129–168.

67. Cash,J. R. and Karp,A. H. (sep, 1990) A Variable Order Runge-Kutta Method for Initial Value
Problems with Rapidly Varying Right-Hand Sides. ACM Trans. Math. Softw., 16, 201–222.

68. Crank,J. and Nicolson,P. (1947) A practical method for numerical evaluation of solutions of
partial differential equations of the heat-conduction type. In Mathematical Proceedings of the
Cambridge Philosophical Society Cambridge University Press Vol. 43, pp. 50–67.

69. Cohen,S. D., Hindmarsh,A. C. and Dubois,P. F. (1996) CVODE, a stiff/nonstiff ODE solver
in C. Comput. Phys., 10, 138–143.

70. Serban,R. and Hindmarsh,A. C. (2005) CVODES: the sensitivity-enabled ODE solver in SUN-
DIALS. In Proc. Comput. Inform. Eng. Conf. Vol. 47438, pp. 257–269.

71. Dormand,J. R. and Prince,P. J. (1980) A family of embedded Runge-Kutta formulae. J. Com-
put. Appl. Math., 6, 19–26.

72. Griffiths,D. F. and Higham,D. J. (2010) Numerical Methods for Ordinary Differential Equa-
tions: Initial Value Problems, Springer, London, .

73. Yaakub,A. and Evans,D. J. (1999) A fourth order Runge-Kutta RK (4, 4) method with error
control. Int. J. Comput. Math., 71, 383–411.

74. Fehlberg,E. (1969) Low-order classical Runge-Kutta formulas with stepsize control and their
application to some heat transfer problems, Vol. 315, National Aeronautics and Space Admin-
istration, .

75. Orth,J. D., Thiele,I. and Palsson,B. Ø. (2010) What is flux balance analysis?. Nat. Biotechnol.,
28, 245–248.

76. Mahadevan,R. and Schilling,C. (2003) The effects of alternate optimal solutions in constraint-
based genome-scale metabolic models. Metabolic Eng., 5, 264–276.

77. Eymard,R., Gallouët,T. and Herbin,R. (2000) Finite volume methods. Handbook Numer. Anal.,
7, 713–1018.

78. Smallbone,K. and Simeonidis,E. (2009) Flux balance analysis: a geometric perspective. J.
Theor. Biol., 258, 311–315.

79. Gibson,M. A. and Bruck,J. (2000) Efficient exact stochastic simulation of chemical systems
with many species and many channels. J. Phys. Chem. A, 104, 1876–1889.

80. Gillespie,D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys.
Chem., 81, 2340–2361.

81. Salis,H. and Kaznessis,Y. (2005) Accurate hybrid stochastic simulation of a system of coupled
chemical or biochemical reactions. J. Chem. Phys., 122, 054103.

82. Pahle,J. Eine Hybridmethode zur Simulation biochemischer Prozesse PhD thesis Universitat
Karlsruhe (2002).

37

83. Sahle,S., Gauges,R., Pahle,J., Simus,N., Kummer,U., Hoops,S., Lee,C., Singhal,M., Xu,L. and
Mendes,P. (2006) Simulation of biochemical networks using COPASI-a complex pathway sim-
ulator. In Proc. Winter Simul. Conf. IEEE pp. 1698–1706.

84. Hindmarsh,A. C., Brown,P. N., Grant,K. E., Lee,S. L., Serban,R., Shumaker,D. E. and Wood-
ward,C. S. (2005) SUNDIALS: Suite of nonlinear and differential/algebraic equation solvers.
ACM Trans. Math. Softw., 31, 363–396.

85. Klarner,H., Bockmayr,A. and Siebert,H. (2015) Computing maximal and minimal trap spaces
of Boolean networks. Nat. Comput., 14, 535–544.

86. Hindmarsh,A. C. and Petzold,L. R. (Sep, 2005) LSODA, Ordinary Differential Equation Solver
for Stiff or Non-Stiff System, International Atomic Energy Agency, .

87. Hoffman,J. D. and Frankel,S. (2001) Numerical Methods for Engineers and Scientists, Taylor
& Francis, 2nd edition.

88. Naldi,A., Thieffry,D. and Chaouiya,C. (2007) Decision diagrams for the representation and
analysis of logical models of genetic networks. In International Conference on Computational
Methods in Systems Biology Springer pp. 233–247.

89. Sneddon,M. W., Faeder,J. R. and Emonet,T. (2011) Efficient modeling, simulation and coarse-
graining of biological complexity with NFsim. Nat. Methods, 8, 177–183.

90. Nowak,U. and Weimann,L. (1992) A Family of Newton Codes for Systems of Highly Nonlinear
Equations, Konrad-Zuse-Zentrum für Informationstechnik Berlin, .

91. Deuflhard,P. (2011) Newton methods for nonlinear problems: affine invariance and adaptive
algorithms, Vol. 35, Springer Science & Business Media, .

92. Press,W. H., Teukolsky,S. A., Vetterling,W. T. and Flannery,B. P. (1992) Numerical Recipes
in C (2nd Ed.): The Art of Scientific Computing, Cambridge University Press, USA.

93. Lewis,N. E., Hixson,K. K., Conrad,T. M., Lerman,J. A., Charusanti,P., Polpitiya,A. D., Ad-
kins,J. N., Schramm,G., Purvine,S. O., Lopez-Ferrer,D. et al. (2010) Omic data from evolved
E. coli are consistent with computed optimal growth from genome-scale models. Mol. Syst.
Biol., 6, 390.

94. Schuetz,R., Kuepfer,L. and Sauer,U. (2007) Systematic evaluation of objective functions for
predicting intracellular fluxes in Escherichia coli. Mol. Syst. Biol., 3, 119.

95. Harris,L. A. and Clancy,P. (2006) A “partitioned leaping” approach for multiscale modeling of
chemical reaction dynamics. J. Chem. Phys., 125, 144107.

96. Rentrop,P. (1985) Partitioned Runge-Kutta methods with stiffness detection and stepsize con-
trol. Numer. Math., 47, 545–564.

97. Ding,X. and Tan,J. (2009) Implicit Runge-Kutta methods based on Radau quadrature formula.
Int. J. Comput. Math., 86, 1394–1404.

98. Goelzer,A. and Fromion,V. (2011) Bacterial growth rate reflects a bottleneck in resource allo-
cation. Biochim. Biophys. Acta, 1810, 978–988.

99. Rosenbrock,H. (1963) Some general implicit processes for the numerical solution of differential
equations. Comput. J., 5, 329–330.

100. Rößler,A. (2009) Second order Runge-Kutta methods for Itô stochastic differential equations.
SIAM J. Numer. Anal., 47, 1713–1738.

101. Gillespie,D. T. (2000) The chemical Langevin equation. J. Chem. Phys., 113, 297–306.

38

102. Gillespie,D. T. (2001) Approximate accelerated stochastic simulation of chemically reacting
systems. J. Chem. Phys., 115, 1716–1733.

103. Brown,P. N., Byrne,G. D. and Hindmarsh,A. C. (1989) VODE: A variable-coefficient ODE
solver. SIAM J. Sci. Stat. Comput., 10, 1038–1051.

104. Folk,M., Heber,G., Koziol,Q., Pourmal,E. and Robinson,D. (2011) An overview of the HDF5
technology suite and its applications. In Proc. EDBT/ICDT 2011 Workshop Array Databases
pp. 36–47.

105. Bergmann,F. T. et al. (2014) COMBINE archive and OMEX format: one file to share all
information to reproduce a modeling project. BMC Bioinformatics, 15, 1–9.

106. Waltemath,D., Adams,R., Bergmann,F. T., Hucka,M., Kolpakov,F., Miller,A. K., Moraru,I. I.,
Nickerson,D., Sahle,S., Snoep,J. L. et al. (2011) Reproducible computational biology exper-
iments with SED-ML-the simulation experiment description markup language. BMC Syst.
Biol., 5, 1–10.

107. Bergmann,F. T., Cooper,J., König,M., Moraru,I., Nickerson,D., Le Novère,N., Olivier,B. G.,
Sahle,S., Smith,L. and Waltemath,D. (2018) Simulation experiment description markup lan-
guage (SED-ML) level 1 version 3 (L1V3). J. Integr. Bioinform., 15.

108. Smith,L. P., Bergmann,F. T., Garny,A., Helikar,T., Karr,J., Nickerson,D., Sauro,H., Wal-
temath,D. and König,M. (2021) The Simulation Experiment Description Markup Language
(SED-ML): language specification for Level 1 Version 4. J. Integr. Bioinform., 18, 20210021.

109. Köhn,D., Le Novere,N. and Knüpfer,C. (2009) Beyond Structure: KiSAO and TEDDY–Two
Ontologies Addressing Pragmatical and Dynamical Aspects of Computational Models in Sys-
tems Biology. Nat. Preced., pp. 1–1.

110. Courtot,M., Juty,N., Knüpfer,C., Waltemath,D., Zhukova,A., Dräger,A., Dumontier,M.,
Finney,A., Golebiewski,M., Hastings,J. et al. (2011) Controlled vocabularies and semantics
in systems biology. Mol. Syst. Biol., 7, 543.

111. Satyanarayan,A., Wongsuphasawat,K. and Heer,J. (2014) Declarative interaction design for
data visualization. In Proc. 27th Annu. ACM Symp. User Interface Soft. Technol. pp. 669–
678.

112. Ison,J., Kalaš,M., Jonassen,I., Bolser,D., Uludag,M., McWilliam,H., Malone,J., Lopez,R., Pet-
tifer,S. and Rice,P. (2013) EDAM: an ontology of bioinformatics operations, types of data and
identifiers, topics and formats. Bioinformatics, 29, 1325–1332.

113. Black,M., Lamothe,L., Eldakroury,H., Kierkegaard,M., Priya,A., Machinda,A., Khan-
duja,U. S., Patoliya,D., Rathi,R., Nico,T. P. C., Umutesi,G., Blankenburg,C., Op,A.,
Chieke,P., Babatunde,O., Laurie,S., Neumann,S., Schwämmle,V., Kuzmin,I., Hunter,C.,
Karr,J., Ison,J., Gaignard,A., Brancotte,B., Ménager,H. and Kalaš,M. (2022) EDAM: the bio-
scientific data analysis ontology (update 2021). F1000Res., 11, 1.

114. Dumontier,M., Baker,C. J., Baran,J., Callahan,A., Chepelev,L., Cruz-Toledo,J., Del Rio,N. R.,
Duck,G., Furlong,L. I., Keath,N. et al. (2014) The Semanticscience Integrated Ontology (SIO)
for biomedical research and knowledge discovery. J. Biomed. Semant., 5, 1–11.

115. Wickham,H. (2011) ggplot2. Wiley Interdiscip. Rev. Comput. Stat., 3, 180–185.

116. Satyanarayan,A., Moritz,D., Wongsuphasawat,K. and Heer,J. (2016) Vega-lite: A grammar of
interactive graphics. IEEE Trans. Vis. Comput. Graph., 23, 341–350.

117. Kurtzer,G. M., Sochat,V. and Bauer,M. W. (2017) Singularity: Scientific containers for mo-

39

bility of compute. PloS One, 12, e0177459.

118. da Veiga Leprevost,F., Grüning,B. A., Alves Aflitos,S., Röst,H. L., Uszkoreit,J., Barsnes,H.,
Vaudel,M., Moreno,P., Gatto,L., Weber,J. et al. (2017) BioContainers: an open-source and
community-driven framework for software standardization. Bioinformatics, 33, 2580–2582.

119. Agmon,E. and Spangler,R. K. (2020) A multi-scale approach to modeling E. coli chemotaxis.
Entropy, 22, 1101.

120. Agmon,E., Spangler,R. K., Skalnik,C. J., Poole,W., Peirce,S. M., Morrison,J. H. and
Covert,M. W. (02, 2022) Vivarium: an interface and engine for integrative multiscale modeling
in computational biology. Bioinformatics, btac049.

121. Haak,L. L., Fenner,M., Paglione,L., Pentz,E. and Ratner,H. (2012) ORCID: a system to
uniquely identify researchers. Learn. Publ., 25, 259–264.

122. Welsh,C., Nickerson,D. P., Rampadarath,A., Neal,M. L., Sauro,H. M. and Gennari,J. H. (2021)
libOmexMeta: enabling semantic annotation of models to support FAIR principles. Bioinfor-
matics, 37, 4898–4900.

123. Bernal-Llinares,M., Ferrer-Gómez,J., Juty,N., Goble,C., Wimalaratne,S. M. and Hermjakob,H.
(2020) Identifiers.org: Compact Identifier services in the cloud. Bioinformatics, p. btaa864.

124. Naldi,A., Hernandez,C., Levy,N., Stoll,G., Monteiro,P. T., Chaouiya,C., Helikar,T., Zi-
novyev,A., Calzone,L., Cohen-Boulakia,S. et al. (2018) The CoLoMoTo interactive notebook:
accessible and reproducible computational analyses for qualitative biological networks. Front.
Physiol., 9, 680.

125. Singh,D. and Andrews,S. S. (2022) Python interfaces for the Smoldyn simulator. Bioinformat-
ics, 38, 291–293.

126. Zhukova,A., Adams,R., Laibe,C. and Le Novere,N. (2012) LibKiSAO: a Java library for Query-
ing KiSAO. BMC Res. Notes, 5, 1–7.

127. Shaikh,B., Marupilla,G., Wilson,M., Blinov,M. L., Moraru,I. I. and Karr,J. R. (2021) Run-
BioSimulations: an extensible web application that simulates a wide range of computational
modeling frameworks, algorithms, and formats. Nucleic Acids Res., 49, W597–W602.

128. Hunter,J. D. (2007) Matplotlib: A 2D graphics environment. IEEE Ann. Hist. Comput., 9,
90–95.

129. Hagberg,A., Swart,P. and S Chult,D., Exploring network structure, dynamics, and function
using NetworkX. Technical report, Los Alamos National Laborary (2008).

130. Oliphant,T. E. (2006) A guide to NumPy, Vol. 1, Trelgol Publishing USA, .

131. Tiwari,K., Kananathan,S., Roberts,M. G., Meyer,J. P., Sharif Shohan,M. U., Xavier,A.,
Maire,M., Zyoud,A., Men,J., Ng,S. et al. (2021) Reproducibility in systems biology modelling.
Mol. Syst. Biol, 17, e9982.

132. Malik-Sheriff,R. S., Glont,M., Nguyen,T. V., Tiwari,K., Roberts,M. G., Xavier,A., Vu,M. T.,
Men,J., Maire,M., Kananathan,S. et al. (2020) BioModels—15 years of sharing computational
models in life science. Nucleic Acids Res., 48, D407–D415.

133. Rew,R. and Davis,G. (1990) NetCDF: an interface for scientific data access. IEEE Comput.
Graph. Appl., 10, 76–82.

134. Stanford,N. J., Scharm,M., Dobson,P. D., Golebiewski,M., Hucka,M., Kothamachu,V. B., Nick-
erson,D., Owen,S., Pahle,J., Wittig,U. et al. (2019) Data management in computational sys-
tems biology: exploring standards, tools, databases, and packaging best practices. In Yeast

40

Systems Biology pp. 285–314 Springer.

135. Dada,J. O., Spasić,I., Paton,N. W. and Mendes,P. (2010) SBRML: a markup language for
associating systems biology data with models. Bioinformatics, 26, 932–938.

136. Evans,T. W., Gillespie,C. S. and Wilkinson,D. J. (2008) The SBML discrete stochastic models
test suite. Bioinformatics, 24, 285–286.

137. Bergmann,F. T. and Sauro,H. M. (2008) Comparing simulation results of SBML capable sim-
ulators. Bioinformatics, 24, 1963–1965.

138. Ison,J., Ienasescu,H., Chmura,P., Rydza,E., Ménager,H., Kalaš,M., Schwämmle,V., Grün-
ing,B., Beard,N., Lopez,R. et al. (2019) The bio.tools registry of software tools and data
resources for the life sciences. Genome Biol., 20, 1–4.

139. Schmiester,L., Schälte,Y., Bergmann,F. T., Camba,T., Dudkin,E., Egert,J., Fröhlich,F.,
Fuhrmann,L., Hauber,A. L., Kemmer,S. et al. (2021) PEtab—Interoperable specification of
parameter estimation problems in systems biology. PLoS Comput. Biol., 17, e1008646.

140. Grethe,J., Bandrowski,A., Chiu,M., Gillespie,T., Go,J., Li,Y., Ozyurt,I. and Martone,M.
(2016) SciCrunch: A Cooperative And Collaborative Data, Information, And Resource Dis-
covery Portal For Scientific Communities. In Proc. Neuroinform.

141. Grüning,B. et al. (2018) Bioconda: sustainable and comprehensive software distribution for
the life sciences. Nat. Methods, 15, 475–476.

142. O’Connor,B. D., Yuen,D., Chung,V., Duncan,A. G., Liu,X. K., Patricia,J., Paten,B., Stein,L.
and Ferretti,V. (2017) The Dockstore: enabling modular, community-focused sharing of
Docker-based genomics tools and workflows. F1000Res., 6.

143. Blankenberg,D., Von Kuster,G., Bouvier,E., Baker,D., Afgan,E., Stoler,N., Taylor,J. and
Nekrutenko,A. (2014) Dissemination of scientific software with Galaxy ToolShed. Genome
Biol., 15, 1–3.

144. Arkin,A. P., Cottingham,R. W., Henry,C. S., Harris,N. L., Stevens,R. L., Maslov,S., Dehal,P.,
Ware,D., Perez,F., Canon,S. et al. (2018) KBase: the United States department of energy
systems biology knowledgebase. Nat. Biotechnol., 36, 566–569.

145. Yamada,T. G., Ii,K., König,M., Feierabend,M., Dräger,A. and Funahashi,A. (2021) SBMLWe-
bApp: Web-Based Simulation, Steady-State Analysis, and Parameter Estimation of Systems
Biology Models. Processes, 9, 1830.

41

	Biosimulation tools registered with BioSimulators
	Foundational conventions that enable BioSimulators
	Simulation projects: COMBINE archive, SED-ML, and other community resources
	Reports of simulation results: Schema for encoding results and metadata into HDF5
	Visualizations of simulation results: PDF and other domain-independent formats
	Logs of the execution of simulations: New YAML schema
	Simulation tools: Containerized command-line programs
	Lower level simulation capabilities: Python APIs
	Capabilities of simulation tools and the results of their verification: New JSON schema

	Foundational tools for validating simulation projects and simulation tools
	Validation of simulation experiments described with SED-ML
	Validation of metadata about simulation projects described with RDF-XML
	Validation of entire simulation projects
	Validation of logs of the execution of simulation projects
	Validation of the specifications of the capabilities of simulation tools
	Validation of containerized interfaces to simulation tools

	Foundational tools for working BioSimulators' conventions
	KiSAO library: Python package for working with KiSAO
	BioSimulators-utils: Python package for building interfaces to simulators
	Automated services for recommending simulation algorithms and tools
	runBioSimulations: web application for running BioSimulators tools

	Workflow for creating and registering standardized simulation tools
	Map the inputs and outputs of the simulation tool to community conventions
	Encapsulate the tool into a command-line program
	Encapsulate the command-line interface to the tool into a Docker image
	Push the Docker image for the tool to a public Docker registry
	Annotate the capabilities of the simulation tool and other metadata
	Verify that the simulation tool adheres to BioSimulators conventions
	Submit the tool to the BioSimulators registry
	Automate the submission of subsequent versions of the tool to BioSimulators

	Architecture, implementation, testing, and deployment of BioSimulators
	Architecture
	Implementation, testing, and deployment

	Case study: Assessing the reusability of simulation experiments
	Comparison of BioSimulators with other resources
	Availability of BioSimulators
	Community feedback, input, and contributions to BioSimulators
	Author contributions
	Funding
	Acknowledgements
	Acronyms
	References

