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Highlights
Chemokines have both pro- and antitumorigenic effects
in tumor progression and metastasis.

Depletion of protumorigenic chemokines is a viable
strategy being tested preclinically and in clinical trials.

Combining antitumorigenic chemokines with existing
therapies shows promising results in clinical research.

Engineering of chimeric antigen receptor (CAR) T cells
to overexpress certain chemokine ligands or receptors
can improve their function and efficacy.

Immune checkpoint inhibition and chimeric antigen receptor (CAR)
T cell therapy have demonstrated stunning clinical efficacy in many
cancer types. However, most patients do not respond to
immunotherapies or relapse after an initial response, stressing the
need for improved strategies. Chemokines, as mediators of immune
cell trafficking, play an important role in the composition of the
tumor microenvironment and exert both pro- and antitumorigenic
functions. Here, chemokines may represent valuable prognostic
biomarkers of response to immunotherapy and a strategy to
improve immunotherapies. In this review, the pleiotropic functions
of chemokines in the tumor microenvironment (TME) and
strategies of utilizing chemokines or chemokine antagonism in
immunotherapy are discussed. The review highlights preclinical and
clinical studies that apply or target chemokines in monotherapy or
in combination therapies.
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Chemokines in homeostasis and inflammation
Chemokines are small, secreted proteins forming the family of
chemotactic cytokines. Based on the location of the cysteines (C) in
their amino acid sequence, chemokines can be divided into four
groups: C, CC, CXC, and CX3C. So far, 50 different chemokine
ligands and 19 different chemokine receptors have been described
in humans (Figure 1) [1]. These receptors belong to the group of
conventional chemokine receptors that can induce cellular
migration upon ligand binding. Additionally, there are four atypical
chemokine receptors that may function as scavenging receptors [2].
Following chemokine gradients, cells expressing a chemokine
receptor migrate towards increasing concentrations of its respective
ligand within tissues of the human body in a process called
chemotaxis. Chemokines can also be classified as inflammatory or
homeostatic based on their expression and function. Homeostatic
chemokines are constitutively expressed and play a role in migration
and homing of cells at physiological conditions, while inflammatory
cytokines are rapidly secreted at sites of inflammation thereby
recruiting effector cells to the inflamed tissue [3]. Along these lines,
chemokines and their receptors also have a central role in
orchestrating the localization of cell populations both in normal
bodily processes and in aberrant conditions such as infection and
importantly, in cancer.
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Figure 1. Redundancy of chemokine ligand–receptor binding.

Chemokine receptors belonging to the CCR (green), CXCR (red), XCR
(orange), or CX3CR (blue) group [1]. Chemokines are depicted in light blue
boxes. Abbreviations: CCL, CC motif chemokine ligand; CCR, CC motif
chemokine receptor; CXCL, CXC motif chemokine ligand; CXCR, CXC motif
chemokine receptor; XCL, XC motif chemokine ligand; XCR, XC motif
chemokine receptor.

Pleiotropic role of chemokines in cancer
In cancer, chemokine signaling, and the chemotaxis of various cell
populations play a central role in the composition of the TME. In
the TME, immune cells, tumor cells, and tumor-associated cells all
release a variety of chemokines that can change in a spatiotemporal
manner, attracting different types of pro- and antitumorigenic
immune cells [2]. The migration pattern of immune cells then
influences the progression and metastasis of the tumor and directly
shape the immune response. For instance, cytotoxic CD8  T cells
and natural killer (NK) cells can migrate to the tumor and drive
antitumor immunity by releasing effector molecules such as
granzyme B and perforin after activation. A major chemokine
receptor expressed by these two cell types is CXCR3, and its ligands
CXCL9 and CXCL10 have been shown to recruit these cells to tumor
tissue [4]. Along these lines, the expression of CXCL9 correlates with
increased numbers of tumor infiltrating lymphocytes in patients
with breast cancer, making it a potential biomarker for immune
infiltration [5]. High CXCL9 levels in the tumor tissue are associated
with a prolonged survival in breast cancer, adenocarcinoma, and
ovarian cancer, underpinning the functional consequences of such
enhanced attraction [5., 6., 7.]. CD103  dendritic cells (DCs) have
been shown as a major source of these potent antitumorigenic
chemokines in the TME [8].

In contrast, immunosuppressive, protumorigenic immune cells can
also be attracted to the tumor, chief among them regulatory T cells
(Tregs), tumor-associated macrophages (TAMs), and myeloid-derived
suppressor cells (MDSCs). The main axis attracting TAMs to the
tumor is the CC motif chemokine ligand (CCL)2– CC motif
chemokine receptor (CCR)2 axis [9], with high levels of CCL2
correlating with increased macrophage infiltration in gastric
carcinomas [10], and associated with decreased survival in patients
with breast cancer [11]. Furthermore, CCL22 released by DCs and
binding to CCR4 on Tregs has been identified as a necessary
chemokine for Treg migration and DC–Treg contact in the lymph
nodes; a prerequisite for the immunosuppressive function of Tregs
in the periphery [12].

In addition to their function in chemotaxis, chemokines play an
important role in the activation, differentiation, proliferation, and
apoptosis of immune cells. For instance, CXC motif chemokine
ligand (CXCL)12 promotes CD4  T cell survival via binding to CXC
motif chemokine receptor (CXCR)4 and subsequent activation of the
PI3K and MAPK signaling pathways [13]. Another key axis for T cell
survival is CCL19 and CCL21 binding to CCR7. CCR7 expression
correlates with higher antiapoptotic Bcl-2 but lower proapoptotic
Bax and Fas expression levels in CD8  T cells in healthy controls and
patients suffering from squamous cell carcinoma [14]. Similar
results can be observed when CD8  T cells are directly stimulated
with CCL19 or CCL21, suggesting an antiapoptotic effect for T cells
through CCR7 [14]. Also, chemokines can directly promote
proliferation and survival of tumor cells. The most prominent
chemokines fostering tumor cell survival and proliferation are CCL2
in breast cancer models [15] and CXCL12 in models of ovarian
cancer [16]. Similarly, lower expression of CXCL12 is correlated with
prolonged survival and better overall prognosis in pancreatic ductal
adenocarcinoma [17], and esophagogastric and lung cancer [18]. In
breast cancer however, high expression of CXCL12 is associated with
a prolonged disease-free and overall survival [19], probably due to
reduced metastasis of breast cancer cells, as shown in preclinical
models [20]. The opposite prognostic values of CXCL12 in different
cancer types and its diverging effects on immune and cancer cells
reflect the pleiotropic function of chemokines and the complexity of
the chemokine–chemokine receptor system in the context of cancer.
Given the various avenues in which chemokines can orchestrate the
TME and determine disease outcomes, chemokine manipulation
represents a promising pathway for the improvement of
immunotherapy (see Glossary) and is summarized in the present
review.

Strategies for utilizing or antagonizing chemokines
in immunotherapy
Generally, there are two approaches for utilizing chemokines in
immunotherapy: first, targeting protumorigenic chemokines, and
second, increasing the concentration of antitumorigenic
chemokines; both as standalone therapies or in combination with
other therapeutic strategies. These approaches mainly target
chemokine ligands. A third approach that arose recently with the
advent of adoptive cell therapy (ACT) involves overexpression of
chemokine receptors binding to specific chemokine ligands to
improve their infiltration into tumor areas (Figure 2).

Download : Download high-res image (828KB)
Download : Download full-size image

Figure 2. Strategies of utilizing pro- (A, B) and antitumorigenic chemokines
(C–H) in immunotherapy.

Neutralizing protumorigenic chemokines with antibodies (A) [22,27,35] or
inhibitors (B) [43,47]. (C) Genetic engineering of oncolytic viruses to encode
antitumorigenic CXCL9 and CXCL11 [53,54]. Cytokines are expressed after
infection of tumor cells. (D) CXCL10–antibody fusion constructs targeting
tumor antigens and recruiting CXCR3  effector cells to the tumor
microenvironment [56,57]. (E) DNA or tumor cell lysate-based cancer vaccines
with CCL21 as adjuvant are injected intradermally in order to recruit
dendritic cells and T lymphocytes, enhancing the tumor antigen-specific
immune response [63,66]. Genetically engineered dendritic cells expressing
CCL21 (F) [70] or CCL19-IL7 CAR T cells (G) [71,72] release chemokines into
the tumor microenvironment to enhance recruitment of endogenous
effector cells. (H) CXCR6- or CCR8-engineered CAR T cells migrate to
CXCL16- or CCL1-expressing tumors [79,80]. Depicted chemokine ligands
and receptors are only examples and do not represent an exhaustive list.
Abbreviations: CCL, CC motif chemokine ligand; CCR, CC motif chemokine
receptor; CXCL, CXC motif chemokine ligand; CXCR, CXC motif chemokine
receptor.

An important aspect can be highlighted in the context of utilizing
chemokines as a therapy – a huge degree of redundancy in
chemokine ligand to receptor binding – with different chemokines
able to bind to one receptor and vice versa (Figure 1) [3]. For
instance, this has been shown for CCL5 that binds to CCR1 and 5 in
glioblastoma [21]. Only the simultaneous inhibition of both
receptors blocked the CCL5-induced migration of microglia
suggesting their redundant function in glioblastoma [21].

Due to the redundancy in chemokine ligand–receptor binding, the
additive manipulation of chemokine ligands or receptors allows for
intervention in the signaling of multiple chemokine pathways, while
conversely, disruptive manipulation is weakened by the redundancy
of the system. The present review therefore discusses both
strategies, while focusing on additive concepts.

Neutralizing protumorigenic chemokines in
immunotherapy

Antibody-mediated blockade of protumorigenic chemokines

Carlumab (CNTO 888) is a high-affinity monoclonal antibody
targeting specifically CCL2 [22]. Carlumab treatment inhibits CCL2-
mediated TAM migration to the tumor; a population highly
expressing CCR2 and correlating strongly with potent
immunosuppression [23,24]. In preclinical models of human
prostate and breast cancer, carlumab treatment resulted in a
decreased tumor growth at primary and metastatic sites, inhibition
of angiogenesis, and a prolonged survival of treated mice [24,25].
However, the first clinical trial in solid tumors failed to stably
reduce the serum level of CCL2 (NCT00537368; Table 1). A second
trial 1 year later in patients with solid tumors resulted in an initially
reduced serum CCL2 level but reversed shortly afterwards to exceed
pretreatment levels (NCT01204996). Carlumab treatment failed to
influence response rates and was therefore discontinued, despite
having shown potent therapeutic efficacy in preclinical mouse
models [26].

Table 1. Utilizing chemokines in clinical trials

Abbreviations: ALL, acute lymphoblastic leukemia; R/R, relapsed/refractory.

Another antibody approach uses HuMax-IL8 (BMS-986253) to target
CXCL8 [27]. CXCL8, also named interleukin (IL)-8, binds to CXCR1
and CXCR2 on neutrophils, monocytes, and endothelial and cancer
cells [28,29]. It is normally induced at sites of inflammation, thereby
recruiting neutrophils and granulocytes [30]. In cancer, CXCL8
promotes tumor progression, epithelial–mesenchymal transition
(EMT), and recruitment of MDSCs [31., 32., 33.], with high serum
levels correlating with poor prognosis in breast cancer patients [34].
Preclinical studies have shown that CXCL8 blockade with HuMax-
IL8 reduces EMT and recruitment of MDSCs to the tumor site [27].
The first clinical study started in 2015, treating patients with
metastatic or unresectable solid tumors (NCT02536469). There,
serum CXCL8 levels could be decreased, although no objective
tumor responses were detected. The following Phase II clinical trials
are still ongoing and combine HuMAX-IL8 and immune checkpoint
inhibitors (ICIs) in various solid tumors (NCT03689699,
NCT04050462, NCT03400332, NCT04123379, NCT04848116, and
NCT02451982).

Antibody-mediated depletion of CXCL13 has been tested in
preclinical mouse models [35,36] but has not progressed to clinical
trials. CXCL13 has been identified as a regulator of T cell subsets
and B cell homing [37] and plays a key role in inflammatory diseases
[38]. In breast cancer, CXCL13–CXCR5 coexpression drives disease
progression and metastasis [39,40]. The depletion of CXCL13 led to a
decreased tumor volume and growth in a murine breast cancer
model [36], although the exact mechanism was not elucidated.
Together, these application examples highlight the potential and
feasibility of chemokine neutralization through antibodies for
therapy, although their clinical potential remains to be
demonstrated.

Chemokine inhibitors

Besides depleting chemokines with antibodies, small molecule
inhibitors have been tested with some degree of success. DSTAT,
also known as CX-01, is a low molecular weight heparin derivative
that, among other functions, binds CXCL12. CXCL12 normally
binds to CXCR4 and CXCR7 on stromal cells, fibroblasts, and
epithelial cells [41]. In the case of ovarian cancer, it furthers tumor
development and metastasis by activation of Akt/protein kinase B
and p44/42 mitogen-activated protein kinase pathways [42].
Targeting CXCL12 in combination with chemotherapy aims at
sensitizing tumor cells to chemotherapy by inhibiting CXCR4-
dependent migration of quiescent leukemic stem cells to protective
bone marrow niches [43]. This could be shown for the blockade of
CXCR4 with AMD3465 [44]. In a first Phase I clinical trial, patients
suffering from acute myeloid leukemia (AML) were treated with
DSTAT in combination with the chemotherapeutic agents
cytarabine and idarubicin (NCT02056782). The observed response
rate was higher compared to the response rate of patients treated
with the chemotherapeutic agents in a previous clinical trial [45].
The results of a subsequent Phase II trial were comparable to the
first (NCT02873338). In another Phase I trial, patients with AML or
myelodysplastic syndrome were treated with DSTAT and the
chemotherapeutic agent azacitidine (NCT02995655). Albeit in small
patient numbers, higher response rates and favorable overall
survival were observed compared to historical controls [46]. In 2021,
DSTAT progressed to a Phase III study assessing its effectiveness in
combination with standard chemotherapy in AML patients and
results are eagerly awaited (NCT04571645).

Further targeting CXCL12, NOX-A12, a pegylated L-enantiomeric
oligoribonucleotide (a so-called Spiegelmer) that binds the
chemokine, was developed. Like DSTAT, NOX-A12 treatment aims at
reducing CXCL12-induced chronic lymphocytic leukemia cell
chemotaxis and resistance to chemotherapy [47]. In a first clinical
Phase I study in healthy volunteers, NOX-A12 was well tolerated
(NCT00976378). Administration of NOX-A12 in cynomolgus
monkeys and in healthy volunteers (NCT01194934) led to effective
CXCL12 neutralization, thereby inhibiting the activation of CXCR4
and CXCR7 and successfully mobilizing white blood cells and
hematopoietic stem cells [48]. In the following Phase II clinical
study, NOX-A12 was tested in combination with rituximab and
chemotherapy in patients with chronic lymphocytic leukemia
(NCT01486797) and multiple myeloma (NCT01521533) with results
pending.

Based on the findings in a murine pancreatic adenocarcinoma
model that the CXCL12–CXCR4 axis conferred resistance to ICIs by
inhibiting T cell infiltration into the tumor [49], NOX-A12 was
tested also in combination with programmed death (PD)-1 blockade
in a murine model of colorectal cancer [50]. NOX-A12 increased the
number of tumor-infiltrating lymphocytes (TILs) and synergistically
inhibited tumor growth in combination with IC blockade [50]. This
approach proceeded to Phase II clinical trials treating patients with
colorectal and pancreatic cancer (NCT04901741, NCT03168139). The
combination therapy was able to stabilize disease in heavily
pretreated patients for prolonged periods [51]. Besides targeting of
CXCL12, CXCR4 inhibitors in combination with IC blockade have
shown promising results [52], providing evidence for the clinical
benefit of targeting the CXCL12–CXCR4 axis in cancer.

Increasing the concentration of antitumorigenic
chemokines

Chemokines in combination with oncolytic viruses

Chemokines can be combined with oncolytic virus (OV) therapy to
increase the concentration of inflammatory chemokines in the
tumor, recruiting endogenous effector cells and strengthening the
effect of concurrent antitumor therapy.

Oncolytic poxvirus encoding for CXCL11 could promote
recruitment of T and NK cells to the tumor, resulting in reduced
tumor growth and prolonged survival in murine colon
adenocarcinoma models [53]. In a similar approach, an oncolytic
vesicular stomatitis virus (VSV) was engineered to encode CXCL9
and tested in a murine model of multiple myeloma and a human
model of squamous cell carcinoma [54]. These experiments showed
that administration of the OV encoding CXCL9 did not mediate an
enhanced recruitment of activated T cells compared to the basic OV,
despite a clear increase in CXCL9 levels in the tumor [54]. They
hypothesized that the administration of the basic oncolytic VSV
already enhanced the CXCL9 concentration and further boosting of
CXCL9 expression only had incremental effects on immune cell
infiltration [54].

Another OV, NG-641, which encodes a bispecific T cell activator that
targets cancer associated fibroblasts (FAP-Tac) was successfully tested
in preclinical experiments [55]. The OV was then further genetically
engineered to express CXCL9, CXCL10, and interferon-α to enhance
the recruitment of endogenous effector cells to the tumor. In a
Phase I clinical trial, the engineered OV, NG-641, was tested in
patients suffering from metastatic or advanced epithelial tumors
with results pending (NCT04053283). Additionally, NG-641 in
combination with ICI will be evaluated in two clinical Phase I trials
in metastatic or advanced epithelial tumors (NCT05043714) and in
squamous cell carcinoma of the head and neck (NCT04830592).

Administration of fusion proteins

Several fusion protein concepts combining chemokines and other
proteins in an effort of directed delivery, have been developed to
target cancer. One approach, so-called chemokine–antibody fusion
proteins, enhances intratumoral effector cell recruitment by
targeting the chemokine to tumor cells directly. A CXCL10–
EGFRvIII single chain variable fragment (scFv) fusion protein
targeting glioma was designed and tested in combination with
tumor antigen-specific CD8  T cells [56]. Administration of the
fusion protein led to prolonged survival, inhibited tumor
angiogenesis and increased numbers of brain-infiltrating
lymphocytes in preclinical models [56]. In a similar approach, an
anti-human endoglin scFv was fused to CXCL10 [57]. The
intravenous injection of NKT cells was combined with the
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intravenous injection of NKT cells was combined with the
intratumoral injection of the scFv fusion protein enhancing the
antitumor activity of NKT cells in nude mice bearing human
hepatocellular carcinoma [57]. Similarly, a CCL4-collagen binding
domain fusion protein to target the tumor stroma has been probed
[58]. CCL4 effectively enhanced the recruitment of CD103  DCs to
the tumor in murine models of breast cancer and melanoma,
mediating an improved antitumor effect in combination with ICI
[58].

In another approach, CCL20 fused to patient specific scFv were
generated to target CCR6 on antigen-presenting cells. Thereby,
CCL20 mediated specific internalization of the fusion protein and
enhanced the subsequent immune response against the scFv [59]. In
a Phase I clinical trial, DNA vaccines encoding patient-specific
single chain variable fragments fused to CCL20 were injected
intradermally into asymptomatic phase lymphoplasmacytic
lymphoma patients (NCT01209871). The treatments were well
tolerated and the efficacy of the vaccine will likely be evaluated in a
future Phase II clinical trial [59].

Chemokines as adjuvants in vaccine therapy

Chemokines can be applied as adjuvants for various cancer vaccines
to mediate more robust recruitment of various desired effector cell
types [60]. Due to its ability to attract DCs and T lymphocytes
thereby initiating T cell immune responses, CCL21 has been
extensively used in such cancer vaccines [61]. CCL21 also plays a role
in the proliferation, differentiation, and activation of T cells via
binding to its receptor CCR7 [62]. A DNA vaccination study utilizing
CCL21 revealed that CCL21 administration at the same vaccination
site 24 h before DNA vaccine injection enhanced antigen-specific
immunity in murine melanoma and breast cancer models [63,64].
Additionally, the combination of a DNA vaccine, PD-1 blockade, and
CCL21 as adjuvant enhanced cytotoxic T lymphocyte proliferation
and achieved tumor control in a murine cervical cancer model [65].

These vaccination approaches combined with chemokines have
progressed to clinical trials. In a Phase I/II clinical trial, intradermal
vaccination with the tumor cell vaccine GM.CD40L in combination
with CCL21 was compared to GM.CD40L alone (NCT01433172). This
setup involves using two types of cells, the lymphoma line K562 as a
bystander cell expressing granulocyte–macrophage colony-
stimulating factor and CD40L to boost the immune response, and a
lung adenocarcinoma cell line H2122 as a tumor antigen source
expressing CCL21, with the chemokine acting to recruit and
mobilize T cells [66,67]. Median overall survival of patients with
advanced lung adenocarcinoma was similar in both groups, but one
patient treated with the vaccine and CCL21 combination displayed
enhanced TILs, warranting further studies on GM.CD40L
combination treatments in more refined groups of patients [66].

Overexpression of chemokines in DCs

Chemokines also feature prominently in DC vaccination schemes,
where CCL21 is utilized in the engineering of DCs against multiple
tumor indications. CCL21 is engineered into DCs via adenoviral
transduction; a process that both leads to CCL21 expression and
protects DCs from apoptosis [68]. CCL21 overexpression in these
engineered DCs results in increased infiltration of endogenous DCs
and T cells into the tumor as well as potent antiangiogenic effects
leading to enhanced tumor clearance [69]. CCL21-transduced DC
vaccination has led to Phase I clinical trials as monotherapy in non-
small cell lung cancer (NSCLC) patients (NCT01574222), melanoma
patients (NCT00798629), and in combination with pembrolizumab,
in NSCLC patients (NCT03546361). Results released so far include
data for the monotherapy trial in NSCLC patients, which achieved
modest results with median survival increasing by 3.9 months, with
roughly half of the patients showing increased immune infiltration
into the tumor [70].

Overexpression of chemokines in T cell therapies

Chemokines have further been used to enhance the effect of a
burgeoning class of treatments – cellular therapies – through both
the engineered direct expression of the chemokines or as an indirect
effect of immunomodulators combined with cellular therapies. In
the case of the former, the cells are engineered to coexpress the
chemokine ligands either by themselves or in addition to a main
effector construct. These chemokines then are secreted, affecting
chemotactic gradients within the tumor with the aim of increasing
the effectiveness of cellular therapy.

An approach that is the subject of several recently completed or
ongoing clinical trials involves the overexpression of the chemokine
CCL19 in combination with IL-7 to increase the performance of
CARs against both hematological and solid tumors. As CAR T cells
migrate and anchor themselves in tumor areas, CCL19 expressed in
these cells serves to attract migration of endogenous T cells and DCs
into the tumor via CCR7 ligation. This has been shown to lead to a
synergistic antitumor activity between adoptively transferred and
endogenous cells and to increase overall therapeutic efficacy in solid
and liquid tumor models [71,72]. This approach has been applied in
various clinical trials utilizing anti-CD19 CAR T cells against B cell
lymphomas (NCT03258047). Although no results have been reported
yet, a Phase II clinical trial was initiated (NCT03929107). In addition,
CCL19-IL7 engineering is featured in Phase I clinical trials utilizing
anti-GPC3 CAR T cells against hepatocellular carcinoma
(NCT03198546); anti-integrin β7, anti-BCMA, anti-CS1, anti-CD38,
and anti-CD138 single or dual targeting CAR T cells against
relapsed-refractory multiple myeloma (NCT03778346); anti-Nectin-4
CAR T cells against Nectin-4-positive advanced-stage solid tumors
(NCT03932565); and anti-CD19 CAR T cells in combination with
anti-PD-1 checkpoint blockade against B cell lymphomas
(NCT04381741). These trials have shown good safety profiles and
promising efficacy. Along the same lines, CAR T cells have also been
engineered to overexpress IL-7 with CCL21, another ligand of CCR7.
Though only at the preclinical stage so far, these cells elicit similar
migration of endogenous immune populations into tumor areas but
with superior efficacy compared to CCL19-IL7 CAR T cells in in vivo
models [73].

Another avenue of engineering T cells with chemokines shown thus
far only in preclinical models is the editing of SynNotch T cells with
CXCL10. CXCL10 is a potent chemokine involved in the arrest of
angiogenesis, induction of tumor apoptosis, and chemotaxis of
immune cell populations [74]. These cells were designed to bind
mesothelin in an antigen-specific manner, and once bound to
express CXCL10, which eventually led to inhibited tumor growth in
in vivo models, but the added clinical value remains to be seen [75].

Overexpression of chemokine receptors in CAR T cells

In addition to chemokine ligand overexpression, CAR T cell therapy
can also be improved by the addition of chemokine receptors for
directed homing. The choice of the chemokine receptor mainly
relies on the chemokine ligand expression of both tumor-associated
cells in the TME or the tumor cells themselves compared to healthy
tissue. Overexpression of the respective chemokine receptor in CAR
T cells can then mediate increased migration of the adoptively
transferred T cells and thereby tackle one of the major limitations in
treating solid tumors with ACT: insufficient T cell infiltration [76].
For example, a study demonstrated the critical role of CXCL16, the
ligand of CXCR6, in regulating the survival of T cells in the TME
and their role in immunosurveillance [77]. CXCL16 attracted T cells
to DCs providing proliferative and antiapoptotic signals [77]. In
addition to relevant CXCL16 expression by the TME, a substantial
expression of CXCL16 was found in cancer cells of, among others,
pancreatic cancer [78]. The addition of CXCR6 to anti-EpCAM and
anti-mesothelin CAR T cells enhanced tumor-directed migration,
antitumoral activity, and prolonged survival in syngeneic, xenograft,
and in patient-derived models [79]. Leveraging CCL1, a key
chemokine aberrantly recruiting suppressive immune cells such as
Tregs, it was tested whether coexpression of its receptor on
therapeutic T cells would enhance their therapeutic efficacy. Using
anti-EpCAM or anti-mesothelin CAR T cells coexpressing CCR8 in
combination with a dominant negative transforming growth factor
(TGF)-β receptor to additionally shield cells from
immunosuppression, improved tumor infiltration, and therapeutic
efficacy in mice bearing human or murine pancreatic tumors [80].
These strategies are planned to be probed in a clinical trial. Various
other chemokine receptors have been shown to improve ACT by also
homing the cells to tumor areas. CCR4 engineering improved anti-
CD30 CAR T cells in preclinical lymphoma models [81] and
subsequently progressed to a Phase I clinical trial with patients
suffering from Hodgkin’s or T cell lymphoma (NCT03602157). Two
Phase I clinical trials testing anti-BCMA and anti-CD19 CAR T cells
edited to overexpress CXCR4 have been launched in patients with
multiple myeloma (NCT04727008) or relapsed/refractory B cell
malignancies (NCT04684472). A Phase I/II trial involving CXCR2-
engineered TILs is being conducted in patients with advanced
melanoma (NCT01740557), and two Phase I clinical trials testing
CXCR5-modified epidermal growth factor receptor (EGFR) targeting
CAR T cells have been initiated in patients suffering from advanced
adult NSCLC (NCT04153799 and NCT05060796). Furthermore,
cellular therapies utilizing CXCR1 [82], CCR2 [83., 84., 85.], and
CX3CR1 [86] are in various stages of preclinical testing. These are
promising strategies that can foster the development of new cancer
therapies, especially in the context of personalized medicine.

Concluding remarks and future perspectives
Chemokines have pleiotropic functions capable of affecting both
antitumor immune response and tumor progression. Taking this
into account, versatile strategies that utilize or target chemokines
have been established in the past decade leading to novel drug
candidates tested in clinical trials.

Therapeutics targeting protumorigenic chemokines such as
HuMax-IL8, DSTAT, and NOX-A12, have shown promising results. A
potential application might lie with combination treatments, where
chemokine neutralization to reset protumoral properties is utilized
as a building block of treatment (see Outstanding questions).
Difficulties with these approaches of antagonizing a single
chemokine cannot be overstated, mostly because of the redundancy
of the chemokine ligand–receptor system. In fact, alternative ligands
can bypass the blockade by binding to the same receptors,
undermining the initial effect. Alternatively, utilizing
antitumorigenic chemokines in combination with cancer vaccines,
OVs, and CAR T cell therapies have been recently established and
this strategy is now being explored in Phase I and II clinical trials.
These approaches share the goal of enhancing the recruitment and
activation of endogenous effector cells by increasing
antitumorigenic chemokine concentrations mediating a potent
antitumor immune response. The strategy of applying antitumor
therapeutics while simultaneously maximizing their potential to
mobilize endogenous immune cells with chemokines and
interleukins presents a powerful strategy for the future.

Outstanding questions
Can antagonizing individual chemokine ligands effectively
improve therapeutic outcome of cancer patients?

Does equipping OVs with chemokine ligands enhance
therapeutic efficacy in patients?

How can a personalized CAR T cell treatment utilizing
chemokine ligand or chemokine receptor expression be
established?
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Glossary
Adoptive cell therapy

for adoptive cell transfer, immune cells can be reactivated, engineered, and expanded

before reinfusing them back into patients to enhance anticancer immune response.

So far, only chimeric antigen receptor engineered T cells were approved. Engineered

T cell receptor (TCR) therapy that removes T cells from the body, genetically

engineers the TCR to better target tumor antigens, and then reinfuses them back

into the patient, is clinically tested [87]. In addition, NK cells and macrophages are

equipped with CAR constructs and tested in clinical trials [88].

Cancer vaccines
can either be applied to protect against cancer development or for cancer treatment

to enhance the body’s own antitumor immune response. They can be generated from

ribonucleic acids, peptides, proteins, genes, or whole cancer cells. Besides

stimulating antigen presenting cells in the patient’s body, autologous DCs that have

been stimulated in vitro can be administered as a vaccine.

Immune checkpoint inhibitors
target immune checkpoints, main regulators of the immune system that can

dampen the immune response. Monoclonal antibodies blocking those receptors

enhance the antitumoral immune response. So far, antibodies targeting CTLA-4, PD-

1, and PD-L1 have been approved [89].

Immunomodulators
Immunomodulators, like interleukins, interferons, chemokines, or

immunomodulatory imide drugs, boost the activity of the patient’s own immune

system in general.

Immunotherapy
immunotherapy aims at fostering the body’s own immune system to fight cancer by

enhancing tumor cell recognition and lysis. There are different types of

immunotherapy treatments.

Oncolytic viruses
viruses are modified to preferentially target and lyse cancer cells, thereby releasing

chemokines, interleukins, and pathogen-associated molecular patterns to stimulate

the endogenous antitumor immune response [90]. In 2015, talimogene

laherparepvec, the first OV therapy, was approved for the treatment of advanced

melanoma [91].
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