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1 Introduction

mRNA transfection is the process of introducing mRNA into a living cell. mRNA delivery has become
increasingly interesting for biomedical applications because it enables treatment of diseases by means of
targeted expression of proteins and it is transient, avoiding the risk of permanently integrating into the
genome (see e. g. Sahin et al., 2014). One of the most prominent applications of mRNA transfection at
the moment are the mRNA-based vaccine candidates that are currently under investigation to prevent
COVID-19 infections (DeFrancesco, 2020). In such a context, it is, of course, very import to have a
precise understanding of the dynamics of the underlying processes in order to be able to control them.
Yet, many aspects and the determinants of the mRNA delivery process and the translation kinetics are
difficult to measure and therefore poorly understood.

We aim at facilitating insights into these aspects through the use of mechanistic modeling and
parameter inference for such models from experimental data. The data comes from an mRNA trans-
fection experiment using fluorescence reporters and fluorescence microscopy which is one of the few
ways to measure quantities within a living cell over time (i. e. keeping it alive is necessary). Due to
the discrete nature of the molecular species within a cell and due to the fact that random fluctuations
play a key role (Elowitz et al., 2002, Raj & van Oudenaarden, 2008), a continuous-time, discrete-space
Markov process, also called a Markov jump process (MJP), for which the dynamics are described by
the so-called chemical master equation (CME), is widely accepted to be an appropriate stochastic de-
scription of the biochemical processes within a cell (Gillespie, 1992, Schnoerr et al., 2017). However,
parameter inference for MJPs is computationally very demanding and often infeasible (see e. g. Warne
et al., 2019). Therefore, several other representations of the biochemical kinetics have been developed.
To some extent those can be considered as approximations to the corresponding MJP. The most com-
monly used representation is the reaction rate equation (RRE) which is a system of ordinary differential
equations (ODEs) and thus provides a deterministic and state-continuous description of the kinetics.
One approach that preserves the stochastic nature of the underlying process is the approximation by
Itô diffusion processes. These are continuous-time, continuous-space stochastic processes described by
Itô-type stochastic differential equations (SDEs).

Single-cell fluorescence data from transfection experiments has been analyzed based on ODE mod-
eling in several previous studies e. g. Ligon et al. (2014), Leonhardt et al. (2014), Fröhlich et al. (2018),
and Reiser et al. (2019). Yet, several parameters of the considered ODE models for the translation
kinetics after mRNA transfection are not identifiable from the experimental data. Moreover, the quality
of the parameters estimates, i. e. whether the true kinetic rates are adequately captured, is unclear.
Using models that explicitly account for stochasticity can help improve our ability to determine ki-
netic parameters from experimental data (Munsky et al., 2009). Browning et al. (2020) have recently
compared parameter identifiability for ODE and SDE modeling approaches for four example models
from different contexts based on simulated data and showed that SDE modeling does improve the
identifiability for the studied models.

Here, we use the experimental data from Fröhlich et al. (2018) and study the question whether an
SDE model allows to identify more parameters of the model of translation kinetics after mRNA trans-
fection from experimental data compared to the corresponding ODE model. Inference from fluorescence
data for SDE models has also been conducted e. g. in Heron et al. (2007), Finkenstädt et al. (2008),
and Komorowski et al. (2009), however for an experimental setup that also included the transcription
process. Finkenstädt et al. (2008) even considered an SDE and an ODE model in one of their case
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studies, but their results did not directly show any differences in the parameter identifiability and the
study was not focused on this aspect.

This article is structured as follows ...

2 Experimental data

We consider data that has previously been analyzed (based on ODE modeling) and published in Fröhlich
et al. (2018). The data was generated in an experiment where cells (human hepatoma epithelial cell
line HuH7) were transfected with mRNA encoding a green fluorescence protein (GFP). The cells were
fixed on micro patterned protein arrays and time lapse microscopy images of the cells were taken every
10 minutes over the course of at least 30 hours (i.e. there are at least 180 measurements per cell).
For the first hour, mRNA lipoplexes were added. Afterwards, the cells were washed with cell culture
medium such that no further lipoplex uptake occurs. The time point at which the lipoplexes were taken
up, dissolved and released the mRNA as well as the number of mRNA molecules released are unknown.

The released mRNA was translated into a fluorescence protein which caused the cells to fluoresce.
For each image taken during the experiment, the fluorescence intensity is integrated over squares
occupied by one cell in order to obtain one value for the mean fluorescence intensity per cell and time
point (see Fröhlich et al., 2018, for further details about the image analysis).

The experiment was conducted with two different types of GFP that differ in their protein lifetime:
enhanced GFP (eGFP) and a destabilized enhanced GFP (d2eGFP). The data set contains measure-
ments for more than 800 cells for each type of GFP.

Some trajectories of the mean fluorescence intensity are displayed in Figure 1.
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Figure 1: Trajectories of the mean fluorescence intensity for seven cells from the mRNA transfection
experiment in Fröhlich et al. (2018) for eGFP and d2eGFP (April 27, 2016), respectively.

As will become clear in the course of this article, ODE models of the translation kinetics of an indi-
vidual cell are not globally identifiable with the available experimental data as described above. Several
of the ODE model parameters cannot be uniquely determined based on one observed fluorescence tra-
jectory. Fröhlich et al. (2018) use a mixed-effect ODE model in order to incorporate the translation
kinetics of several cells and data for both different types of GFP (eGFP and d2eGFP). Through this
approach, they are able to improve parameter identifiability (by breaking the symmetry between the
degradation rate constants); however, their approach is computationally very intense, required conduct-
ing the experiment with two types of GFP, and still leaves several parameters non-identifiable. Here, we
are interested in the question whether the use of an SDE model can improve the parameter identifiability
even when only one fluorescence trajectory is observed.

3 Mathematical models of the translation kinetics

While Fröhlich et al. (2018) use a mixed-effect ODE model in order to incorporate the translation
kinetics of several cells, we will focus on modeling the translation kinetics of one cell in order to study
parameter identifiability based on one observed fluorescence trajectory.
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We consider the basic model configuration that models only the (released) mRNA and the GFP
molecules explicitly. Therefore, our model is a dynamic process with two components:

X(t) =

(
X1(t)
X2(t)

)
amount of mRNA molecules,

amount of GFP molecules.

We assume that all mRNA molecules (within one cell) are released at once at the initial time point
denoted by t0. Before t0, there are neither mRNA nor GFP molecules, and at t0, an amount of m0

mRNA molecules is released, i.e.

X(t) ≡
(

0
0

)
for t ≤ t0 and X(t0) =

(
m0

0

)
.

Conceivable extensions of this basic model configuration are e. g. to include enzymatic degradation
of the mRNA and/or the protein, ribosomal binding to the mRNA for translation, and a maturation
step of the protein. However, we will only consider the basic configuration as described above.

3.1 Markov Jump Process

Assuming that the matter within the cell is well-stirred and in thermodynamic equilibrium, a MJP is
regarded to be the most adequate representation of this system after t0. In our model configuration,
there are three possible reactions:

X1
θ1−→ ∅ degradation of mRNA,

X1
θ2−→ X1 +X2 translation,

X2
θ3−→ ∅ degradation of GFP.

The three reactions change the state of the system in the following way and occur with the following
reaction rates: (

X1

X2

)
−→

(
X1 − 1
X2

)
with rate θ1X1,(

X1

X2

)
−→

(
X1

X2 + 1

)
with rate θ2X1,(

X1

X2

)
−→

(
X1

X2 − 1

)
with rate θ3X2.

If we denote the probability distribution of the random variable X(t) by

Pi,j(t) = P(X1(t) = i,X2(t) = j),

the corresponding CME reads

∂Pi,j(t)

∂t
= θ1(i+ 1)Pi+1,j(t) + θ2iPi,j−1(t) + θ3(j + 1)Pi,j+1(t)− (θ1i+ θ2i+ θ3j)Pi,j(t).

Although, the system contains only first-order reactions, there is no closed-form solution to the
CME. Thus, there is no explicit formula for the transition probability distribution p(X(t)|X(s), θ) for
s < t.

3.2 ODE model

The following system of ODEs is a deterministic approximation of the MJP modeling the dynamics as
described above:

dX(t)

dt
=

(
−θ1X1(t)

θ2X1(t)− θ3X2(t)

)
for t ≥ t0. (1)
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This system admits the solution

X1(t) = m0 exp (−θ1(t− t0)) ,

X2(t) =

{
θ2m0

θ3−θ1

(
e−θ1(t−t0) − e−θ3(t−t0)

)
, for θ1 6= θ3,

θ2m0(t− t0)e−θ3(t−t0) , for θ1 = θ3.
(2)

Note that the solution for X2(t) is symmetric in the parameters θ1 and θ3.

3.3 SDE model

A stochastic but state-continuous approximation to the MJP in Section 3.1 is given by an Itô diffusion
process that is described by the following SDE:

dX(t) =

(
−θ1X1(t)

θ2X1(t)− θ3X2(t)

)
dt+

(√
θ1X1(t) 0

0
√
θ2X1(t) + θ3X2(t)

)
dB(t) (3)

for t ≥ t0 and where B(t) is a 2-dimensional standard Brownian motion.
Note that for a diffusion approximation (as well as for the ODE approximation), the size of the

system can play an important role. However, since the model that we consider here contains only
first-order reactions, the size of the system does not affect the interpretation of the kinetic parameters
and can simply be assumed to be equal to 1.

4 Model of the observations

In the experiment described in Section 2, neither the amount of mRNA molecules nor that of GFP
molecules can be measured over time directly. Instead, a fluorescence signal is observed which is assumed
to be a linear transformation of the amount of GFP molecules. Moreover, Fröhlich et al. (2018) state
that “Analysis of processed data suggested a constant offset and multiplicative measurement noise in
the recorded fluorescence trajectories.” Therefore, denoting a trajectory of mean fluorescence intensity
observed at time points tk, for k = 1, . . . ,K, by {yk}k=1,...,K , we assume that

log(yk) = log (scale ·X2(tk) + offset) + εk, εk ∼ N (0, σ2),

where the random variables εk are independent.
Note that the observations depend only on the amount X2 of GFP molecules, but not directly on

the amount X1 of mRNA molecules.
Based on the observations {yk}k=1,...,K , we aim to infer the following unknown parameters:

• the three kinetic parameters θ = (θ1, θ2, θ3) that denote the rate constants for mRNA degrada-
tion, translation, and GFP degradation,

• the initial amount m0 of mRNA molecules and the time point t0 at which it is released,

• the scaling factor scale and the offset for the fluorescence signal,

• and the standard deviation σ of the measurement errors.

5 Structural identifiability analysis

Our main interest lies in the question which of the model parameters for our two model types (ODE
and SDE) can be inferred from the experimental data as described in Sections 2 and 4. Here, we
first focus on the parameters θ, m0, scale, and offset that drive the dynamics of the process and the
fluorescence signal. We analyze the structural identifiability which only considers the model equations
of the process dynamics and the observation equation (not the actual data) and assumes that we are in
a perfect data situation, i. e. we have an infinite amount of data observed without measurement error
(Raue et al., 2009). Plainly speaking, structural identifiability analysis answers the question whether
different parameter combinations can lead to the same model output. While for ODE models, there are
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analytical methods to assess structural identifiability, no such methods exit for SDE models. Therefore,
we use several different approaches to heuristically assess structural identifiability for our SDE model.
In the following subsections, we consider a transformed version of both model types, we make use of
the open source software DAISY as has recently been suggested by Browning et al. (2020), and finally
we also study simulations of both model types.

5.1 Transformed models

We can reformulate the differential equations for both model types by setting

Z(t) =

(
Z1(t)
Z2(t)

)
:=

(
X1(t)
m0

scale ·X2(t) + offset

)
,

which means that

Z(t) ≡
(

0
offset

)
for t ≤ t0, and Z(t0) =

(
1

offset

)
.

Hence, the second component of the transformed process models the fluorescence signal which we
assume to be observed.

Transformed ODE model

For the ODE model in Equation (1), we obtain the transformed model

dZ(t)

dt
=

(
−θ1Z1(t)

scale θ2m0Z1(t)− θ3(Z2(t)− offset)

)
for t ≥ t0, (4)

and the corresponding solution

Z1(t) = exp (−θ1(t− t0)) ,

Z2(t) =

{
scale θ2m0

θ3−θ1

(
e−θ1(t−t0) − e−θ3(t−t0)

)
+ offset , for θ1 6= θ3,

scale θ2m0(t− t0)e−θ3(t−t0) + offset , for θ1 = θ3.

The parameters scale, m0, and θ2 appear only as a product. Thus, we can already deduce from
this equation that at most the product of the three parameters will be identifiable but not the three
parameters individually. Moreover, since only Z2(t) is observed and it is symmetric in the parameters
θ1 and θ3 (i. e. switching their values will lead to the same model output), these two parameters can
at most be locally identifiable.

Transformed SDE model

For the SDE model in Equation (3), we apply the Itô formula (as stated in Section A.1 of the supple-
mentary material) to obtain the transformed model

dZ(t) =

(
−θ1Z1(t)

scale θ2m0Z1(t)− θ3(Z2(t)− offset)

)
dt (5)

+

(√
θ1
m0
Z1(t) 0

0
√

scale
√

scale θ2m0Z1(t) + θ3(Z2(t)− offset)

)
dBt for t ≥ t0.

Note that here, the parameters scale and m0 also appear outside the product scale θ2m0. Therefore,
we hope to gain more information about the individual parameters from data for the SDE model than
for the ODE model.

5.2 Using a surrogate model and existing software tools

The open source software DAISY (Differential Algebra for Identifiability of SYstems) was introduced
by Bellu et al. (2007). It is a software tool that implements a differential algebra algorithm to perform
structural identifiability analysis for systems of polynomial or rational ODEs and that also allows to
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include unknown initial conditions. Mathematically, the problem translates into checking the solvability
of a very large system of nonlinear algebraic equations. However, the use of the DAISY software does
not require an in-depth understanding of the underlying theory.

Here, we want to use DAISY to assess the structural identifiability of the parameters in the two
models of the translation kinetics. In order to include the parameters scale and offset, we use the
transformed models from the previous subsection for the identifiability analysis. For the ODE model
in Equation (4), the analysis with DAISY is straight forward since it is intended for the use for ODE
models. After applying DAISY, the obtained output shows that when considering the set of parameters
{θ,m0, scale, offset}, the model is non-identifiable. The DAISY output also reveals that this non-
identifiability is due to fact that the parameters θ1 and θ3 are only locally identifiable and the parameters
θ2, m0, and scale are not individually identifiable, but only their product is. This confirms our assertions
from the previous subsection. Moreover, we obtain that the remaining parameter offset is structurally
identifiable.

For SDE models, Browning et al. (2020) suggest to formulate a surrogate model based on the
moment equations of the diffusion process. The moment equations are a system of ODEs, and thus,
DAISY can be applied to this system. For the SDE (5), let mij(t) = E

[
(Z1(t))i(Z2(t))j

]
be the

(mixed) moment of the diffusion process of order i and j. The moments are obtained by applying
the Itô formula (as stated in Section A.1 of the supplementary material) to (Z1(t))i(Z2(t))j and then
taking the expectation. Considering the first and the second moments of the process states results in
the following system of ODEs:

dm10(t)

dt
= −θ1m10(t), m10(t0) = 1,

dm01(t)

dt
= scale θ2m0m10(t)− θ3m01(t) + θ3offset, m01(t0) = offset,

dm20(t)

dt
=

θ1

m0
m10(t)− 2θ1m20(t), m20(t0) = 1,

dm02(t)

dt
= scale2θ2m0m10(t) + θ3(scale + 2offset)m01(t)− 2θ3m02(t)

+ 2scale θ2m0m11(t)− scale θ3offset, m02(t0) = offset2,

dm11(t)

dt
= θ3offsetm10(t) + scale θ2m0m20(t)− (θ1 + θ3)m11(t), m11(t0) = offset,

where the equations for the two first moments m10 and m01 coincide with the ODE model in
Equation (4). Since in the experiment, only the fluorescence signal is observed, we consider the moments
that only depend on the second component of the process, i. e. m01 and m02, as output states for the
identifiability analysis. Using DAISY, we obtain that the surrogate model is globally identifiable, i. e.
all six parameter values could be uniquely determined if we were able to observe the moments m01

and m02 directly, infinitely long over time, and without measurement error. However, this property
of structural identifiability (in particular when using a surrogate model) is only a necessary, but not a
sufficient condition for practical identifiability. From this result, we cannot conclude that the parameters
will be identifiable from the actual experimental data.

5.3 Simulating from the models

Another attempt to assess parameter identifiability is to simulate from both model types for different
parameter settings and compare whether we see differences in the simulation output. To obtain simu-
lations from the ODE model, we use its solution in Equation 2. Since the ODE model is deterministic,
each parameter setting yields one unique output trajectory while for the SDE model, we simulate sev-
eral trajectories for each parameter setting using the Euler-Maruyama scheme with a time step of 0.01
hours.

Keeping the product scale θ2m0 constant

As already pointed out in Subsection 5.1, the trajectories of the fluorescence intensity for the ODE
model are identical if the product scale θ2m0 and the remaining parameters are fixed, even when the
individual factors scale, θ2, and m0 vary. Here, we use (approximately) the mean values for the
parameters estimated from the data in Fröhlich et al. (2018), and therefore, set scale θ2m0 = 350,
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θ1 = 0.11, θ3 = 0.03, offset = 8.9, and t0 = 0. For the SDE model, we simulate several trajectories
with different values for scale, θ2, and m0 while keeping their product constant. For each parameter
setting, we set the same random seed at the beginning of the simulation. Figure 2 displays the simulated
trajectories.
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Figure 2: The ODE trajectory and 20 SDE trajectories of the fluorescence intensity simulated for
different values of m0, θ2, and scale, while keeping their product constant at scale θ2m0 = 350. The
remaining parameters are set to θ1 = 0.11, θ3 = 0.03, offset = 8.9, and t0 = 0.

It is evident that the SDE trajectories behave differently for different combinations of scale, θ2,
and m0. For example, when we keep m0 fixed while increasing scale and decreasing θ2, the variation
between but also within the trajectories increases. When we keep scale fixed while decreasing m0

and increasing θ2, especially the variation between trajectories seems to increase. And finally, when
we keep θ2 fixed while decreasing m0 and increasing scale, the variation between and within the
trajectories increases. Our focus is on estimating the parameters from individual observed trajectories.
In this context, especially the difference in the variation within the trajectories is relevant.

Swapping the degradation rate constants θ1 and θ3

The trajectories of the fluorescence intensity for the ODE model also are identical if the values for
θ1 and θ3 are swapped while the remaining parameters are fixed. We simulate trajectories for the
parameter combinations (θ1, θ3) = (0.11, 0.03) and (θ∗1 , θ

∗
3) = (0.03, 0.11), respectively, while setting

the remaining parameters to scale = 17.5, θ2 = 0.1, m0 = 200, offset = 8.9, and t0 = 0. For the SDE
model, we again simulate several trajectories for both parameter settings and set the same random seed
at the beginning of the simulation.

Figure 3 shows the ODE trajectory and several SDE trajectories in one panel for each of the two
parameter combinations separately. Whereas, Figure 4 presents one SDE trajectory for each of the two
parameter combinations together in one panel. Again, the SDE trajectories do behave differently for
the different parameter combinations. While there seems to be only little difference in the variation
between the trajectories, the variation within the trajectories is clearly higher for lower θ1 and higher
θ3. This indicates that it may be possible to uniquely determine the values of θ1 and θ3 even when
estimating from only one observed trajectory.
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Figure 3: The ODE trajectory and 20 SDE trajectories of the fluorescence intensity simulated for two
parameter combinations where the values of θ1 and θ3 are swapped. The remaining parameters are set
to scale = 17.5, θ2 = 0.1, m0 = 200, offset = 8.9, and t0 = 0.
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Figure 4: One trajectory of the fluorescence intensity for the SDE model simulated for each of the two
parameter combinations where the values of θ1 and θ3 are swapped. The remaining parameters are set
to scale = 17.5, θ2 = 0.1, m0 = 200, offset = 8.9, and t0 = 0.

6 Posterior properties and credibility intervals

After having studied the structural properties of the ODE and SDE model in the previous section;
next, we would like to assess the practical parameter identifiability by trying to estimate the parameters
from data as described in Section 4. We take a Bayesian approach to parameter estimation because it
allows for uncertainty assessment of the parameter estimates and also for handling unobserved process
components and measurement error by using Markov chain Monte Carlo (MCMC) methods to sample
from the parameter posterior distribution. Therefore, in this section, we define the parameter posterior
densities for the two model types and study their properties based on MCMC sampling results for
simulated data generated without and with (simulated) measurement error.
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6.1 Formulation of the inference problem

In Bayesian statistics, we can formulate our assumptions and general knowledge about the model
parameters ξ ∈ Ξ ⊆ Rp in terms of a prior distribution with probability density p(ξ). After having
observed data D about the phenomenon which we are trying to model, we update our knowledge about
the parameter and describe it by the posterior distribution with density π (ξ | D). In our case, we consider
data D = {yk}k=1,...,K and the vector of all unknown parameters is ξ = (θ,m0, scale, offset, t0, σ).
The relation between the prior and the posterior density resulting from Bayes’ theorem is given by:

π (ξ | D) ∝ p (D | ξ) p (ξ) ,

where p (D | ξ) denotes the density of the distribution of D conditioned on ξ and is determined
by the considered model. Viewed as a function of the parameter, L (ξ | D) := p (D | ξ) is called the
likelihood (function). Comprehensive introductions to Bayesian statistics can be found e. g. in Lee
(2012) and Gelman et al. (2013).

To sample from the subsequently formulated posterior densities for the two model types, we use the
open source software Stan (Carpenter et al., 2017) which provides an efficient C++ implementation
of the Hamiltonian Monte Carlo (HMC) based No-U-Turn Sampler (NUTS). See Section A.3 of the
supplementary material for a brief introduction to this topic. We use Stan though its R interface rstan

(Stan Development Team, 2019).

Posterior of the ODE model

For the ODE model, there is a deterministic relationship between the process values X(t) and the
parameters θ, m0 and t0 (or between the fluorescence signal and the parameters additionally including
scale and offset, respectively).

Define the index k∗ := min{k ∈ {1, . . . ,K}|tk ≥ t0} of the first observation time point after the
mRNA molecules are released, then the posterior density π from which we would like to sample is
proportional to

π
(
θ,m0, scale, offset, σ2, t0|{yk}k=1,...,K

)
∝

(
K∏

k=k∗

φ

(
log(yk)

∣∣∣∣log

(
scale

θ2m0

θ3 − θ1

(
e−θ1(t−t0) − e−θ3(t−t0)

)
+ offset

)
, σ2

))

·

(
k∗−1∏
k=1

φ
(
log(yk)

∣∣log (offset) , σ2
))

· p(θ1)p(θ2)p(θ3)p(m0)p(t0)p(scale)p(offset)p(σ2), (6)

where φ(·|µ, η2) denotes the density of the normal distribution with mean µ and variance η2 and the
p(·) denote the parameter prior densities which we assume to be independent.

If the priors p(θ1) and p(θ3) are symmetric to each other, then the posterior is also symmetric with
respect to the two degradation rate constants.

The scaling factor scale, the translation rate constant θ2, and the initial amount of mRNA m0

appear only as a product in the likelihood function; therefore, as pointed out before, at most their
product scaleθ2m0 is identifiable.

Posterior of the SDE model

For the SDE model, the states X(tk), for k = 1, . . . ,K, of the process conditioned on the parameters
θ, m0 and t0 are random numbers (for tk ≥ t0). Hence, we have to marginalize over the process states
to obtain the posterior density of the parameters which we want to infer:

π
(
θ,m0, scale, offset, σ2, t0|{yk}k=1,...,K

)
=

∫
R2×K

+

π
(
θ,m0, scale, offset, σ2, t0, {X(tk)}k=1,...,K |{yk}k=1,...,K

)
dX(t1) . . . dX(tK).

9



Therefore, again defining k∗ := min{k ∈ {1, . . . ,K}|tk ≥ t0}, we would need to sample from

π
(
θ,m0, scale, offset, σ2, t0, {X(tk)}k=1,...,K |{yk}k=1,...,K

)
∝

(
K∏
k=1

φ
(
log(yk)| log (scale ·X2(tk) + offset) , σ2

))

·

(
K−1∏
k=k∗

π (X(tk+1)|X(tk), θ)

)
π (X(tk∗)|θ,m0, t0)

(
k∗−1∏
k=1

δ(‖X(tk)− (0, 0)T ‖)

)

· p(θ)p(m0)p(t0)p(scale)p(offset)p(σ2),

where φ(·|µ, η2) denotes the density of the normal distribution with mean µ and variance η2, δ(·) denotes
the Dirac delta function, ‖·‖ denotes a norm (e. g. the l2-norm), and the factors π (X(tk+1)|X(tk), θ),
k = k∗, . . . ,K − 1, denote the transition probability density of the process. However, the fact that
the process X switches from a deterministic regime before t0 to a stochastic one after t0 complicates
the estimation of t0 together with the remaining parameters. Therefore, we will assume that t0 is
determined beforehand, e. g. based on the estimates for the ODE model. Consequently, we sample
from

π
(
θ,m0, scale, offset, σ2, {X(tk)}k=1,...,K |{yk}k=1,...,K , t0

)
∝

(
K∏
k=1

φ
(
log(yk)| log (scale ·X2(tk) + offset) , σ2

))

·

(
K−1∏
k=k∗

π (X(tk+1)|X(tk), θ)

)
π (X(tk∗)|θ,m0, t0)

(
k∗−1∏
k=1

δ(‖X(tk)− (0, 0)T ‖)

)

· p(θ)p(m0)p(scale)p(offset)p(σ2). (7)

While for the ODE model, the posterior distribution is only 8-dimensional and can be sampled
from directly; for the SDE model, we need to sample from a (7 + 2K)-dimensional distribution and
then marginalize over the 2K dimensions of the process states to obtain the posterior distribution of
the parameters of interest. Moreover, there is no explicit exact expression for the transition probability
density π (X(tk+1)|X(tk), θ); wherefore, it will be approximated by a normal density based on the Euler-
Maruyama scheme as explained in Section A.1 of the supplementary material. For this approximation
to be appropriate, we have to ensure that the time steps between observations are small enough, we
do so in Section A.2 of the supplementary material.

6.2 Estimation based on simulated data

In order to assess how well we can recover the model parameters for both model types from individually
observed trajectories, we first work with simulated data that is generated with Gillespie’s algorithm
(Gillespie, 1976, 1977).

6.2.1 Sampling results for simulated data without measurement error

For now, we assume the fluorescence intensity to be observed without measurement error. The data
was simulated with Gillespie’s algorithm with parameters θ = (0.2, 0.32, 0.01), m0 = 240, t0 = 0.96,
scale = 1.8, and offset = 8.5 over a time interval of 30 hours, and we use the fluorescence intensity
at 181 equidistant time points as observations to mirror the structure of the experimental data. The
simulated fluorescence intensity (without measurement error) is depicted by the blue dotted line on
the right hand side of Figure 5. We use Stan to sample from the posterior distributions of the ODE
model and the SDE model given the simulated data. Since we assume the data to be observed
without measurement error, the parameter offset can be determined directly from the first observation.
Therefore, we do not include measurement error (and thus the parameter σ) and the parameter offset
in the posterior distribution of the SDE model. Whereas for the ODE model, deviations of the observed
data from the deterministic ODE trajectory have to be attributed to measurement error; therefore,
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the parameter σ has to be included in the posterior distribution of the ODE model. We also include
the parameter offset for the ODE model in order to avoid degeneracy of the posterior. We use the
following prior distributions: θi ∼ N≥0(0, 52) for i = 1, 2, 3, m0 ∼ N≥0(300, 3002), scale ∼ U(0, 30),
where N≥a(µ, η2) denotes the normal distribution truncated from below by a, and additionally for the
ODE model, offset∼ U(0, 30), σ ∼ U(0.001, 10), and t0 ∼ U(0, 30).
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Figure 5: One trajectory used in the simulation study that was simulated with Gillespie’s algorithm with
parameters θ = (0.2, 0.32, 0.01), m0 = 240, t0 = 0.96, scale = 1.8, and offset = 8.5, and for the green
dotted line, multiplicative measurement error with σ = 0.02 was added to the fluorescence intensity
(FI).

For both model types, we generate 8 HMC chains of 5000 iterations and discard the first half of
the iterations as warm-up. Thus, we use a posterior sample of size 20,000 for each model type in the
subsequent analysis. Tables 1 and 2 summarize the Stan output of the posterior samples for the ODE
and the SDE model, respectively, and also include the true parameter values that were used to simulate
the data for comparison. The tables also contain the 2.5%-, 50%-, and 97.5%-quantiles of the samples.
We use the interval between the 2.5%- and the 97.5%-quantile as an estimate of the 95%-credible
interval (CI). For the ODE model, we see that the parameters offset and t0 are well estimated since
mean and median of the sample correspond to the true value, the CIs are very narrow, the effective
sample size (ESS) neff is high and R̂ is equal to 1. As expected, the measurement error parameter σ is
estimated to be higher than the true value of zero. Of greater interest are the remaining parameters as
we can compare the results for them between the two model types.

We first focus on the two degradation rate constants θ1 and θ3. Our analysis in Section 5 already
showed that for the ODE model, these two parameters are only locally identifiable and the posterior
distribution is symmetric with respect to them in the case of identical priors for both parameters. This
is also apparent in the density plots in Figure 6. The density estimates of the posterior sample for the
ODE model are clearly bimodal. The reason that the two modes are not exactly symmetric here is that
HMC chains usually are only able to explore one mode and in our example 5 out of the 8 chains happen
to end up in the mode where θ1 is higher than θ3 while only 3 chains converge to the other mode. The
fact that each chain only samples from one of the modes is also the reason for the extremely low ESSs
and the very high values of R̂ for θ1 and θ3 in Table 1. Moreover, note that neither of the modes and
not even the ranges of all values in the posterior sample cover the true parameter values of θ1 and θ3.
For the SDE model on the other hand, Figure 6 and Table 2 show that the posterior density is clearly
unimodal with respect to θ1 and θ3, the 95% CI are narrow and cover the true parameter values, mean
and median of the sample are close or equal to the true values, and high ESSs and R̂ values equal to 1
are achieved. Thus, we can conclude that the parameters θ1 and θ3 are identifiable for the SDE model
here.

We have simulated another 99 trajectories with the same parameters and performed Stan sampling
in the same way as described in the beginning of this subsection. For each model type and each posterior
sample of the different simulated trajectories, we calculate the length of the 95% CI and determine the
median and the coefficient of variation (c.v.) over these lengths for each model type. Also, we rescale
the lengths of the 95% CI by dividing by the true parameter value and again determine the median
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Table 1: Summary of the Stan output for the ODE model given simulated data without measurement
error and the true parameter values that were used to simulate the data. c.v. denotes the coefficient
of variation and the columns headed by percentages contain the quantiles of the respective percentage
value.

true value mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.11 0.634 0.02 0.16 0.17 4 26.65
θ2 0.32 1.52 1.370 0.02 0.64 7.56 12168 1.00
θ3 0.01 0.07 0.943 0.02 0.02 0.16 4 33.00
m0 240.00 204.62 1.017 2.26 135.79 724.38 10984 1.00
scale 1.80 7.02 1.137 0.07 3.46 27.28 9806 1.00
offset 6.50 6.50 0.011 6.37 6.50 6.64 17113 1.00
t0 0.96 0.96 0.002 0.96 0.96 0.97 18718 1.00
σ 0.00 0.03 0.054 0.02 0.03 0.03 16091 1.00
θ2m0 76.80 213.08 2.487 4.57 35.99 1668.06 11087 1.00
θ2scale 0.58 6.46 2.875 0.17 0.92 55.00 7704 1.00
m0scale 432.00 1033.30 2.181 16.48 195.96 7975.22 7899 1.00
θ2m0scale 138.24 124.67 0.007 122.96 124.66 126.38 13299 1.00

Table 2: Summary of the Stan output for the SDE model given simulated data without measurement
error and the true parameter values that were used to simulate the data.

true value mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.19 0.108 0.15 0.19 0.23 3120 1.00
θ2 0.32 0.39 0.999 0.09 0.26 1.48 206 1.04
θ3 0.01 0.01 0.167 0.01 0.01 0.02 2514 1.00
m0 240.00 344.37 0.589 57.21 313.25 800.67 184 1.05
scale 1.80 1.66 0.172 1.19 1.62 2.30 3062 1.00
θ2m0 76.80 82.60 0.178 55.68 81.69 113.53 5296 1.00
θ2scale 0.58 0.61 0.923 0.17 0.43 2.21 178 1.05
m0scale 432.00 576.69 0.634 86.08 511.66 1440.41 232 1.04
θ2m0scale 138.24 133.18 0.083 112.47 132.74 156.40 5829 1.00

of the normalized quantities. The rescaling is done to transfer the values to a more similar scale.
Note, however, that the values are nevertheless not directly comparable between different parameters.
Moreover, we check whether the true parameter value that was used to simulate the data is included
in the 95% CI. Table 3 shows the aggregated results for the posterior samples of all 100 trajectories
and also includes the length of the interval between the 2.5%- and the 97.5%-quantile of the prior
distributions. Except for the parameters m0 and θ2m0scale, the median length of the 95% CIs for
the SDE model is always smaller than for the ODE model. For parameter θ2m0scale, the CI lengths
are a lot smaller for the ODE model; however, the CIs cover the true parameter value only 13 out of
100 times while for the SDE model, the true value is covered 93 times. For the other parameters that
we classified as identifiable for the SDE model in the analysis of the individual trajectory (i. e. θ1, θ3,
scale, and θ2m0), the median length of the 95% CIs is clearly smaller for the SDE model than for the
ODE model and the true parameter value is covered at least 91 out 100 times for the SDE model. For
parameter m0, the CI lengths are high for both model types because the parameter is not identifiable
for either model type. For the other parameters that we classified as not identifiable for both model
types in the analysis of the individual trajectory (i. e. θ2, θ2scale, and m0scale), the median length of
95% CIs is clearly smaller for the SDE model than for the ODE model, at least by a factor of 4.

The last two columns of Table 3 are visualized in Figure 8 where we plot the median of the rescaled
CI lengths against the number of CIs that cover the true parameter value. The desirable region of value
combinations is in the bottom right corner of the graph where the number of CIs covering the true value
is high and the median rescaled CI length is small. Note that, clearly, more importance should be given
to high numbers of CIs covering the true value as it is useless to be very certain about a parameter
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Figure 6: Density estimates of the posterior samples for parameters θ1 and θ3 for the SDE (blue, lower
triangle) and ODE (green, upper triangle) model given simulated data without measurement error.
Diagonal panels: Marginal densities for the respective parameter and boxplots showing the 95% CI as
box, the range of the sample as whiskers, and the median as thick black line. Off-diagonal panels:
Smoothed scatter plots of the two-dimensional projections of the samples where darker hues signify
higher density values. The dotted lines represent the true parameter values that were used to simulate
the data.

estimate (indicated by a short CI) while the correct value is not included in the CI. However, even
for parameters that are identifiable, we do not expect to obtain a coverage of the true value of 100%
since we are considering 95% CIs. Therefore, values of 100 rather tend to hint at non-identifiability.
In Figure 8, we can see that for the majority of the parameters, the triangles representing the value
combinations for the SDE model are closer to the desirable region. Only for parameter m0 (which is
not identifiable for either model type), the value combinations are almost the same for both model
types. And as we already pointed out for the product θ2m0scale, the median length of the for the ODE
model; however, a lot fewer CIs cover the true parameter value for the ODE model than for the SDE
model. Thus, the result obtained for the SDE model is to be preferred.

We provide further Stan-specific diagnostics in Appendix A.5. Those mostly show poorer values
for the sampling output for the SDE model than for the ODE model. This is not surprising as we
sample from a much higher-dimensional distribution for the SDE model. We do not consider the poor
diagnostics as a disadvantage of the procedure as they provide information that we do not even have
for other MCMC algorithms and thus cannot compare to them.
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Figure 7: Density estimates of the posterior samples for parameters θ2, m0, scale, and their products
for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given simulated data without
measurement error. For a detailed description of the figure’s elements, see Figure 6.
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Table 3: Statistics of posterior samples for the two model types aggregated over 100 simulated trajec-
tories without measurement error. We also include the length of the interval between the 2.5%- and
the 97.5%-quantile of the prior distribution.

length of median c.v. of median of number

prior 95% length of lengths of length of CIs of CIs

center 95% CIs 95% CIs rescaled by covering

interval true value true value

θ1
ODE 11.05 0.20 0.009 1.01 58

SDE 11.05 0.09 0.002 0.45 93

θ2
ODE 11.05 7.56 0.002 23.63 100

SDE 11.05 1.88 0.712 5.87 100

θ3
ODE 11.05 0.20 0.010 20.00 61

SDE 11.05 0.01 0.000 0.80 91

m0
ODE 884.82 730.41 0.057 3.04 100

SDE 884.82 735.98 9.868 3.07 100

scale
ODE 28.50 27.27 0.001 15.15 100

SDE 28.50 1.20 0.158 0.67 95

θ2m0
ODE 6056.48 1701.92 2.524 22.16 100

SDE 6056.48 63.60 2.768 0.83 96

θ2scale
ODE 228.08 55.47 0.164 96.29 100

SDE 228.08 2.89 0.762 5.01 100

m0scale
ODE 19271.13 7923.38 8.603 18.34 100

SDE 19271.13 1315.63 86.806 3.05 99

θ2m0scale
ODE 113232.70 3.90 41.595 0.03 13

SDE 113232.70 45.28 0.624 0.33 93
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Figure 8: Statistics of posterior samples for the two model types aggregated over 100 simulated tra-
jectories without measurement error. The desirable region of value combinations is in the bottom right
corner of the graph.
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6.2.2 Sampling results for simulated data with measurement error

In this section, we use the same simulated data as in the previous section, but for each of the 100
trajectories, we add multiplicative measurement error with parameter σ = 0.02. Again, we use Stan to
sample from the posterior distributions of the ODE model (6) and the SDE model (7) for each of the
simulated trajectories and use the same priors as stated in the previous section. We generate 8 HMC
chains of 5000 iterations, discard the first half of the iterations as warm-up, and thus use a posterior
samples of size 20,000 in the subsequent analysis.

At first, we again focus on the results for one of the trajectories, namely the trajectory represented
by the green dotted line in Figure 5. Tables 4 and 5 summarize the Stan output of the posterior samples
for the ODE and the SDE model, respectively. The parameter t0 is estimated very accurately based on
the posterior sample for the ODE model. Also, the parameter offset is well estimated for both model
types but with a more narrow 95% CI for the SDE model. The parameter σ is accurately determined
for the SDE model as well. For the ODE model, σ is again overestimated. Figure 9 visualizes the
components of the posterior samples for parameters θ1, θ3, offset, and σ. Again, the bimodality of
the posterior with respect to θ1 and θ3 is apparent for the ODE model and neither the 95% CIs nor
the ranges of the sample cover the true parameter values. For the SDE model on the other hand, the
distribution is unimodal and the 95% CIs do cover the true parameter values for θ1 and θ3. However,
their 2-dimensional smoothed scatter plot in Figure 9 is not a simple elliptic shape (as for the simulated
data without measurement error) but almost a banana-like shape. This may also be the reason for the
deteriorated sampling efficiency discernible from the low ESS and higher R̂-values in Table 5.

Table 4: Summary of the Stan output for the ODE model given simulated data with measurement error
and the true parameter values that were used to simulate the data.

true value mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.11 0.632 0.02 0.15 0.17 4 20.94
θ2 0.32 1.54 1.364 0.02 0.65 7.63 11619 1.00
θ3 0.01 0.07 0.938 0.02 0.02 0.16 4 26.81
m0 240.00 205.41 1.024 2.25 133.96 738.49 10649 1.00
scale 1.80 6.84 1.152 0.07 3.29 27.06 8778 1.00
offset 6.50 6.50 0.013 6.34 6.50 6.67 14496 1.00
t0 0.96 0.96 0.003 0.96 0.96 0.97 17129 1.00
σ 0.02 0.03 0.053 0.03 0.03 0.04 13581 1.00
θ2m0 76.80 217.59 2.441 4.56 37.40 1683.06 9479 1.00
θ2scale 0.58 6.31 2.841 0.17 0.92 54.94 7209 1.00
m0scale 432.00 983.07 2.151 16.20 189.75 7514.28 8054 1.00
θ2m0scale 138.24 123.47 0.009 121.43 123.46 125.58 12035 1.00

Table 5: Summary of the Stan output for the SDE model given simulated data with measurement error
and the true parameter values that were used to simulate the data.

true value mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.16 0.201 0.08 0.17 0.22 304 1.03
θ2 0.32 0.73 1.448 0.07 0.37 3.93 296 1.02
θ3 0.01 0.02 0.660 0.01 0.02 0.05 176 1.04
m0 240.00 274.72 0.742 28.30 224.46 777.96 225 1.04
scale 1.80 1.67 0.430 0.65 1.54 3.36 415 1.02
offset 6.50 6.50 0.007 6.41 6.50 6.60 15599 1.00
σ 0.02 0.02 0.069 0.02 0.02 0.02 2106 1.00
θ2m0 76.80 89.78 0.473 35.58 80.76 191.24 349 1.02
θ2scale 0.58 0.93 1.145 0.16 0.56 4.15 247 1.03
m0scale 432.00 477.62 0.944 29.55 338.17 1697.86 216 1.04
θ2m0scale 138.24 124.39 0.093 102.85 123.92 148.63 2119 1.01
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Figure 9: Density estimates of the posterior samples for parameters θ1, θ3, offset, and σ for the
SDE (blue, lower triangle) and ODE (green, upper triangle) model given simulated data with measure-
ment error. For a detailed description of the figure’s elements, see Figure 6.

Figure 9 visualizes the components of the posterior samples for parameters θ2, m0, scale, and their
products. For the ODE model, again only the product θ2m0scale is identifiable in the sense that the
corresponding 95% CI is very narrow, the ESS is high, and the R̂-value is equal to 1. However, the
95% CI again does not cover the true parameter value. For the SDE model, the 95% CI for θ2m0scale
is broader but it does contain the true value. Also, the ESS is high and the R̂-value is close to 1.
Moreover, the parameters scale and θ2m0 have narrow 95% CIs, high ESSs, and R̂-values close to 1
for the SDE model, and thus, we conclude that they are identifiable. Note that also for θ2, m0scale,
and θ2scale, the 95% CIs are much narrower for the SDE model than for the ODE model.

In Appendix A.4.1, we include further figures of the sampling output for the trajectory displayed
in Figure 5. They present the same posterior samples as used in this and the previous subsection.
But instead of comparing the posterior samples between the two model types, the posterior samples
are compared between the simulated data without and with measurement error for each model type
separately. In summary, we find that for the SDE model, the 95% CIs increase for almost all parameters
except m0 for data with measurement error. Whereas for the ODE model, there is hardly any difference
for most of the parameters between the posterior samples for the data without and with measurement
error since the majority of the parameters is not identifiable anyway. The marginal posterior samples
for the parameters offset, t0, and θ2m0scale are only slightly affected by the measurement error. Only
the marginal posterior sample of the measurement error parameter σ is substantially affected and, as
expected, consists of higher values for data with measurement error.

Table 6 and Figure 11 display the statistics of the posterior samples aggregated over the 100
simulated trajectories. Similar to the results for the simulated data without measurement error, the
median length of the 95% CIs for the SDE model is always smaller than for the ODE model, except
for the parameters m0 and θ2m0scale and additionally σ (which was not included for the SDE model
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Figure 10: Density estimates of the posterior samples for parameters θ2, m0, scale, and their products
for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given simulated data with
measurement error. For a detailed description of the figure’s elements, see Figure 6.

in the previous subsection). Again, for the majority of the parameters, the results for the SDE model
represented by triangles in Figure 11 are closer to the desirable region of value combinations in the
bottom right corner of the graph, except for the parameters m0, θ2m0scale, and offset. For the
parameter offset, the median CI length is slightly higher for the ODE model than for the SDE model,
however, the CIs for the ODE model also contain the true parameter value more often. So for this
parameter, the ODE model, for once, shows the preferable result.
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Table 6: Statistics of posterior samples for the two model types aggregated over 100 simulated trajec-
tories with measurement error. We also include the length of the interval between the 2.5%- and the
97.5%-quantile of the prior distribution.

length of median c.v. of median of number

prior 95% length of lengths of length of CIs of CIs

center 95% CIs 95% CIs rescaled by covering

interval true value true value

θ1
ODE 11.05 0.20 0.008 1.01 60

SDE 11.05 0.11 0.016 0.55 90

θ2
ODE 11.05 7.55 0.002 23.59 100

SDE 11.05 3.69 0.996 11.52 99

θ3
ODE 11.05 0.20 0.008 20.35 63

SDE 11.05 0.02 0.094 1.65 89

m0
ODE 884.82 733.85 3.584 3.06 100

SDE 884.82 746.74 5.909 3.11 100

scale
ODE 28.50 27.25 0.002 15.14 100

SDE 28.50 2.54 0.255 1.41 91

θ2m0
ODE 6056.48 1702.37 2.714 22.17 100

SDE 6056.48 223.22 428.350 2.91 92

θ2scale
ODE 228.08 55.70 0.125 96.70 100

SDE 228.08 3.55 0.639 6.16 100

m0scale
ODE 19271.13 7896.07 667.494 18.28 100

SDE 19271.13 1479.13 253.530 3.42 98

θ2m0scale
ODE 113232.70 4.96 38.038 0.04 15

SDE 113232.70 45.56 1.492 0.33 92

offset
ODE 28.50 0.33 0.987 0.05 96

SDE 28.50 0.21 0.016 0.03 84

σ
ODE 9.50 0.01 0.325 0.35 0

SDE 9.50 0.01 0.000 0.25 87
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6.3 Estimation based on experimental data

In this section, we use the experimental data published in Fröhlich et al. (2018) and described in
Section 2. For each type of GFP (eGFP and d2eGFP), we randomly select 100 observed trajectories
for our analysis and again use Stan to sample from the posterior distributions of the ODE model (6)
and the SDE model (7) for each of the trajectories using the same priors as stated in Section 6.2.1.
We generate 8 HMC chains of 5000 iterations, discard the first half of the iterations as warm-up, and
thus use a posterior samples of size 20,000 in the subsequent analysis. For each type of GFP, we first
analyze the sampling output for one observed trajectory in detail and then summarize results for all
100 observed trajectories. Here in the main part of the article, we only show the results for the eGFP
data and provide the results for the d2eGFP data in Appendix A.4.2. Moreover, we provide further
Stan-specific diagnostics in Appendix A.5.

Sampling results for experimental dataset 1 (for eGFP)

Tables 7 and 8 present a summary of the Stan output for the posterior sample of one observed trajectory
for the ODE and the SDE model, respectively, and Figures 12 and 13 compare the density estimates
of these two posterior samples. The results look qualitatively very similar (almost identical) to those
obtained for the simulated data with measurement error in Section 6.2.2. Therefore, we do not repeat
the detailed description but only point out that the range of values sampled for the parameters θ1

and θ3 for the SDE model is slightly smaller for the experimental trajectory here. Thus, we do not
see the banana-like shape in the two-dimensional smoothed scatter plot of the two parameters for the
SDE model in Figure 12 as for the simulated trajectory in Figure 9 and the sampling efficiency increases
as indicated by higher ESSs and lower R̂ values for the two parameters in Table 8.

The statistics of posterior samples aggregated for 100 experimental trajectories for eGFP in Table 9
are also qualitatively similar to those for the simulated trajectories in Table 6. For the majority of the
parameters, the median length of the 95% CI is smaller for the posterior samples for the SDE model
than for those for the ODE model. Only for parameters θ1, θ2, and θ2m0scale, this is not the case.
Note in particular that for the parameters θ2m0 and scale, which are non-identifiable for the ODE model
(also apparent from the very long CIs here), the median length of the 95% CI for the SDE model is
again much narrower compared to that of the ODE and the to the prior. This indicates that these two
parameters are identifiable for the SDE model also for the experimental data. That the uncertainty
of the parameter estimate for θ2m0scale is greater for the SDE than for the ODE model is consistent
with our results for the simulated data. The parameter θ2 is considered to be not identifiable for either
model type and the difference between the median CI lengths is relatively small. Finally, for parameter
θ1, we see that the result is more or less the same as for θ3 for the ODE model due to the symmetry of
the posterior distribution with respect to these two parameters. Whereas for the SDE model there is no
symmetry and there is more variance in the posterior samples with respect to θ1 than to θ3 (indicated
by a greater median CI length). The smaller median CI length of θ1 for the ODE model compared to
the SDE model is due to the fact that for many of the observed trajectories the values of θ1 and θ3

seem to be very close together. In this case, the posterior distribution of the ODE model appears to
be unimodal and the posterior variance with respect to the two parameters is small (and equal due to
the symmetry). Thus, overall this variance is smaller than the posterior variance with respect to θ1 for
the SDE model.
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Table 7: Summary of the Stan output for the ODE model given experimental data for eGFP.

mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.11 0.617 0.02 0.16 0.18 4 13.60
θ2 1.44 1.407 0.01 0.56 7.39 12661 1.00
θ3 0.08 0.903 0.02 0.03 0.18 4 16.98
m0 198.99 1.046 1.75 127.89 731.84 12008 1.00
scale 6.64 1.186 0.05 3.01 27.00 10321 1.00
offset 7.18 0.017 6.94 7.18 7.42 17800 1.00
t0 1.46 0.004 1.44 1.46 1.47 15996 1.00
σ 0.05 0.054 0.04 0.05 0.05 16833 1.00
θ2m0 200.04 2.654 3.17 28.49 1627.75 11121 1.00
θ2scale 5.53 3.043 0.12 0.67 48.94 8535 1.00
m0scale 942.49 2.307 11.63 153.30 7610.72 9270 1.00
θ2m0scale 85.74 0.014 83.35 85.73 88.19 12577 1.00

Table 8: Summary of the Stan output for the SDE model given experimental data for eGFP.

mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.20 0.152 0.14 0.20 0.26 946 1.01
θ2 0.33 1.366 0.04 0.19 1.52 305 1.02
θ3 0.02 0.269 0.01 0.02 0.03 894 1.01
m0 298.35 0.705 34.46 250.62 809.42 218 1.03
scale 2.12 0.309 1.14 2.02 3.69 772 1.01
offset 7.18 0.012 7.01 7.18 7.35 20589 1.00
σ 0.03 0.058 0.03 0.03 0.04 17224 1.00
θ2m0 47.92 0.327 23.41 46.00 83.31 857 1.01
θ2scale 0.60 1.182 0.11 0.37 2.54 256 1.02
m0scale 650.64 0.831 57.98 498.32 2049.93 283 1.02
θ2m0scale 92.71 0.115 73.32 92.15 115.16 2711 1.00

23



Figure 12: Density estimates of the posterior samples for parameters θ1, θ3, offset, and σ for the
SDE (blue, lower triangle) and ODE (green, upper triangle) model given experimental data for eGFP.
Diagonal panels: Marginal densities for the respective parameter and boxplots showing the 95% CI as
box, the range of the sample as whiskers, and the median as thick black line. Off-diagonal panels:
Smoothed scatter plots of the two-dimensional projections of the samples where darker hues signify
higher density values.
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Figure 13: Density estimates of the posterior samples for parameters θ2, m0, scale, and their products
for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given experimental data for
eGFP. For a detailed description of the figure’s elements, see Figure 12.
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Table 9: Statistics of posterior samples aggregated for 100 experimental trajectories for eGFP.

length of median c.v. of

prior 95% length of lengths of

center 95% CIs 95% CIs

interval

θ1
ODE 11.05 0.11 0.058

SDE 11.05 0.14 0.012

θ2
ODE 11.05 7.91 0.016

SDE 11.05 9.91 0.998

θ3
ODE 11.05 0.11 0.057

SDE 11.05 0.06 0.039

m0
ODE 884.82 747.71 0.212

SDE 884.82 456.80 172.338

scale
ODE 28.50 27.50 0.004

SDE 28.50 4.61 5.288

θ2m0
ODE 6056.48 2032.46 23.287

SDE 6056.48 230.89 219.006

θ2scale
ODE 228.08 68.38 1.879

SDE 228.08 22.01 33.157

m0scale
ODE 19271.13 9093.22 69.292

SDE 19271.13 1392.46 4601.374

θ2m0scale
ODE 113232.70 24.10 57.316

SDE 113232.70 138.03 78.659

offset
ODE 28.50 0.96 2.661

SDE 28.50 0.38 1.086

σ
ODE 9.50 0.01 0.244

SDE 9.50 0.01 0.004
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7 Discussion and conclusion

We have modeled the translation kinetics after mRNA transfection using a two-dimensional Itô diffusion
process described by an SDE and compared this modeling approach to one using ODEs. We have studied
the parameter identifiability for both modeling approaches for the case that we observe a fluorescence
signal which we assume to be a linear transformation of the amount of protein molecules (corrupted by
multiplicative measurement error). For the ODE model, previous studies had already shown that the
degradation rate constants θ1 and θ3 for the mRNA and the protein are only locally identifiable, and
only the product θ2m0scale of the translation rate constant, the initial amount of mRNA molecules
transfected, and the scaling factor of the fluorescence signal is identifiable but the three parameters
individually are not identifiable. In order to try to assess structural identifiability of the SDE model,
we transformed the model, used the DAISY software, and also simulated from the model. Each of
the approaches indicated that the SDE model might lead to better parameter identifiability. The most
systematic approach is the one based on the surrogate model and DAISY as suggested by Browning
et al. (2020); however, it only provides a necessary condition (even) for structural identifiability of the
SDE model parameters. While checking this necessary condition is certainly useful especially e. g. when
designing an experiment, it cannot help us confirm a difference in the parameter identifiability between
the SDE and the ODE model. Especially because we are interested in the parameter identifiability based
on one observed trajectory and the DAISY-based approach assumes that we were able to observe the
first and the second moment of the fluorescence signal. Even when we take into account that we have
several observed trajectories available from the experiment, these do not provide information about the
moments because the initial time point t0 of mRNA release is different for every trajectory and also
for the other parameters, in particular for m0, assuming that they are equal for all observed cells does
not seem reasonable. By simulating from the SDE model, we were able to assess the differences in the
variation within individual trajectories for different parameter combinations. We saw that the variation
within trajectories was clearly higher for lower θ1 and higher θ3 which suggest that they are structurally
globally identifiable. The variation within trajectories was also higher for higher values of scale and
lower values of the product θ2m0. Whereas there did not seem to be much difference in the variation
within trajectories when the values of scale and θ2m0 were kept constant and only the individual values
of θ2 and m0 varied. Therefore, scale and θ2m0 seem to be structurally identifiable, but θ2 and m0 do
not. While this simple simulation approach worked out well for the model considered here, one of its
weak points is, of course, the somewhat subjective visual assessment of the variation within trajectories.
A more quantitative approach to this would be to simulate a large number of trajectories (with very
small time step) for every considered parameter combination, to approximate the quadratic variation
for each trajectory, and then, to compare these values between individual trajectories started with the
same seed for different parameter combinations and to compare also the distributions of these values
for different parameter combinations. Another drawback of both simulation-based approaches is the
fact that the analysis is based on a finite set of parameter combinations that can be considered; and
thus, drawing general conclusions for the entire parameter space may be problematic.

Moreover, we have assessed the practical parameter identifiability for both model types by sampling
from the parameter posterior distribution given simulated data without and with measurement error and
the experimental data published in Fröhlich et al. (2018). We found that the parameters θ1 and θ3 are
indeed globally identifiable for the SDE model given individual trajectories, unlike for the ODE model.
And not only the product θ2m0scale but also the parameter scale and the product θ2m0 are globally
identifiable for the SDE model. Moreover, for the simulated data, the 95% CIs for the identifiable
parameters for the SDE model covered the true parameter value adequately many times. Whereas for
the ODE model, the true parameter values for the parameters θ1, θ3, and θ2m0scale were not covered
by the 95% CIs for many of the posterior samples and were sometimes not even included in the range
of values in the sample. The fact that the parameters θ1 and θ3 can be adequately determined using
the SDE modeling approach given an individual trajectory renders the multi-experiment approach with
different mRNA constructs and the computational intense hierarchical optimization algorithm used in
Fröhlich et al. (2018) unnecessary in the case that the determination of these parameters is the main
objective. Besides, assuming that a MJP is the most appropriate description of the underlying dynamics,
we saw that the estimated parameter values for a single cell trajectory based on the ODE model cannot
be trusted even when narrow 95% CIs suggest low uncertainty. While the SDE model is clearly superior
in terms of the information that we are able to extract from a single trajectory about the parameters
that determine the dynamics of the underlying process, it has nevertheless several disadvantages. First
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of all, we were not able to include the estimation of the initial time point t0 of mRNA release into the
Stan sampling procedure. We believe that this is not easily possible due to the fact that for the SDE
model, the process switches from a deterministic evolution to a stochastic one at t0 and including t0
as a parameter in the posterior distribution leads to non-smoothness of the posterior distribution which
cannot be handled by HMC sampling as it makes use of the derivative of the log-posterior. Other
sampling approaches such as particle MCMC might alleviate this problem, but to our knowledge, no
examples of inferring a random time point for SDE models have been investigated so far and would thus
require further work. Another drawback of the SDE model are the higher computational costs as we
need to sample from a higher-dimensional distribution (due to the random process values) than for the
ODE model. For the SDE model, the sampling in our study takes on average almost 5.5 hours while
for the ODE model, it averages at about 20 minutes. In general, estimation procedures for SDE models
are more complex and unlike for ODE models, publicly available software tools are rare and usually not
generally applicable. There is definitely a need to further develop such tools for SDE models in order to
harness their full potential, especially with regard to better identifiability of kinetic parameters. On the
other hand, combining both modeling approaches as we have done here by first determining t0 based
on the ODE model and then estimating the kinetic parameters based on the SDE model is clearly also
meaningful.
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Fröhlich, F., Reiser, A., Fink, L., Woschée, D., Ligon, T., Theis, F. J., Rädler, J. O., & Hasenauer,
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A Supplementary material

A.1 General Itô diffusion processes

In the main article, we consider an example of a parametric time-homogeneous Itô diffusion process. In
general, a d-dimensional time-homogeneous Itô diffusion process (Xt)t≥0 is a stochastic process that
fulfills the following SDE:

dXt = µ (Xt,θ) dt+ σ (Xt,θ) dBt, X0 = x0, (8)

with state space X ⊆ Rd, starting value x0 ∈ X , and an r-dimensional Brownian motion (Bt)t≥0.

The model parameter θ ∈ Θ is from an open set Θ ⊆ Rp. The function µ : Rd × Θ → Rd is usually
called the drift coefficient and σ : Rd×Θ→ Rd×r the diffusion coefficient. Equation (8) is a symbolic
way of writing the stochastic integral equation

Xt = x0 +

∫ t

0

µ (Xs,θ) ds+

∫ t

0

σ (Xs,θ) dBs for all t ≥ 0 P-almost surely,

where the first integral is an ordinary Riemann integral and the second integral is a stochastic integral in
the Itô sense. In the remainder of this section, we omit the dependence of µ and σ on the parameter θ
and briefly state two important tools for handling SDE models of this type. Elaborate and general
introductions to SDEs can be found e. g. in Øksendal (2003), Fuchs (2013), and Braumann (2019).

The Itô integral and thus also Itô diffusion processes do not adhere to the rules of classical calculus.
Instead, the following theorem states the stochastic counterpart of the chain rule from classical calculus
which is known as Itô formula. The formulation of the Itô formula specific for Itô diffusion processes
as we state it here follows directly from the general Itô formula as stated in Øksendal (2003, Chapter
4.2).

Theorem A.1 (Itô formula). Let Xt be a d-dimensional Itô diffusion process described by an SDE
as in (8). Let g(t,x) = (g1(t,x), . . . , gq(t,x)) be a map from [0, T ] × Rd into Rq with continuous
first-order partial derivatives in t and continuous first- and second-order partial derivatives in x. Then
the process

Y (t, ω) = g(t,Xt)

is an Itô process whose kth component Y (k) is given by

dY (k) =
∂gk
∂t

(t,X) dt+

q∑
i=1

∂gk
∂x(i)

(t,X) dX(i) +
1

2

q∑
i=1

q∑
j=1

∂2gk
∂x(i)∂x(j)

(t,X) dX(i) · dX(j),

=

(
∂gk
∂t

(t,X) + µ(X)Tr∇gk(t,X) +
1

2
trace

(
σ(X)σ(X)Tr∇ (∇gk(t,X))

))
dt

+ (∇gk(t,X))
Tr
σ(X) dBt, (9)

where ∇gk denotes the gradient of gk with respect to the components of x and dX(i) · dX(j) is
computed according to the rules dB(i) · dt = dt · dB(j) = (dt)

2
= 0 and dB(i) · dB(j) = δij dt with

δij denoting the Kronecker delta.

Most SDEs do not have an analytical solution and their transition densities are not explicitly known.
Instead, numerical approximation schemes are used for the solution of the SDEs. Kloeden & Platen
(1992) provide a detailed description of these methods. The most commonly used approximation is
the Euler(-Maruyama) scheme. It can be conveniently written in vector notation and approximates the
d-dimensional solution (Xt)t≥0 of an SDE by setting Y 0 = x0 and, then, successively calculating the
following:

Y k+1 = Y k + µ (Y k) ∆tk + σ (Y k) ∆Bk, (10)

where ∆tk = tk+1 − tk, ∆Bk = Btk+1
− Btk , and Y k is the approximation of Xtk for k =

0, 1, 2, . . . . Since the Euler scheme is a linear transformation of the normally-distributed increments
∆Bk ∼ N (0,∆tkIr) of the Brownian motion, where Ir denotes the r-dimensional identity matrix,
the process state Y k+1 conditioned on Y k is also normally-distributed with

Y k+1 |Y k ∼ N
(
Y k + µ (Y k) ∆tk , σ (Y k)σTr (Y k) ∆tk

)
,

where N (a, b) denotes the multivariate normal distribution with mean vector a ∈ Rd and covariance
matrix b ∈ Rd×d.
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A.2 Investigating the need for data augmentation for the SDE model

In this section, we focus on the inference problem for the SDE model and investigate whether the
amount of data that we have available (K = 181 observations per cell with time step ∆t = 1/6
hours) is sufficient for the Euler approximation to be appropriate, i. e. whether the step size between
observations is small enough. We simulate one trajectory of the MJP described in Section 3.1 with
parameters θ1 = 0.11, θ2 = 0.3, θ3 = 0.09, and m0 = 200 on the time interval [0, 30] using Gillespie’s
algorithm and use observations at 181 equidistant time points. We assume for now that the amount
X2 of GFP is directly observed without error and that for the amount X1 of mRNA, we only observe
the initial value m0 = 200. All observations are without measurement error and we assume t0 = 0
to be known. Thus, we only estimate the kinetic parameters θ for the SDE model, and to this end,
use Stan and Bayesian data augmentation with different numbers of inter-observation intervals which
means that we impute additional (artificial) data points between every two observations and these
points are treated as additional parameters in the estimation procedure (for a detailed description of
Bayesian data augmentation see Fuchs, 2013). A number of inter-observation intervals of 1 means
that we do not impute any points between observations. A number of 2 inter-observation intervals
means that we impute one point between every two observations and so on. We generated 4 HMC
chains with 1000 iterations after warm-up each. Figure 14 shows the median of the obtained posterior
sample as the point estimates and the CIs for the three kinetic parameters and for different numbers
of inter-observation intervals. Evidently, the estimation results do not improve when increasing the
number of inter-observation intervals. Therefore, we conclude that data augmentation is not necessary
and do not make use of data augmentation in the main part of the article.
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Figure 14: Point estimates (median of the posterior sample) and 95% CIs for the kinetic parameters es-
timated with Stan and Bayesian data augmentation for different numbers of inter-observations intervals.
The black line represents the true parameter values with which the data was generated.

A.3 Hamiltonian Monte Carlo (HMC) methods and Stan

A.3.1 Brief introduction to the algorithm

To sample from the posterior densities of the two model types (ODE and SDE) as formulated in
Section 6 of the main article, we use the open source software Stan (Carpenter et al., 2017). Stan
provides an implementation of the Hamiltonian Monte Carlo (HMC) based No-U-Turn Sampler (NUTS)
to which we give a very brief introduction here which mainly draws from the description in Gelman
et al. (2013). Neal (2011) gives a more detailed account. HMC methods (originally called hybrid
Monte Carlo methods by Duane et al. (1987)) are a class of MCMC methods. The computational cost
in each iteration for HMC methods is higher than for other MCMC methods such as Gibbs sampling
or Metropolis-Hastings algorithms because HMC makes use of the derivative of the target distribution.
But by that, transitions between the chain states can be generated that efficiently span the (with respect
to the target distribution) important regions of the state space. By taking into account the information
of the gradient, HMC avoids the random walk behavior and difficulties caused by distributions with
high correlations that other MCMC methods exhibit.
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Assume we want to sample from the p-dimensional distribution π (θ) for parameter θ ∈ Rp. Mo-
tivated by the physical concept of Hamiltonian dynamics, HMC introduces an auxiliary momentum
variables ρ ∈ Rp and draws from a joint density p(θ,ρ) = p(ρ |θ)π(θ). The joint density defines the
so-called Hamiltonian

H(θ,ρ) = − log p(θ,ρ) = − log p(ρ |θ)− log π(θ) = K(θ,ρ) + V (θ) (11)

that describes the total energy of the system and is equal to the sum of the kinetic energy K and the
potential energy V . In HMC, the distribution of ρ is usually chosen to be independent of θ. A common
choice is ρ ∼ N (0p,M), where N (0p,M) denotes the multivariate normal distribution with mean
vector 0p and covariance matrix M ∈ Rp×p, and M is called the design or (by analogy to the physical
model) mass matrix and often chosen to be a diagonal matrix. Thus, the kinetic energy becomes

K(ρ) = ρTrM−1ρ/2, (12)

where M−1 denotes the inverse matrix of M .
In each iteration of the HMC algorithm, a momentum ρ is sampled (e. g. from N (0p,M)) and

then by analogy to the physical model of the frictionless movement of a marble with position θ and
momentum ρ (describing the marble’s mass and velocity) across a surface, the dynamics, i. e. the
changes in position and momentum, that preserve the total energy are described by the Hamiltonian
equations

dρi
dt

= −∂H
∂θi

,

dθi
dt

=
∂H

∂ρi

for i = 1, . . . , p. With the choice of H, K, and V as in Equations (11) and (12), we have

dρ

dt
= −∇θ V (θ) = ∇θ log π(θ),

dθ

dt
= ∇ρK(ρ) = M−1ρ,

(13)

where ∇x denotes the gradient with respect to x. In each iteration, Equations (13) are numerically
integrated to obtain proposals θ∗ and ρ∗. A common choice of the numerical integrator is the leap-frog
method. Then, an accept-reject step is performed analogously to the Metropolis-Hastings algorithm.
We summarize the HMC steps in Algorithm 1.

Algorithm 1: Hamiltonian Monte Carlo algorithm (with leap-frog integrator)

Input: A target density π(·), an initial state θ(0), number of iterations n, mass
matrix M , and step size ε and number L of steps for numerical integration.

In each iteration i = 1, . . . , n:
Step 1 Generate ρ ∼ N (0p,M) and set θ∗ ← θ(i−1) and ρ∗ ← ρ.
Step 2 Repeat L leap-frog steps by setting:

ρ 1
2
← ρ∗ +

1

2
ε∇θ log π(θ∗)

θ∗ ← θ∗ + εM−1ρ 1
2

ρ∗ ← ρ 1
2

+
1

2
ε∇θ log π(θ∗)

Step 3 Accept θ∗ as θ(i) with probability

α(θ(i−1),ρ,θ∗,ρ∗) = min
[
1, exp

(
H(θ(i−1),ρ)−H(θ∗,ρ∗)

)]
,

if θ∗ is rejected θ(i) := θ(i−1).

Output: A sample {θ(1), . . . ,θ(n)} approximately distributed according to π(·).

Two of the limitations of this general HMC algorithm are on the one hand that due to the use of
the derivative with respect parameter, it is only suitable for continuous distributions, and on the other
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hand, the choice of the tuning parameters is of crucial importance to the performance of the algorithm
and can be cumbersome. The tuning parameters include the mass matrix M , and step size ε and
number L of steps for numerical integration.

An extension of HMC, the NUTS, introduced by Hoffman & Gelman (2014) includes a way to
automatically determine the number L of steps for numerical integration using an recursive algorithm
that grows a binary tree representing leap-frog steps forward and backward in time which is stopped
as soon as further steps do no longer increase the distance between a newly explored point and the
original starting point (i. e. as soon as the steps start to make a U-turn).

The open-source Bayesian inference package Stan which we make use of through its R interface
rstan (Stan Development Team, 2019) provides an efficient C++ implementation of NUTS. In Stan,
the gradient of the log-posterior distribution is calculated (exactly) by reverse-mode automatic differ-
entiation (Carpenter et al., 2015). Moreover, Stan can automatically optimize the step size ε to match
a (user-defined) acceptance-rate target based on dual averaging as proposed by Nesterov (2009) and it
also estimates the mass matrix M during a warm-up phase consisting of several stages.

A.3.2 Evaluating (general) MCMC output

While in theory, any MCMC method (for which convergence of the transition kernel is ensured) will give
a sample from the target distribution if infinitely many iterations are executed; in practice, the sample
size can only be finite which makes it necessary to carefully evaluate the MCMC output.

A quantity that can be used to quantify the degree of convergence when several chains have been
simulated is the R̂ value. The R̂ convergence (or rather stationarity) diagnostic compares the between-
and within-chain variance for individual model parameters and other univariate quantities of interest.
Assume we are considering the scalar parameter ψ for which we have simulations ψi,j for i = 1, . . . , n
and j = 1, . . . ,m and for m chains (after discarding the warm-up iterations and then splitting each
simulated chain in half) of length n. Let

v̂ar
+

(ψ | D) =
n− 1

n
W +

1

n
B (14)

be an estimate for the marginal posterior variance of ψ, where the within-sequence variance W is
defined by

W =
1

m

m∑
j=1

s2
j with s2

j =
1

n− 1

n∑
i=1

(ψij − ψ̄·j)2,

and the between-sequence variance B is defined by

B =
n

m− 1

m∑
j=1

(ψ̄·j − ψ̄··)2 with ψ̄·j =
1

n

n∑
i=1

ψij and ψ̄·· =
1

m

m∑
j=1

ψ̄·j .

Then, R̂ is defined as

R̂ =

√
v̂ar+(ψ | D)

W
.

Due to the splitting of chains in half, R̂ calculated in this way is also known as split-R̂ and was suggested
in Gelman et al. (2013). The value can be interpreted as the factor by which the scale of the distribution
of the current simulations for ψ can be reduced by continuing the number of iterations to infinity. If
chains have mixed well, R̂ is close to 1. Gelman et al. (2013) state that values up to 1.1 are acceptable.
The R̂ reported by Stan is calculated as the maximum of a so-called rank-normalized split-R̂ and a
rank-normalized folded-split-R̂ which was recently suggested by Vehtari et al. (2021).

Another issue in MCMC sampling is the fact that the draws are not independent but may even be
highly correlated. It is important to keep in mind that such a correlated sample from the parameter
posterior distribution does not contain the same amount of information as an independent and identically
distributed sample. This issue is addressed by the notion of the effective sample size (ESS). The ESS
of a sample of correlated draws quantifies the size of a corresponding independent and identically
distributed sample that contains the same amount information.
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The ESS for a sample of scalar parameter ψ consisting of m chains each of length n (again after
discarding warm-up iterations but without splitting of the chains) can be defined as

neff =
mn

1 + 2
∑∞
t=1 ρt

,

where ρt is the autocorrelation of the sequence ψ at lag t. This quantity can be approximated in different
ways. Here, we give the approximation that is presented in Gelman et al. (2013) and implemented in
rstan. The estimated autocorrelations ρ̂t are computed as

ρ̂t = 1− Vt

2v̂ar
+

(ψ | D)

for t = 1, . . . , T and, where the estimate v̂ar
+ for the marginal posterior variance is calculated as in (14)

and the variogram Vt at lag t is calculated as

Vt =
1

m(n− t)

m∑
j=1

n∑
i=t+1

(ψi,j − ψi−t,j)2.

The maximal considered lag T is chosen to be the first odd positive integer for which ρ̂T+1 + ρ̂T+2 is
negative and finally, the ESS is approximated by

n̂eff =
mn

1 + 2
∑T
t=1 ρ̂t

.

Gelman et al. (2013) recommend that a minimum ESS of 10 per simulated chain is achieved. The
between-chain information is taken into account in the calculation of n̂eff by including the term v̂ar

+
(ψ | D).

Thus, the ESS is affected when we try to sample from multi-modal distributions. In fact, in the case of
well-separated modes and each chain sampling only from one of these modes, the ESS roughly equals
to the number chains divided by the number of modes.

A.3.3 Further diagnostics of MCMC output specific to HMC and NUTS

In addition to the quality indicators for MCMC output mentioned in the previous section, Stan reports
further quantities that are specific to HMC and NUTS and are of interest to assess sampling efficiency.
These include the number of divergent transitions, the tree depth, and the (energy) Bayesian fraction
of missing (BFMI) which we briefly describe below. See the Stan reference manual for more detailed
explanations (Stan Development Team, 2019).

Integrating the Hamiltonian equations (13) in Section A.3.1 analytically would preserve the value
of the Hamiltonian H(θ,ρ); however, since analytical integration is not possible for most problems
of interest, the equations are numerically integrated which leads to numerical errors. If the difference
between H(θ,ρ) of the starting point and H(θ∗,ρ∗) of the proposed point at the end of the simulated
Hamiltonian trajectory becomes too large (where the default threshold is 103), Stan will classify the
starting point as one of a divergent transition. If many of such starting points of divergent transitions
are concentrated within a region of parameter space, this may be an indication that the curvature of
the posterior is very high in this region and that the step size ε is too large to adequately explore this
region.

As briefly mentioned in Section A.3.1, NUTS builds up a binary tree when determining the number
L of leapfrog steps to take before a U-turn would occur. Stan records the depth of this tree for each
iteration and thus also the corresponding starting point. Moreover, the user can specify a maximum
tree depth d to avoid long execution times due too many steps; as at most 2d−1 leapfrog steps are taken
in each iteration. The default value is d = 10. Hitting this maximum means that NUTS is terminated
prematurely (i. e. more steps would have been possible before a U-turn) and Stan counts how many
times this occurs. Reasons for having to take many steps may be a too small step size due to poor
adaptation to a posterior of varying curvature or targeting a very high acceptance rate.

According to Betancourt et al. (2015), the BFMI indicates how well the energy sets of the Hamilto-
nian are explored. Let E = H(θ,ρ) be the total energy, π(E|ρ) the energy transition distribution, and
π(E) the marginal energy distribution. If π(E|ρ) is substantially more narrow than π(E), then a HMC
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chain may not be able to completely explore the tails of the target distribution. The BFMI quantifies
the mismatch between the two distributions and is defined and approximated by

BFMI :=
Eπ
[
V arπE|ρ [E|ρ]

]
V arπE [E]

≈
∑N
n=1(En − En−1)2∑N
n=0(En − Ē)2

=: B̂FMI.

The Stan development team recommends to ensure that the value of B̂FMI is greater than 0.2.

A.4 Additional results for the posterior sampling

A.4.1 Sampling results for simulated data

Figures 15, 16, 17, and 18 show the same sampling output (the four posterior samples for the two
simulated data sets depicted in Figure 5) as Figures 6, 7, 9, and 10 in Section 6.2; however here, the
results are not compared between the ODE and the SDE model but between simulated data with and
without measurement error.

For the SDE, we see in Figure 15 that the occurrence of measurement error substantially impacts
the distribution of the posterior sample with respect to the parameters θ1 and θ3. The shape of the
two dimensional projection changes from an elliptic shape to a banana-like shape. Especially for θ3, the
95% CI and the range of values in the posterior sample increase a lot and the true parameter value is
only barely covered by the 95% CI for simulated data with measurement error.

Figure 15: Density estimates of the posterior samples for parameters θ1 and θ3 for the SDE model
given simulated data without (blue, lower triangle) and with (red, upper triangle) measurement error.
Diagonal panels: Marginal densities for the respective parameter and boxplots showing the 95% CI as
box, the range of the sample as whiskers, and the median as thick black line. Off-diagonal panels:
Smoothed scatter plots of the two-dimensional projections of the samples where darker hues signify
higher density values. The dotted lines represent the true parameter values that were used to simulate
the data.

Similarly for the parameters θ2, m0, scale and their products, Figure 16 shows that there is quite a
difference between the distributions of the posterior samples for the simulated data without and with
measurement error. In particular for the parameters scale and θ2m0 which we consider to be identifiable,
the 95% CIs increase substantially for data with measurement error, and also the appearance of the
two-dimensional projections with respect to these two parameters changes a lot, from a slightly bent
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ellipse to a clear banana shape. For the product θ2m0scale, the dispersion of the posterior samples
changes only slightly which is apparent from the similar lengths of the 95% CIs in Figure 16 and also
from the similar c.v. in Tables 2 and 5 (0.083 for data without measurement error and 0.093 for data
with measurement error). The location of the sample measured e. g. by the median slightly shifts away
from the true parameter value for the data with measurement error; however, the true value is still
included in the 95% CIs. Only for parameter m0 for which we also did not see much difference in the
posterior samples for the ODE vs. SDE model, the occurrence of measurement error does not seem to
affect the posterior sample much. For the remaining parameters θ2, θ2scale, and m0scale which we do
not consider to be identifiable but for which the 95% CIs of the posterior samples for the SDE model
were clearly more narrow than the 95% CIs of the corresponding posterior sample for the ODE model,
the 95% CIs and ranges of values of the posterior sample for the SDE model for data with measurement
error are broader than for data without measurement error.

Figure 16: Density estimates of the posterior samples for parameters θ2, m0, scale, and their products
for the SDE model given simulated data without (blue, lower triangle) and with (red, upper triangle)
measurement error. For a detailed description of the figure’s elements, see Figure 15.

For the ODE model, Figures 17 and 18 show that there is hardly any difference for most of the
parameters between the posterior sample for the data without and with measurement error since the
majority of the parameters are not identifiable anyway. For the parameters offset and t0, there is a
slight difference. For the measurement error parameter σ, the posterior sample consists of higher values
for data with measurement error as expected. Note that for both simulated datasets, the range of the
posterior sample does not include the true parameter value for σ. Finally for the product θ2m0scale,
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the dispersion of the posterior sample increases only slightly for data with measurement error and the
location of the sample shifts away from the true parameter value. Also for this parameter, the range of
the posterior sample does not include the true parameter value for both simulated datasets.

Figure 19 shows the statistics of the posterior samples for the simulated data without and with
measurement error aggregated over 100 simulated trajectories. It visualizes the last two columns of
Tables 3 and 6 and compares the results of the posterior samples for the simulated data without to
those with measurement error separately for the SDE and the ODE model within each plot, instead of
comparing the two model types separately for each kind of data as in Figures 8 and 11.

Figure 17: Density estimates of the posterior samples for parameters θ1 and θ3 for the ODE model
given simulated data without (green, lower triangle) and with (red, upper triangle) measurement error.
Diagonal panels: Marginal densities for the respective parameter and boxplots showing the 95% CI as
box, the range of the sample as whiskers, and the median as thick black line. Off-diagonal panels:
Smoothed scatter plots of the two-dimensional projections of the samples where darker hues signify
higher density values. The dotted lines represent the true parameter values that were used to simulate
the data. For the parameter σ, the dotted line only represents the true value for the data with
measurement error. For the data without measurement error, σ is equal to 0.
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Figure 18: Density estimates of the posterior samples for parameters θ2, m0, scale, and their products
for the ODE model given simulated data without (green, lower triangle) and with (red, upper triangle)
measurement error. Diagonal panels: Marginal densities for the respective parameter and boxplots
showing the 95% CI as box, the range of the sample as whiskers, and the median as thick black line.
Off-diagonal panels: Smoothed scatter plots of the two-dimensional projections of the samples where
darker hues signify higher density values. The dotted lines represent the true parameter values that
were used to simulate the data.
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Figure 19: Statistics of posterior samples for the simulated data without and with measurement error
aggregated over 100 simulated trajectories. The desirable region of value combinations is in the bottom
right corner of each graph.
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A.4.2 Sampling results for experimental dataset 2 (for d2eGFP)

Tables 10 and 11 present a summary of the Stan output for the posterior sample of one observed
trajectory for d2eGFP for the ODE and the SDE model, respectively, and Figures 20 and 21 compare
the density estimates of these two posterior samples. Here, while of course still being symmetric, the
posterior sample for the ODE model seems to be unimodal with respect to the parameters θ1 and θ3.
This is due to the fact that the values of the two parameters are likely to be quite close to each other
for this trajectory as can also be seen from the overlapping 95% CIs and the similar mean and median
estimates for the SDE model. For the parameter offset, the mean and median estimates from the
posterior samples are very similar for the ODE and SDE model, but the 95% CI is a lot wider for the
ODE model. For the measurement error parameter σ, the 95% CI for the SDE model is a lot narrower
than that for the ODE model and the locations of the samples are quite far apart with a difference in
the median estimates of 0.16.

Table 10: Summary of the Stan output for the ODE model given experimental data for d2eGFP.

mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.09 0.079 0.08 0.09 0.11 11585 1.00
θ2 2.03 1.114 0.08 1.17 8.33 12371 1.00
θ3 0.09 0.078 0.08 0.09 0.11 11200 1.00
m0 244.67 0.868 9.82 187.79 761.08 12127 1.00
scale 9.21 0.901 0.35 6.44 28.11 9845 1.00
offset 8.72 0.073 7.52 8.69 10.04 17557 1.00
t0 0.94 0.011 0.92 0.94 0.96 15806 1.00
σ 0.17 0.053 0.15 0.17 0.18 16365 1.00
θ2m0 367.06 1.893 27.97 121.84 2279.87 11547 1.00
θ2scale 12.37 1.907 1.03 4.19 80.33 7681 1.00
m0scale 1756.24 1.569 94.74 672.69 10085.29 8815 1.00
θ2m0scale 786.93 0.026 746.72 786.79 828.01 22688 1.00

Table 11: Summary of the Stan output for the SDE model given experimental data for d2eGFP.

mean c.v. 2.5% 50% 97.5% neff R̂

θ1 0.11 0.244 0.06 0.10 0.17 1494 1.01
θ2 10.36 0.292 5.14 10.18 16.77 1226 1.01
θ3 0.09 0.095 0.08 0.09 0.11 674 1.02
m0 13.45 0.317 7.06 12.73 23.72 954 1.01
scale 4.93 0.212 3.21 4.83 7.27 785 1.01
offset 8.65 0.005 8.57 8.65 8.74 22392 1.00
σ 0.01 0.067 0.01 0.01 0.01 13124 1.00
θ2m0 130.52 0.229 80.35 127.18 196.70 897 1.01
θ2scale 49.67 0.282 27.16 48.09 82.52 838 1.01
m0scale 65.47 0.363 34.66 60.26 125.01 1343 1.01
θ2m0scale 615.77 0.092 509.06 614.02 733.51 17424 1.00

For the parameters θ2, m0, scale, and their products, the results look somewhat different from
those for the eGFP trajectory and those for the simulated data. For the product θ2m0scale, the 95% CI
for the SDE model is again a lot wider than for the ODE model, but here, the CIs do not overlap.
For the parameters scale and θ2m0, the 95% CI for the SDE model are again a lot narrower than for
the ODE model, and we consider them as practically identifiable for the SDE model but not the ODE
model. But here, also for the parameters m0, θ2m0, and m0scale, the 95% CI for the SDE model are
much narrower than for the ODE model, and the parameters seem to be practically identifiable. For
parameter θ2 the 95% CI for the SDE model is slightly wider than for the ODE model, however, the
distribution looks different.
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Figure 20: Density estimates of the posterior samples for parameters θ1, θ3, offset, and σ for the
SDE (blue, lower triangle) and ODE (green, upper triangle) model given experimental data for d2eGFP.
Diagonal panels: Marginal densities for the respective parameter and boxplots showing the 95% CI as
box, the range of the sample as whiskers, and the median as thick black line. Off-diagonal panels:
Smoothed scatter plots of the two-dimensional projections of the samples where darker hues signify
higher density values.

The statistics of posterior samples aggregated for 100 experimental trajectories for d2eGFP in
Table 12 are qualitatively very similar to those for eGFP in Table 12 in the main article. Therefore, we
do not repeat the detailed description. We only point out that again unlike for the ODE model, the
parameters scale and θ2m0 are identifiable for the SDE model which is indicated by the much narrower
median length of the 95% CIs. We also want to mention that here, the median CI lengths for both
degradation rate constants θ1 and θ3 are smaller for the ODE model than those for the SDE model.
This is again due to the fact that for the majority of the observed trajectories the parameter values
seem to be very close to each other; and therefore, the two modes of the ODE posterior distribution
with respect to these parameters simply overlap. This leads to very narrow CIs which is consistent with
our results for the simulated data if we consider the width of the individual modes there. However, we
would like to remind the reader that the simulated data also showed that often neither of the modes
(and sometimes not even the range of sampled values) covered the true parameter. So assuming that
a MJP is the most appropriate description for the generating process of the experimental data, the low
uncertainty suggested by narrow CIs for the ODE model might be misleading.

A.5 Stan specific diagnostics for the sampling output

Here, we summarize the Stan specific diagnostics described in A.3.3 for the HMC output from Sec-
tions 6.2 and 6.3. Tables 13 and 14 present the statistics of the number of divergent transition,
Tables 15 and 16 the statistics of the number of times that the user-specified maximal tree depth was
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Figure 21: Density estimates of the posterior samples for parameters θ2, m0, scale, and their products
for the SDE (blue, lower triangle) and ODE (green, upper triangle) model given experimental data for
d2eGFP. For a detailed description of the figure’s elements, see Figure 20.

exceeded, and Tables 17 and 18 that statistics of the BFMI.
Overall, all three diagnostics show poorer values for the sampling output for the SDE model than

for the ODE model. This is not surprising as we sample from a much higher-dimensional distribution
for the SDE model. We do not consider the poor diagnostics as a disadvantage of the procedure as they
provide information that we do not even have for other MCMC algorithms and thus cannot compare to
them.
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Table 12: Statistics of posterior samples aggregated for 100 experimental trajectories for d2eGFP.

length of median c.v. of

prior 95% length of lengths of

center 95% CIs 95% CIs

interval

θ1
ODE 11.05 0.03 0.061

SDE 11.05 0.12 0.012

θ2
ODE 11.05 7.88 0.006

SDE 11.05 11.61 0.269

θ3
ODE 11.05 0.03 0.062

SDE 11.05 0.07 0.025

m0
ODE 884.82 749.92 0.181

SDE 884.82 76.56 224.650

scale
ODE 28.50 27.55 0.001

SDE 28.50 5.51 5.550

θ2m0
ODE 6056.48 2048.33 15.537

SDE 6056.48 172.02 173.641

θ2scale
ODE 228.08 67.95 0.843

SDE 228.08 34.96 44.862

m0scale
ODE 19271.13 9085.56 56.326

SDE 19271.13 482.87 3408.541

θ2m0scale
ODE 113232.70 40.80 30.553

SDE 113232.70 145.18 83.283

offset
ODE 28.50 2.02 1.751

SDE 28.50 0.79 1.029

σ
ODE 9.50 0.03 0.006

SDE 9.50 0.01 0.005

Table 13: Statistics for the Stan diagnostic of the number of divergent transitions for the SDE model.
The 100 sampling outputs per dataset are categorized by the number of divergent transitions that
occurred after warm-up, i. e. during a total of 20,000 iterations. Hence, the values in columns 1 to 4
sum to 100. Column 5 gives the maximum number of divergent transitions that occurred after warm-up
for one sampling output.

dataset none 1− 10 11− 100 > 100 maximum

simulated data without error 37 10 25 28 1644

simulated data with error 88 4 5 3 568

experimental data for eGFP 93 4 3 0 39

experimental data for d2eGFP 90 3 6 1 540

44



Table 14: Statistics for the Stan diagnostic of the number of divergent transitions for the ODE model.
See Table 13 for a detailed description.

dataset none 1− 10 11− 100 > 100 maximum

simulated data without error 100 0 0 0 0

simulated data with error 100 0 0 0 0

experimental data for eGFP 99 1 0 0 1

experimental data for d2eGFP 92 8 0 0 2

Table 15: Statistics for the Stan diagnostic of the number of times that the maximal tree depth was
exceeded for the SDE model. The user-defined maximal tree depth was set to a value of 15 prior to
sampling. The 100 sampling outputs per dataset are categorized by the number of times that the
maximal tree depth was exceeded after warm-up, i. e. during a total of 20,000 iterations. Hence, the
values in columns 1 to 4 sum to 100. Column 5 gives the maximum number of times that the maximal
tree depth was exceeded after warm-up for one sampling output.

dataset none 1− 10 11− 100 > 100 maximum

simulated data without error 99 0 1 0 11

simulated data with error 10 26 21 43 7126

experimental data for eGFP 25 19 31 25 1976

experimental data for d2eGFP 95 2 3 0 59

Table 16: Statistics for the Stan diagnostic of the number of times that the maximal tree depth was
exceeded for the ODE model. See Table 15 for a detailed description.

dataset none 1− 10 11− 100 > 100 maximum

simulated data without error 91 6 0 3 2500

simulated data with error 96 0 0 4 2500

experimental data for eGFP 97 0 0 3 2500

experimental data for d2eGFP 100 0 0 0 0

Table 17: Statistics for the Stan diagnostic B̂FMI for the SDE model. Each of the 100 sampling

outputs per dataset consists of 8 HMC chains for each of which B̂FMI is calculated. Then, we
determine the minimum and the mean over the 8 chains. The table presents the mean and the standard
deviation (s.d.) of these minima and means aggregated over the 100 sampling outputs per dataset.

dataset
mean of s.d. of mean of s.d. of

minima minima means means

simulated data without error 0.03 0.01 0.05 0.01

simulated data with error 0.05 0.02 0.07 0.01

experimental data for eGFP 0.05 0.04 0.08 0.04

experimental data for d2eGFP 0.07 0.05 0.09 0.05
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Table 18: Statistics for the Stan diagnostic B̂FMI for the ODE model. See Table 17 for a detailed
description.

dataset
mean of s.d. of mean of s.d. of

minima minima means means

simulated data without error 0.95 0.19 1.03 0.06

simulated data with error 0.95 0.15 1.03 0.06

experimental data for eGFP 0.94 0.19 1.03 0.05

experimental data for d2eGFP 0.90 0.23 1.02 0.05
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