Supporting Information

Fully automated chemiluminescence microarray analysis platform for rapid and multiplexed SARS-CoV-2 serodiagnostics

Julia Klüpfel¹, Sandra Paßreiter¹, Nina Weidlein¹, Martin Knopp², Martin Ungerer³, Ulrike Protzer^{4,5}, Percy Knolle⁶, Oliver Hayden², Martin Elsner¹, Michael Seidel^{1*}

¹Institute of Hydrochemistry, Chair of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching, Germany

²Heinz-Nixdorf-Chair for Biomedical Electronics, Technical University of Munich, TranslaTUM, Einsteinstr. 25, 81675 München

³ISAR Bioscience GmbH, Semmelweisstr. 5, 82152 Planegg

⁴Institute of Virology, Technical University of Munich / Helmholtz Zentrum München, Trogerstr. 30, 81675 München

⁵German Center for Infection Research (DZIF), Munich partner site, 81675 München

⁶Institute of Molecular Immunology/ Experimental Oncology, Technical University of Munich, Ismaningerstr. 22, 81675 München

Table of contents:

Supplemental experimental data

Table S1: Main assay steps on the MCR-R

Supplemental figures

Figure S1: Reaction scheme of surface modification and covalent protein immobilization on polycarbonate surfaces

Figure S2: Automated microarray platform MCR-R

Figure S3: ROC curves obtained for N protein, RBD, S1 protein and combined ROC curve for the whole microarray chip

Supplemental information

Description of the MCR-R

Table S1. Main assay steps on the MCR-R (steps that only apply to the sequential IgM/IgG detection are shown in italic)

Step	Volume	Flow rate	Comment
Sample injection	40 μL	-	done manually
Sample incubation			60 s
Flushing of chip	2000 μL	500 μL s ⁻¹	
IgM detection antibody injection	800 μL	$10~\mu L~s^{-1}$	
Flushing of chip	2000 μL	500 μL s ⁻¹	
CL reagents injection	400 μL	150 μL s ⁻¹	
Image acquisition	-	-	60 s exposure
Flushing of whole fluidic system	7500 μL	500 μL s ⁻¹	
Flushing of chip	2000 μL	500 μL s ⁻¹	
IgG detection antibody injection	800 μL	$10~\mu L~s^{-1}$	
Flushing of chip	2000 μL	500 μL s ⁻¹	
CL reagents injection	400 μL	$150~\mu L~s^{-1}$	
Image acquisition	-	-	60 s exposure
Flushing of whole fluidic system	7500 μL	500 μL s ⁻¹	

Figure S1: Reaction scheme of surface modification and covalent protein immobilization on polycarbonate surfaces

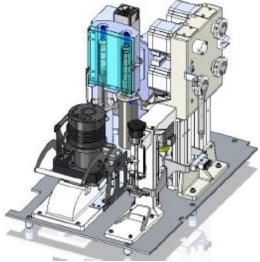


Figure S2: Automated microarray platform MCR-R; left: physical image of the device, right: schematic depiction of the main device elements: camera unit, syringe pumps and valves (copyright of right image: GWK Präzisionstechnik GmbH)

Description of the MCR-R:

The MCR-R was developed by the Chair of Analytical Chemistry (TUM) together with GWK Präzisionstechnik GmbH (Munich). It is the currently newest generation of Microarray Chip Readers (MCR) and offers versatile application possibilities for both research and routine application. Its main components are a CCD camera locate above a microarray chip loading unit (shown in black in the front left of Figure S2 (right image). Behind the camera unit, two syringes for the dosage of peroxidase labelled detection antibodies are located, on the right of the camera unit a syringe pump for sample injection can be found. Behind this syringe pumps, the valve tower is seen, containing four valves and a syringe pump for the transport of chemiluminescence reagents, running buffer and cleaning reagents. With its size of 50 x 50 cm, the device is suitable for benchtop placing, a recently presented version of the MCR-R is even smaller than the one used in this manuscript while having the same functionality.

For the application in research, the device offers a software toolbox allowing for the design of different measurement programs, e.g. for sequential programs using two different detection antibodies, programs with syringe injection of the sample or direct sample injection into the microarray chip and many more options, allowing for the development of optimized assays for the applications of interest.

For routine application of the device, only the necessary measurement programs are activated and can then be used by any user who had a short training on the device, even without a deeper technical or chemistry background. Only few manual steps (filling reagent syringes and containers, starting the measurement program, entering a microarray chip) have to be done, while the whole assay is done completely automatically. The data evaluation software is tailormade for every application so that all relevant evaluation steps are done on the device for routine applications. Therefore, the device is suitable for point-of-care applications as it is easy to use, shows a high degree of automation, is small enough to find space in hospitals or medical practices and can be used for various different microarray applications with relevance at the point of care.

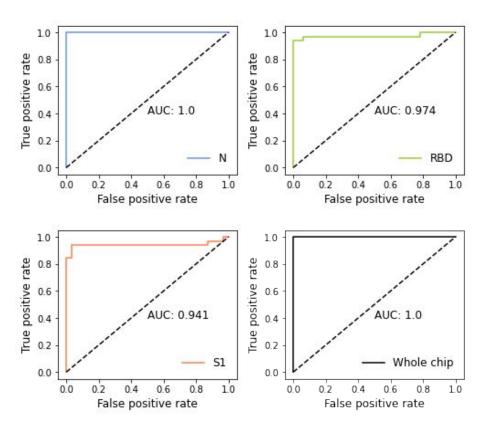


Figure S3: ROC curves obtained for N protein, RBD, S1 protein and combined ROC curve for the whole microarray chip