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Abstract. Cine cardiac MRI is routinely acquired for the assessment
of cardiac health, but the imaging process is slow and typically requires
several breath-holds to acquire sufficient k-space profiles to ensure good
image quality. Several undersampling-based reconstruction techniques
have been proposed during the last decades to speed up cine cardiac
MRI acquisition. However, the undersampling factor is commonly fixed
to conservative values before acquisition to ensure diagnostic image qual-
ity, potentially leading to unnecessarily long scan times. In this paper, we
propose an end-to-end quality-aware cine short-axis cardiac MRI frame-
work that combines image acquisition and reconstruction with down-
stream tasks such as segmentation, volume curve analysis and estima-
tion of cardiac functional parameters. The goal is to reduce scan time
by acquiring only a fraction of k-space data to enable the reconstruc-
tion of images that can pass quality control checks and produce reliable
estimates of cardiac functional parameters. The framework consists of
a deep learning model for the reconstruction of 2D+t cardiac cine MRI
images from undersampled data, an image quality-control step to detect
good quality reconstructions, followed by a deep learning model for bi-
ventricular segmentation, a quality-control step to detect good quality
segmentations and automated calculation of cardiac functional parame-
ters. To demonstrate the feasibility of the proposed approach, we perform
simulations using a cohort of selected participants from the UK Biobank
(n=270), 200 healthy subjects and 70 patients with cardiomyopathies.
Our results show that we can produce quality-controlled images in a scan
time reduced from 12 to 4 seconds per slice, enabling reliable estimates of
cardiac functional parameters such as ejection fraction within 5% mean
absolute error.
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1 Introduction

Cardiac MRI is a common imaging modality for assessing cardiovascular dis-
eases, which is the leading cause of death globally. Cine cardiac MRI enables
imaging of the heart throughout the cardiac cycle, and is especially useful for
quantifying left and right ventricular function by measuring parameters such as
ejection fraction (EF), end-diastolic and end-systolic cardiac chamber volumes.
However, cine cardiac MRI acquisition is slow and there has been much research
interest in accelerating the scan without compromising the high resolution and
image quality requirements. One approach that has been used to speed up the
scan is to reduce the amount of acquired k-space data. However, reconstruct-
ing cine cardiac MRI from undersampled k-space data is a challenging problem,
and approaches typically exploit some type of redundancy or assumption in
the underlying data to resolve the aliasing caused by sub-Nyquist sampling [1].
Considerable efforts have been devoted to accelerate the reconstruction of car-
diac MRI from undersampled k-space including parallel imaging and compressed
sensing [2]. More recently, machine learning reconstruction approaches have been
proposed to learn the non-linear optimization process employed in cardiac MRI
undersampled reconstruction. In particular, deep learning (DL) techniques have
been proposed to learn the reconstruction process from existing data sets in ad-
vance, providing a fast and efficient reconstruction that can be applied to all
newly acquired data [3, 4]. In this paper, we assess image quality from recon-
structions of undersampled k-space data during acquisition, creating an ‘active’
acquisition process in which only a fraction of k-space data are acquired to enable
the reconstruction of an image that can pass automated quality control (QC)
checks and produce reliable estimates of cardiac functional parameters. The ma-
jor contributions of this work are three-fold: 1) to the best of our knowledge, this
is the first paper that combines cine cardiac MRI undersampled reconstruction
with QC in downstream tasks such as segmentation in a unified framework; 2)
our pipeline includes robust pre- and post-analysis QC mechanisms to detect
good quality image reconstructions (QC1) and good quality image segmenta-
tions (QC2) during active acquisition and 3) we show that quality-controlled
cine cardiac MRI images can be reconstructed in a scan time reduced from 12
to 4 seconds per slice, and that image quality is sufficient to allow clinically
relevant parameters (EF and left- and right-ventricle chamber volumes) to be
automatically estimated within 5% mean absolute error.

2 Materials

We evaluate our proposed reconstruction and analysis framework using a cohort
of selected healthy (n=200) and cardiomyopathy (n=70) cases from the UK
Biobank obtained on a 1.5 Tesla MRI scanner (MAGNETOM Aera, Siemens
Healthcare, Erlangen, Germany). The short-axis (SAX) image acquisition typi-
cally consists of 10 image slices with a matrix size of 208×187 and a slice thick-
ness of 8 mm, covering both the ventricles from the base to the apex. The in-plane
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image resolution is 1.8×1.8 mm2, the slice gap is 2 mm, with a repetition time
of 2.6 ms and an echo time of 1.10 ms. Each cardiac cycle consists of 50 time
frames. More details of the image acquisition protocol can be found in [5]. The
image reconstruction model and the segmentation model were trained using an
additional set of 3,975 cine cardiac MRI datasets from the UK Biobank. For
these subjects, pixel-wise segmentations of three structures (left-ventricle (LV)
blood pool, right-ventricle (RV) blood pool and LV myocardium) for both end-
diastolic (ED) frames and end-systolic (ES) frames were manually performed to
act as ground truth segmentations [6]. The segmentations were performed by
a group of eight observers and each subject was annotated only once by one
observer. Visual QC was performed on a subset of the data to ensure accept-
able inter-observer agreement. The segmentation model was evaluated using 600
different subjects from the UK Biobank for intra-domain testing and two other
datasets for cross-domain testing: the Automated Cardiac Diagnosis Challenge
(ACDC) dataset (100 subjects, 1 site, 2 scanners) and the British Society of
Cardiovascular Magnetic Resonance Aortic Stenosis (BSCMR-AS) dataset (599
subjects, 6 sites, 9 scanners).

3 Methods

The developed image analysis pipeline consists of a DL model for accelerated
reconstruction of SAX cine cardiac MRI acquisitions, a DL model for automatic
segmentation of the LV blood pool, RV blood pool and LV myocardium, auto-
mated calculation of cardiac functional parameters such as EF and LV and RV
chamber volumes, and two QC steps: a pre-analysis image QC step during the
undersampling and reconstruction process (QC1) and a segmentation QC step
to detect good quality segmentations (QC2). For an illustration of the pipeline
see Figure 1.

Undersampling and reconstruction: We simulated an active acquisition pro-
cess by first creating k-space data from all slices of cine SAX cardiac MRI im-
ages. We utilised a similar strategy to [7] to generate synthetic phase and a radial
golden angle sampling pattern to simulate undersampled k-space data contain-
ing increasing numbers of profiles corresponding to scan times between 1 to 30
seconds, in steps of 1 second. These were then reconstructed using two recon-
struction algorithms for comparison: the non-uniform Fast Fourier Transform
(nuFFT) and the Deep Cascade of Convolutional Neural Networks (DCCNN)
[3, 4] which features alternating data consistency layers and regularisation lay-
ers within an unrolled end-to-end framework. Undersampled k-space data, along
with the sampling trajectory and density compensation function, are provided
as input to this unrolled model for DL reconstruction, and high-quality MRI
images are obtained as an output in an end-to-end fashion. The regularisation
layers of this network were implemented as a 5-layer CNN according to [3], and
the data consistency layers follow a gradient descent scheme according to [4].
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Fig. 1: Overview of the image analysis pipeline for fully-automated cine cardiac
MRI undersampled reconstruction and analysis including comprehensive QC al-
gorithms to detect erroneous output. As k-space profiles are acquired, images
are continually reconstructed and passed through QC checks. The simulated
acquisition terminates when the reconstructed image passes all QC checks.

Image quality control (QC1): QC1 was framed as a binary classification
problem and addressed using a ResNet classification network [8]. Binary image
quality labels (analyzable/non-analyzable) from 225 images of different levels of
undersampling from UK Biobank subjects were generated by visual inspection
and validated by an expert cardiologist. 80% were used for training and vali-
dation of the classification network and 20% were used for testing. The ResNet
network was trained for 200 epochs with a binary cross entropy loss function.
During training, data augmentation was performed on-the-fly including rotation,
shifts and image intensity transformations. The probability of augmentation for
each of the parameters was 50%. The training/testing images for QC1 were ran-
domly selected from the UK Biobank dataset and were not used for training or
evaluating the reconstruction/analysis framework. The training/testing dataset
for QC1 consisted of 50% healthy subjects and 50% patients with cardiomy-
opathies.

Image full cycle segmentation: We used a pre-trained U-net based architec-
ture [9] for automatic segmentation of the LV blood pool, LV myocardium and
RV blood pool from all SAX slices and all frames through the cardiac cycle. The
UK Biobank dataset was split into three subsets, containing 3975, 300 and 600
subjects for training, validation and testing respectively. All images were resam-
pled to 1.25 × 1.25 mm. The training dataset was augmented in order to cover a
wide range of geometrical variations in terms of the heart pose and size. All im-
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ages were cropped to the same size of 256×256 before being fed into the network.

Segmentation quality control (QC2): The segmentation process is followed
by a segmentation QC step (QC2) based on Reverse Classification Accuracy
(RCA) [10]. First, image registration is performed between the test image and
a set of 20 pre-selected template images with known segmentations. Next, the
transformed test image segmentation is compared to those of the atlas segmen-
tations, and a high similarity is assumed to indicate a good quality test image
segmentation. The segmentation quality metrics used were the Dice Similarity
Coefficient (DSC), Mean Surface Distance (MSD), Root-Mean-Square Surface
Distance (RMSD) and Hausdorff Distance (HD). Finally, a SVM binary clas-
sifier was trained using the quality metrics independently for LV and RV, and
ED and ES frames to discriminate between poor and good quality segmentations.

Clinical functional parameters: The volumes were calculated by multiplying
the number of voxels by the voxel volume for each of the LV/RV classes. The
maximum volume over the cardiac cycle was used for (LV/RV)EDV and the
minimum for (LV/RV)ESV. EF (for both LV and RV) was calculated as (EDV-
ESV)/EDV.

4 Results

We validated our method in two ways. First, we evaluated the ability of the full
pipeline to detect good quality image reconstructions (QC1) and good quality
image segmentations (QC2) during simulated active acquisition of 270 cases (200
healthy subjects and 70 patients with cardiomyopathies) randomly selected from
the UK Biobank cohort (Validation 1). Second, we compared the estimates of
cardiac functional parameters obtained via our pipeline to those obtained from
the fully-sampled data (Validation 2).

Validation 1. Image quality was evaluated with the Mean Absolute Error
(MAE), Peak Signal to Noise Ratio (PSNR) and Structural Similarity Index
(SSIM), calculated between the fully-sampled image and the undersampled im-
age that passed all QC checks with the lowest scan time. Segmentation quality
was quantified using Dice coefficients between the segmentations from the fully-
sampled image (obtained using the U-net) and the segmentations derived from
our pipeline. Image and segmentation quality results are shown in Table 1.

Validation 2. The performance of the method was also evaluated using clinically
relevant measures: LVEDV, LVESV, LVEF, RVEDV, RVESV and RVEF. Our
DCCNN-based approach resulted in a closer match to the fully-sampled data
measures than the nuFFT method and also resulted in a lower scan time as
shown in Table 1. There was a good correlation between estimations obtained
from fully-sampled data and via our pipeline (Pearson’s correlations: LVEDV:
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Table 1: Top: Sensitivity, specificity, and average balanced accuracy for QC1.
Middle: Image quality of 270 subjects from the UK Biobank after passing QC1.
Bottom: Dice scores between the segmentations from the fully-sampled images
and the segmentations derived from our pipeline. The mean and standard devi-
ation of scan times at which the reconstructed images passed all QC checks are
also reported.

nuFFT DCCNN

QC1 Training model

Average balanced accuracy 0.93 0.95

Sensitivity 0.86 0.87

Specificity 0.99 0.99

QC1 Image quality metrics

MAE 0.03 ± 0.02 0.04 ± 0.02
PSNR 29.82 ± 0.08 32.14 ± 0.06
SSIM 0.87 ± 0.04 0.90 ± 0.03

QC2 Dice scores

LV blood pool 0.91 ± 0.06 0.93 ± 0.04

LV myocardium 0.91 ± 0.06 0.94 ± 0.05

RV blood pool 0.89 ± 0.04 0.90 ± 0.06

Scan Time (s) 11.82 ± 3.29 3.72 ± 0.54

r = 0.98; LVESV: r = 0.97; LVEF: r = 0.98; RVEDV: r = 0.98; RVESV: r
= 0.95 and RVEF: r = 0.96). Figure 2 illustrates image reconstructions and
undersampling trajectories as a function of the scan time using nuFFT and
DCCNN. A Bland-Altman analysis between the volumes estimated from fully-
sampled reconstructions and using our DCCNN-based pipeline is shown in Figure
3.

5 Discussion

This work has demonstrated the feasibility of a DL-based framework for auto-
mated quality-controlled “active” acquisition of undersampled cine cardiac MRI
data without a previously defined undersampling factor. The proposed pipeline
results in a reduced scan time for 2D cardiac cine MRI, which takes ∼12 s in our
clinical protocol (spatial resolution = 1.8 x 1.8 x 8.0 mm3, temporal resolution
= 31.56 ms and undersampling factor = 2). Our results show that by using a
DCCNN for cine cardiac MRI reconstruction, we can pass QC checks after ap-
proximately 4 seconds of simulated acquisition (i.e. an undersampling factor of
4.5). One limitation of our approach is that in the current version of our pipeline,
QC2 takes ∼1min. Therefore, this would not allow immediate quality feedback
and true ‘active’ acquisition. Future investigations will focus on developing a
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Fig. 2: Illustration of image reconstructions and undersampling trajectories as
a function of the scan time using nuFFT and DCCNN. For this subject, the
two QC steps were passed at a scan time of 10 seconds and 4 seconds with the
nuFFT and DCCNN reconstruction models respectively. (QC=0 means that the
QC check was passed.)

Fig. 3: Bland-Altman plots for cardiac volumes between U-net segmentations
from fully sampled reconstructions and our DCCNN reconstructions with small-
est scan time that passed all QC checks. The black solid line represents the mean
bias and the black dotted lines the limits of agreement. The limits of agreement
are defined as the mean difference ± 1.96 SD of differences.
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real-time approach for segmentation quality control. For example, in [11], a con-
volutional autoencoder was trained to quantify segmentation quality without a
ground truth at inference time. In [12], a 3D convolutional neural network was
trained in order to predict the DSC values of 3D segmentations. We will investi-
gate these and similar approaches to implement a segmentation quality control
step that is efficient enough to facilitate real-time implementation on the MRI
scanner. We believe that an approach such as the one we have proposed could
have great clinical utility, reducing redundancies in the cardiac MRI acquisition
process whilst still providing diagnostic quality images and robust estimates of
functional parameters.
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