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Within the Munich, Germany, N-ethyl-N-nitrosourea mouse mutagenesis program, we isolated a dominant
Jak1 mouse model resembling phenotypic characteristics related to autoimmune disease. Chromosomal
sequencing revealed a new Jak1 (p.Ser645Pro) point mutation at the conserved serine of the pseudokinase
domain, corresponding to a somatic humanmutation (p.Ser646Phe) inducinga constitutive activationof the
Janus kinase (JAK)/STAT pathway. Morphologically, all Jak1S645Pþ/� mice showed a progressive structural
deterioration of ears starting at the age of 4 months, with mononuclear cell infiltration into the dermis.
Female mutant mice, in particular, developed severe skin lesions in the neck from 7 months of age. The IHC Q

analysis of these lesions showed an activation of Stat3 downstream to Jak1S645P and elevated tissue levels of
IL-6. Histopathological analysis of liver revealed a nodular regenerative hyperplasia. In the spleen, the
number of Russell bodies was doubled, correlating with significant increased levels of all immunoglobulin
isotypes and anti-DNA antibodies in serum. Older mutant mice developed thrombocytopenia and altered
microcytic redblood cell counts. Jak1S645Pþ/�mice showedphenotypes related to impairedbonemetabolism
as increased carboxy-terminal collagen cross-link-1 levels and alkaline phosphatase activities in plasma,
hypophosphatemia, and strongly decreased bone morphometric values. Taken together, Jak1S645Pþ/� mice
showed an increased activation of the IL-6eJAKeSTATpathway leading to a systemic lupus erythematosuse
like phenotype and offering a new valuable tool to study the role of the JAK/STAT pathway in disease
development. (Am J Pathol 2013,-: 1e17; http://dx.doi.org/10.1016/j.ajpath.2013.04.027)
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Inherited susceptibility to systemic autoimmune diseases
derives from monogenic or polygenic reasons and may be
influenced by environmental factors. Disease onset ranges
from early childhood to whole lifespan, and various tissues
maybe involved. Linkage studies on pedigrees of patientswith
systemic autoimmune diseases revealed several chromosomal
regions involved in disease development.1,2 Mouse models
resembling systemic autoimmune phenotypes have been ob-
tained by autoimmune diseaseeprone genetic backgrounds,
such as MRL/ln mice on the BALB/c or the NZM2410 strain
stigative Pathology.

.

FLA 5.2.0 DTD � AJPA1389_proof
on the C57BL/6 genome,3,4 chemical treatment with tetra-
methylpentadecane,5 and spontaneously,6,7 chemicalN-ethyl-
N-nitrosourea (ENU) mutagenesis induced8,9 or targeted
mutations.10e12
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The members of the Janus kinase (JAK) family play
important roles in signaling downstream of cytokine receptor
activation and are implicated in various physiological pro-
cesses, including hematopoietic, immune, neuronal, and
hepatic systems.13 The JAKs are nonreceptor tyrosine kinases
and consist of four mammalian members: JAK1, JAK2,
JAK3, and TYK2.14 Several somatically acquired activating
mutations in JAKs have been described for various hemato-
logical malignancies.15e17 However, for most of the muta-
tions described presently, it is unclear how they contribute to
disease progression. The lack of successful mouse models for
mutation-activated JAK1-induced diseases hampers the
understanding of disease pathological characteristics.

The genome-wide Munich, Germany, ENU mouse muta-
genesis program was launched, with the main focus on
metabolic bone diseases.18 Within this project, we obtained
the dominant C3HeB/FeJ-Jak1S645PMhda (Jak1S645P) mouse
line carrying a new nonsynonymous point mutation within
the codon of a highly conserved serine at position 645 of the
pseudokinase domain of the Jak1 gene. Herein, we report the
morphological, histological, clinical chemical, and hema-
tological phenotypes we found in Jak1S645Pþ/� mice. The
identified phenotypes correlate with systemic autoimmune
diseases and suggest this mutant line as a new monogenic
mouse model for studies on autoimmune disease develop-
ment and therapeutic strategies.

Materials and Methods

ENU Mutagenesis and Mice

We performed ENU mutagenesis and confirmation breeding
of the obtained phenotypes on the inbred C3HeB/FeJ strain
purchased originally from the Jackson Laboratory (Bar
Harbor, ME), as described previously.19,20 The mice were
housed and handled according to the federal animal welfare
guidelines, and the state ethics committee approved all animal
studies.

Mice were kept in a 12/12-hour dark-light cycle and
provided ad libitum standard chow (TPT total pathogen-free
chow 1314: calcium content, 0.9%; phosphate, 0.7%; and
vitamin D3, 600 IE; Altromin, Lage, Germany) and water.
Hygienic monitoring was performed following Federation of
Laboratory Animal Science Association recommendations.21

Phenotyping was performed in the German Mouse
Clinic.22,23

Histological and IHC Data

In total, 90 mice were examined at different ages (4, 8, and 12
months). A macroscopic examination was performed in
combination with histological analysis of all organs using
H&E stain, as described previously.24 The analysis was
complemented by histochemical studies for Masson’s tri-
chrome, Gomori’s method for reticulin,25 and PAS. Images
for histomorphometry were taken by the slide-scanning
2
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system, NanoZoomer 2OHT Q(Hamamatsu, Japan). The IHC
was performed using the streptavidin-peroxidasemethodwith
an automated immunostainer (DiscoveryXT; Roche, Penz-
berg, Germany) in paraffin-embedded tissue. After heat-
induced antigen retrieval with citrate (pH 6), the following
primary antibodies were used: anti-murine CD31 antibody
(platelet endothelial cell adhesion molecule-1, 1:20,
5031114), purchased from Dianova (Hamburg, Germany);
anti-B220 (RA3-6B2, 1:50, 550286), Mac-3 (M3/84, 1:10,
550292), and Ki-67 (B-56, 1:200, 556003) from BD Phar-
Mingen (Heidelberg, Germany); anti-CD3 (SP7, Ci597R06,
ready to use) from Dako (Hamburg, Germany); antie
phospho-STAT3 Q[Tyr704 (D3A7) XP rabbit, 1:30, 9145]
from Cell Signaling Technology (New England Biolabs
GmbH, Frankfurt am Main, Germany); antiephospho-
IFNAR1 Q(orb 5500, 1 mg/mL, 1:500) and antiephospho-IL7
receptor a (orb 6212, 1 mg/mL, 1:500) from Biorbyt Ltd
(Cambridge, UK); phosphospecific polyclonal goat anti-
mouse p-gp 130 (sc-12978, 1:50) from Santa Cruz Biotech-
nology (Heidelberg, Germany)26; and antieIL-6 (ab6672,
1:250) from Abcam (Cambridge, UK). Appropriate positive
and negative controls, including a slide without the primary
antibody, were used to confirm the specificity of the staining.
Blocking against nonspecific binding was performed ac-
cording to antibody information. Two pathologists Qanalyzed
each slide independently.

Body Weight and Clinical Chemical Parameters

Body weight was analyzed at 10 and 15 weeks of age. Blood
samples were obtained from nonfasted anesthetized mice by
puncture of the retro-orbital sinus, as already described.27

Plasma parameter analysis was performed using an Olympus
AU400 autoanalyzer (Olympus, Hamburg, Germany) and the
adapted test kits.28 Complete blood cell counts were deter-
mined in EDTA-blood samples from 4.5-month-old mice
using the ABC-animal blood counter (Scil Animal Care
Company, Viernheim, Germany). In addition, EDTA-blood
samples of aged animals, diluted 1:5 with cell pack dilution
buffer (Sysmex GmbH, Norderstedt, Germany), were
analyzed using the Sysmex XT2000iV system for the
complete blood cell counts, including thrombocyte size and
degree of maturity, differential white blood cell counts, and
reticulocyte counts.

CTX-1, FGF23, and PTH ELISA Measurement

Carboxy-terminal collagen cross-link (CTX-1) was measured
in plasma using RatLaps (CTX-1) EIA Q(ELISA) from IDS
(Frankfurt am Main). Fibroblast growth factor (FGF) 23
levels were measured using a commercial full-length FGF23
ELISA Kit (Kainos Laboratories, Inc., Tokyo, Japan). For
parathyroid hormone (PTH) measurement, we used an Intakt
PTHmouse ELISA (Tecomedical, Bünde, Germany). Plasma
samples were isolated immediately after blood withdrawal by
centrifugation and were stored at �80�C before biochemical
ajp.amjpathol.org - The American Journal of Pathology
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analysis. Measurement of all parameters was according to the
manufacturer’s protocols.

Urine Collection and Analysis

Mice were placed for 3 days in metabolic cages for single
mice from Tecniplast (Hohenpeissenberg, Germany) for
sampling of 48-hour urine samples after 1 day of acclima-
tization. Urine samples collected over 2 days were pooled
and frozen. Total inorganic calcium, total inorganic phos-
phate (Pi), and creatinine were measured by an Olympus
AU400 autoanalyzer (Olympus, Hamburg, Germany).

Skeletal Analysis

Peripheral quantitative computed tomography (pQCT)
analysis was performed using Stratec XCT Research SAþ
(Stratec Medizintechnik GmbH, Pforzheim, Germany). The
spatial resolution was set to 70 mm, and the distal femoral
metaphysis and diaphysis of the left femur from each mouse
were examined to obtain volumetric bone mineral density,
content, and areas of the trabecular, cortical, and total bones.
Periosteal and endosteal circumferences were also evaluated
by the scanning. The reference line for the CT scans was set
at the most distal point of the femur (knee joint space). At
3.0 mm proximal from the reference line, two slices were
taken at 0.20-mm intervals, and at 6.0 mm proximal from
the reference line, one slice was taken to give characteristic
cross sections of the femoral metaphysis and diaphysis,
respectively.

Bone Morphometry

For bone morphometric analysis, microecomputed tomog-
raphy (mCT) images were obtained using a SkyScan 1172
in vivo CT (Bruker micro-CT N.V., Kontich, Belgium).
Acquisition was performed in the 2k-mode with a 0.5
aluminum filter, a frame averaging of 2, a rotation step of 0.4�,
and a resolution of 13.6 mm per pixel. Three-dimensional
reconstruction and visualization of images were performed
using InstaRecon software (InstaRecon, Inc., Champaign, IL)
and CTVox (Bruker micro-CT N.V.). Bone histomorpho-
metric analysis was performed with the CTAn software
(Bruker micro-CT N.V.).

Immunoglobulin Isotypes, Anti-DNA Antibodies, and
IL-6 Determinations in Serum

The plasma levels of immunoglobulin isotypes (IgG1, IgG2a,
IgG3, IgM,and IgA)weredeterminedbyusingmonoclonal anti-
mouse antibodies conjugated to a microsphere-based multiplex
assay (Luminex xMAP Technology; Bio-Rad, Munich) in
conjunction with a Bioplex reader (Bio-Rad). Total IgE
measurements were performed using sandwich ELISA tech-
nology with anti-IgE monoclonal capture and detection anti-
bodies from BD Biosciences (Heidelberg, Germany).
The American Journal of Pathology - ajp.amjpathol.org
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ELISA plates were coated with calf thymus DNA (Sigma
Aldrich Chemie, Steinheim, Germany) for both single- and
double-stranded DNA antibody detection. Serum was diluted
and loaded along with a positive [serum of MRL/MpJ-Fas
(lpr) mice] and negative control sample. Subsequently, goat
anti-mouse secondary antibody (polyvalent IgG, IgA, and
IgM) (Sigma Aldrich Chemie) was added and incubated.
Next, substrate was added and plates were read in a TECAN Q

sunrise reader. For determination of the IL-6 levels in plasma,
a commercial Bio-Plex murine cytokine panel suspension
array system (Bio-Rad Laboratories Inc., Hercules, CA) was
used. Plasma samples collected were frozen and diluted 1:4
for the measurement.

Real-Time PCR Analysis

Real-time PCRanalysiswas performed onRNA isolated from
snap frozen ears of Jak1S645Pþ/� (nZ 6) and Jak1WT (nZ 6)
mice. Used primer sequences (Eurofins MWG Operon,
Ebersberg, Germany) were 50-TAGTCCTTCCTACCCCA-
ATTTCC-30 (forward) and 50-TTGGTCCTTAGCCACTC-
CTTC-30 (reverse). After homogenization, total RNA was
isolated from the tissue using the RNeasy Mini kit (Qiagen
GmbH, Hilden, Germany), according to supplier’s instruc-
tions. First-strand cDNA synthesis was performed using the
RevertAid H Minus First Strand cDNA Synthesis Kit (Fer-
mentas, Thermo Fisher Scientific, Waltham, MA). Real-time
PCR was performed for the IL-6 gene using the SYBR
Greenebased detection system in an ABI Prism 7000 Se-
quence Detection System (Applied Biosystems, Darmstadt,
Germany). ThemRNAexpression levels in Jak1S645Pþ/�mice
were normalized according to the expression levels of the
housekeeping gene, glyceraldehyde-3-phosphate dehydroge-
nase, and to the mean expression levels of the wild-type (WT)
group using the DDCT method.

Flow Cytometric Analysis of Peripheral Blood
Leukocytes

Peripheral blood underwent red blood cell lysis (NH4Cl-
Tris). The cells were incubated with Fc block (clone 2.4G2;
BDBiosciences Q) in fluorescence-activated cell sorter (FACS)
buffer (PBS, 0.5% bovine serum albumin, and 0.02% sodium
azide, pH 7.45) and stained with fluorescence-conjugated
antibodies (BD Biosciences) and propidium iodide. Cells
were acquired with an FACS LSR QII HTS (BD Biosciences,
San Diego, CA). Dead cells were eliminated on the Qbasis of
their propidium iodide signal, and events were gated for
leukocytes (CD45þ) and subsequently analyzed by software-
based semiautomatic analysis (FlowJo Q).29 The flow cyto-
metric analysis of leukocyte populations was based on two
10-parameter staining panels, covering markers for B cells
(CD19, IgD, and B220), T cells (CD3, CD4, CD8, CD5, and
g-d T-cell receptor), granulocytes (GR-1 and CD11b),
natural killer cells (NKp46), and further subsets (CD44,
CD62L, CD25, and Ly6C).
3
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In Vitro Leukocyte Stimulation

Whole blood (100 mL) was incubated on a 96-well plate
with 0.5 mmol/L phorbol 12-myristate 13-acetate (PMA)
and 0.25 mg ionomycin or kept without stimulation (nega-
tive control) for 4 hours at 37�C. For flow cytometric
analysis, 20 mL was incubated with Fc block and stained
with fluorescence-conjugated antibodies and propidium
iodide. Finally, erythrocyte lysis was performed. Measure-
ments were done with a HyperCyt-Gallios system (Beck-
man Coulter, Inc.,).

Statistical Analysis

Statistical differences (P values) of alterations of values
between all tested affected mice and nonaffected littermates
were assessed by t-test, giving means � SD, or the Mann-
Whitney rank-sum and/or Wilcoxon test (giving median
values) using SigmaStat 3.5 by Systat Software (Chicago, IL).

Genetic Mapping

Themutationwas crossed toWTC57BL/6Jmice according to
dominant inheritance. DNA from tail tips of 50 phenotypi-
cally mutant and 20 WT offspring was extracted as described
previously30; single-nucleotide polymorphism genotyping
was performed by high-throughput matrix-assisted laser
desorption/ionization time-of-flight technology (Sequenom,
San Diego, CA).

Chromosome Sorting and Next-Generation Sequencing

Mouse chromosomes were sorted on an FACS Vantage flow
cytometry system (BD Biosciences, Heidelberg). DNA
extraction from 5,000,000 sorted chromosomes for the
mutant and control strain was performed overnight at 42�C
with 0.25 mol/L EDTA, 10%Na lauroyl sarcosine, and 50 mg
proteinase K. Extracted DNA was precipitated and resus-
pended in TE buffer. Paired-end libraries were constructed
with the Illumina paired-end DNA sample preparation kit
(Illumina, San Diego), according to manufacturer protocols,
and sequenced on a Genome Analyzer IIx (Illumina), as
described previously.31 We generated 182 and 224 million
76-bp paired-end reads for the mutant and control strains,
respectively, of which approximately 96% and approxi-
mately 83% could be successfully aligned to the mouse
reference genome mm9. Read mapping and variant calling
were performed using the resequencing software packages
BWA, version 0.5.5, and SAMtools, version 0.1.7.32 Du-
plicated reads were removed. Of the aligned reads, 34.6%
and 18.8%mapped to the target chromosome 4 for the mutant
and control strains, respectively. In total, we obtained 28-fold
coverage for the mutant and 20-fold coverage for the control
strain. Sequencing of the Jak1 mutation was performed by
the oligonucleotides Jak1_ex14F 50-TGGGATTCACTGA-
AGGATGG-30 and Jak1_ex14R 50-GCGTCTGCATAGT-
4
FLA 5.2.0 DTD � AJPA1389_proo
ACCCACC-30. The product size was 220 bp, and the
annealing temperature was 60�C.

Results

Inflammatory Ear and Skin Lesions in Jak1S645Pþ/� Mice

Jak1S645Pþ/� mice were born with normal-appearing ears.
Starting with an age of 4 months, the pinnae of both sexes
shrank in a slow progression initially without apparent
inflammation. With increasing age, this phenotype evolves
with ear margins showing redness and thickening, as shown
for a mouse at the age of 8 months (Figure 1A). Only female
Jak1S645Pþ/� mice developed alopecia on the neck and head,
with external signs of inflammation in some animals. After
the age of 8 months, redness and thickening of the tails were
also observed in some female and male Jak1S645Pþ/�mice. In
addition, Jak1S645Pþ/� mice are born with a reduced body
size and showed significantly decreased body weight, as
determined at the age of 10 and 15 weeks (Table 1).
Histological examination of skin lesions of the upper dorsal

region and of the ears in mutant mice showed inflammatory
infiltrate (predominate neutrophils) in the epidermis with
hyperkeratosis and acantosis. In the dermis, thickening of the
connective tissue, increased granulation tissue, and mono-
nuclear cell infiltration were found; the latter was the most
characteristicfindingbecause itwas found in60%of the animals
at the age of 8 months. The ear cartilage was primarily not
affected, but was destroyed by inflammatory cells in advanced
lesions. The incidence of infiltrates increased with age. Anti-
bodies against T cells (CD3), B cells (B220), and macrophages
(Mac-3) were selected to evaluate the cell component of the
dermal infiltrate. We observed enhanced reactivity to CD3 and
Mac-3 antibodies in the skin lesions of the Jak1S645Pþ/� mice
compared with controls, whereas the reactivity to B220 anti-
body in the mutant lesions was similar to the control animals
(Figure 1B). In addition, themononuclear infiltrate of the dermis
showed an increased reactivity for the proliferation marker,
Ki-67, inmutantJak1S645Pþ/�mice (Supplemental FigureS1C).

Activation of the IL-6egp130eJAKeSTAT Axis in Skin
Lesions

To examine the functional consequences of the Jak1S645Pþ/�

point mutation, we performed IHC analyses on skin and ear
lesions using phospho-specific antibodies for proteins of the
JAK-STAT signaling pathway. The activation of JAKs is
reported to result in an increased phosphorylation state of
JAKs, associated receptors of three major cytokine receptor
subfamilies [gp130, interferon (IFN), and gC], and down-
stream signaling proteins (eg, STATs). As shown in Figure 2,
a strong phosphorylation of the Stat3 at tyrosine 705 and
nuclear translocationwere observed in the skin and ear lesions
of Jak1S645Pþ/� mice compared with control mice. In skin
diseases, activated STAT3 is reported to cause an autocrine
up-regulation of the IL-6eIL-6ReJAK1epYSTAT3 axis,33
ajp.amjpathol.org - The American Journal of Pathology
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Figure 1 A: Representative skin lesions in
Jak1S645Pþ/� mice. Top left panel: Macroscopic
findings: An 11-month-old female Jak1WT mouse
with normal skin was compared with a Jak1S645Pþ/�

mouse. Jak1S645Pþ/� mice developed alopecia and
a erythematous lesion on the upper dorsal region.
Top right panel: Ears of a Jak1WT mouse compared
with a Jak1S645Pþ/� mouse with inflammatory
lesions at the age of 4 months. Bottom panels:
Histological features: H&E staining of normal and
mutant mouse skin is shown. Only Q35Jak1S645Pþ/�

mice show a reactive proliferation of connective
tissue, increased vascularization, and perivascular
and diffuse dermal mononuclear cell infiltrations
(arrows). The cartilage is not affected. Original
magnifications: �2.5; �20, respectively. B: The
IHC analysis of the cellular components in the
dermal infiltrate. IHC results of normal and mutant
skin of ears are shown. More T cells (CD3 reactive)
and macrophages (Mac-3 stained) in the skin
lesions of the Jak1S645Pþ/� mice are detected
compared with controls, whereas the number of B
cells (B220 reactive) in the mutant lesions is similar
to that in the control animals. Original Q36magnifica-
tions: �10; �100, respectively.
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triggering an increased IL-6 production traced to the skin.34

Herein, we also determined a strong immunostaining for
IL-6 predominantly in the dermis of mutant mice. Data of
locally increased IL-6 levels were correlated with a system-
atically increased IL-6 concentration (Figure 3).

Because JAK1 is most important for the IL-6egp130e
JAKeSTAT signaling,35 we focused on the phosphorylation
status of gp130 by using phospho-Ser782 gp130-specific
antibody. Serine and threonine phosphorylations of gp130,
in addition to tyrosine, have been reported to be increased
under stimulatory conditions.36,37 According to Murakami
et al,37 we found a moderate phosphorylation of gp130
Table 1 Alterations of Body Weight Changes in Jak1S645Pþ/� and Jak

Body weight (grams)

Female

Jak1WT (n Z 22) Jak1S645Pþ/� (n Z 21)

At 10 weeks of age 24.0 � 3.8 21.3 � 3
At 15 weeks of age 28.1 � 2.8 24.0 � 3.8

The American Journal of Pathology - ajp.amjpathol.org
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already in Jak1WT mice, which was clearly increased in the
Jak1S645Pþ/� mice, suggesting an activation of the IL-6e
gp130 axis. In addition, we observed phosphorylation of
two representative members of two other cytokine receptor
subfamilies (IFNAR1 and IL7Ra) (Figure 2).

Nodular Regenerative Hyperplasia of the Liver of
Jak1S645Pþ/�

Macroscopic analysis of the liver from Jak1S645Pþ/� mice
revealed irregular margins, prominent vessels, and increased
vascularization (Figure 4). These changes were observed
1WT Mice

P value

Male

P valueJak1WT (n Z 20) Jak1S645Pþ/� (n Z 14)

0.004 28.6 � 1.9 22.9 � 1.8 �0.001
�0.001 32.9 � 2.4 25.9 � 2.3 �0.001
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Figure 2 Up-regulation of the JAK/STAT
pathway in the dermal infiltrate and increased
levels of IL-6. The IHC analysis of ears revealed
a strong phosphorylation of Stat3 in the skin of ear
lesions of Jak1S645Pþ/� mutant compared with
Jak1WT mice. The lesions of mutant mice showed
a strong reactivity to IL-6 antibody. IHC using
phospho-specific antibodies for Jak1-associated
receptors of the three major cytokine receptor
subfamilies (gp-130, IFN-, and yC families Q37) showed
an increased phosphorylation status of all three
representative receptors. Original Q38magnifications:
�10, �40, �100. mut, Jak1S645Pþ/�; wt, Jak1WT.
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in 74% of mutant animals at the age of 4 months, increasing
to 90% in 12-montheold mice. These changes were not
associated with ascites and hepatomegaly. In the histological
analysis, sinusoidal dilatation was shown by H&E staining
and by IHC using an anti-CD31 antibody (Figure 4). By
using reticulin silver stain, we visualized areas composed of
hyperplastic hepatocytes arranged in one- or two-cell-thick
plates surrounded by atrophic hepatocytes in the adjacent
parenchyma. Fibrosis was excluded with Masson’s tri-
chrome stain. Although we did not observe clear formation
of small nodules, we regard these lesions as nodular
regenerative hyperplasia (NRH) because they meet the
diagnostic criteria, such as absence of fibrosis, sinusoidal
dilatation, and alteration of the architecture of hepatic
parenchyma.38 Investigating the effect of the Jak1S645P

mutation on downstream signaling in the liver, an
increased phosphorylation of Stat3 and its nuclear locali-
zation was determined in analogy to observation in the ear
and skin lesions.
6
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Loss of Megakaryocytes and Increase in Russell Bodies
in Jak1S645Pþ/� Mutant Spleen

Macroscopic analysis of the spleen detected a splenomegaly
for female Jak1S645Pþ/� mice (Table 2). However, the
histological analysis showed normal architecture of the
white pulp without coalescence or formation of secondary
follicles and infiltration of lymphoid cells into red pulp
(Supplemental Figure S1A). The IHC analysis of the spleen
using antibodies against T and B cells and Ki-67 as
a proliferation marker depicted a normal segregation of T
lymphocytes in the periarteriolar lymphoid sheaths and B
cells in follicles and marginal zones. Both T and B cells
showed no alterations in nucleus size, chromatin pattern,
membrane feature, and shape associated with hematopoietic
neoplasms. Lymph nodes of control and Jak1S645Pþ/� mice
also showed normal histological features (Supplemental
Figure S1B). Consistent with these observations, analysis
of the frequencies of leukocyte subsets in peripheral blood
ajp.amjpathol.org - The American Journal of Pathology
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Figure 3 A: IL-6 determination by real-time PCR on ears derived from
female Jak1WT (n Z 6) and female Jak1S645Pþ/- (n Z 6) mice showed
a significant increase of the expression of IL-6 mRNA in Jak1S645Pþ/� mice
compared with Jak1WT (P Z 0.021). B: IL-6 determination in serum of
Jak1WT (n Z 32) and Jak1S645Pþ/� (n Z 25) mice showed a significant
increase in IL-6 levels in female and male Jak1S645Pþ/� mice compared with
Jak1WT. *P < 0.05, **P < 0.01, and ***P < 0.001, as determined by Mann-
Whitney rank-sum test.
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by flow cytometry detected no genotype-related differences
in the frequencies of T cells, B cells, and macrophages, and
only sex-dependent changes were monitored (Supplemental
Figure S2).

In the red pulp of the spleen, the histological analysis and
quantification revealed a significant 50% loss of megakar-
yocytes in female and a 75% loss in male Jak1S645Pþ/�

mice, which correlated well with a thrombocytopenia
detected in peripheral blood in older animals (Table 3 and
Figure 5A). In addition, a slight increase in the number of
The American Journal of Pathology - ajp.amjpathol.org
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plasma cells was observed by H&E staining. By using PAS
staining, we visualized Russell bodies, which are large
cytoplasmic eosinophilic globules containing immunoglob-
ulin inclusions usually found in a plasma cell undergoing
excessive synthesis of immunoglobulin. As shown in
Figure 5B, we detected a duplication of the number of
Russell bodies in female Jak1S645Pþ/� mice. Male mice
have not been examined. These results are further corrob-
orated by significantly increased titers of immunglobulins in
serum (Figure 6A). In addition, preliminary real-time PCR
experiments with spleen RNA of Jak1S645Pþ/� animals
showed no significant IL-6 expression (data not shown).

Other organs examined, such as pericardium, pleura, and
kidneys, did not show any morphological alterations. Pre-
liminary results of transmission electron microscopy indi-
cate a thickening of mesangium in some glomerula, but
require further analysis (data not shown).

Increase in Immunoglobulin Isotype, Autoantibody
Levels, and T-Cell Subpopulation

Analyzing immunological parameters and anti-DNA anti-
bodies in peripheral blood, a general immunoglobulinemia
with all immunoglobulin isotype levels being elevated was
determined in Jak1S645Pþ/� compared with Jak1WT mice.
This finding was more pronounced in female mutant mice
showing a significant elevation of IgA, IgG1, IgG2a, and
IgM. A tendency toward elevation without reaching
significance was found for IgG3 and IgE (Figure 6A). In
male Jak1S645Pþ/� mice, a significant difference from
Jak1WT was found for IgG1, IgG2a, and IgM. Again,
a tendency toward higher levels was found for IgA, IgG3,
and IgE. Both male and female Jak1S645Pþ/� mice
Figure 4 Pathological changes of the liver
(NRH). A: Macroscopic appearance of the liver from
a Jak1S645Pþ/� mouse reveals a congestive liver
with irregular margins and prominent vessels. H&E
stainings of the liver show a dilation of the hepatic
sinusoidal plexus. Anti-CD31 IHC for endothelial
cells illustrates an increased vascularization in the
mutant liver. Original Q39magnifications: �10; �20.
B: Reticulin silver staining (Gomori’s trichrome
staining) visualizes an increase in hyperplastic
hepatocytes neighbored by atrophic hepatocytes in
a Jak1S645Pþ/� mouse. Masson’s trichrome staining
excludes the presence of fibrosis in Jak1S645Pþ/�

mice. Antiep-Stat3 IHC depicts phosphorylation
and nuclear localization of Stat3 in the hepatocytes
of Jak1S645Pþ/� mice compared with Jak1WT mice
demonstrating activation of the JAK/STAT pathway.
Original Q40magnification, �20.
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Table 2 Female Q47Jak1S645Pþ/� Mice Show a Significant Increase in Absolute and to Tibia Length Normalized Spleen Weight

Variable

Wilcoxon rank-sum test P value

Female Male

Female Male

Jak1WT (n Z 10) Jak1S645Pþ/� (n Z 10) Jak1WT (n Z 7) Jak1S645Pþ/� (n Z 13)

Median 25% 75% Median 25% 75% Median 25% 75% Median 25% 75%

Spleen weight
(g)

0.11 0.101 0.123 0.127 0.116 0.145 0.103 0.095 0.148 0.094 0.087 0.1 0.034 0.151

Tibia length
(mm)

17 17 18 17 17 17 17 17 18 17 17 17 0.087 0.613

Spleen
weight/
tibia length

0.0063 0.0059 0.0071 0.0075 0.0068 0.0085 0.0061 0.0054 0.0082 0.0055 0.0051 0.0059 0.022 0.157

Q54
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developed higher anti-DNA autoantibody titers compared
with Jak1WT mice (Figure 6B).

Although no apparent alteration of frequencies in main
leukocyte populations consistent in both sexes were deter-
mined, a detailed analysis gating on T-cell subpopulations
revealed significantly increased frequencies of Ly-6Ce
expressing CD8þ T cells in Jak1S645Pþ/� mice of both sexes
(Figure 6C). Furthermore, we set up an in vitro stimulation
assay with PMA/ionomycin monitoring cell surface
expression of CD71 (the transferrin receptor), which is a cell
surface antigen expressed on leukocytes early on activa-
tion.39 Interestingly, already under non-stimulatory condi-
tions, we discovered a significantly increased expression
level of CD71 on T cells, B cells, and nonlymphocytes of
Jak1S645Pþ/� mice compared with control mice. PMA/ion-
omycin stimulation triggered the expression of CD71 in all
subpopulations tested (Figure 6D), but only T cells and non-
lymphocytes of the Jak1S645Pþ/� mice revealed a higher
CD71 level than control mice. In these experiments, we also
measured the CD69 expression,40 which was at maximum
levels after PMA/ionomycin stimulation in cells of mutants
and controls. However, preliminary experiments also revealed
higher CD69 expression in leukocytes of the Jak1S645Pþ/�
Table 3 Hematological Data Obtained in 4.5-Month-Old Jak1S645P4þ/�

Parameter

Female* Male*

Jak1WT (n Z 8) Jak1S645Pþ/� (n Z 6) Jak1WT (n Z

RBC (Mio/mm3) 9.11 � 0.27 9.39 � 0.32 8.88 � 0.48
HGB (g/dL) 13.64 � 0.34 12.97 � 0.58 13.47 � 0.73
HCT (%) 43.3 � 1.17 41.0 � 1.40 43.3 � 2.66
MCV (fL) 47.5 � 0.49 43.7 � 0.64 48.8 � 0.79
MCH (pg) 14.98 � 0.24 13.82 � 0.20 15.17 � 0.33
MCHC (g/dL) 31.51 � 0.28 31.63 � 0.57 31.09 � 0.42
RDW (%) 21.9 � 0.47 24.9 � 1.00 21.7 � 0.40
WBC (103/mm3) 4.97 � 0.6 6.45 � 1.7 5.26 � 1.0
PLT (103/mm3) 1401 � 229 1442 � 192 1328 � 218
MPV (fL) 7.29 � 0.20 6.87 � 0.20 7.46 � 0.25
PDW (fL) 8.39 � 0.42 7.85 � 0.63 8.72 � 0.57
P-LCR (%) 9.90 � 1.10 7.47 � 1.43 11.10 � 1.47

HCT, hematocrit; HGB, hemoglobin; MCH, mean cellular hemoglobin content; M
volume; Mio, ---; MPV, mean platelet volume; PDW, red blood cell distributio
cell; RDW, red blood cell distribution width; WBC, white blood cell count.
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compared with controls using lower doses of PMA/
ionomycin (data not shown).

Hypophosphatemia, Increased ALP Activities, Elevated
CTX-1, Reduced PTH, and FGF23 Plasma Values

In addition, Jak1S645Pþ/�mice showed statistically significant
changes of several clinical chemical parameters in plasma
measured at the ages of 3, 6, 9, and 12 months (Figure 7A and
Supplemental Table S1). A strong hypophosphatemia corre-
lated with elevated alkaline phosphatase (ALP) activities,
hypocholesterolemia, and hypotriglyceridemia, in both
female and male Jak1S645Pþ/� mice. Hypoglucosemia was
observed from the age of 6 months onward in mutant mice of
both sexes at all time points. Only male mice depicted
hypercalcemia at the age of 12 and 24 weeks. In addition,
parameters related to protein metabolism and kidney function
were altered in various degrees in mice at different age points.
Urea was decreased in female and male Jak1S645Pþ/� mice at
the age of 3 months; this phenotype obviously improved with
age. Uric acid was elevated with 3 months in both female and
male Jak1S645Pþ/� mice and female Jak1S645Pþ/� mice at the
age of 6 months. The values were decreased in 9- and
Mice and Jak1WT Littermate Controls

Linear model P value

9) Jak1S645Pþ/� (n Z 11) Genotype Sex Genotype:sex ratio

9.43 � 0.36 0.006 0.530 0.335
13.22 � 0.51 0.035 0.848 0.320
42.2 � 1.70 0.019 0.367 0.421
44.8 � 1.76 <0.001 0.009 0.810
14.02 � 0.54 <0.001 0.175 0.972
31.34 � 1.09 0.495 0.187 0.814
24.1 � 1.76 <0.001 0.244 0.500
4.66 � 1.5 0.355 0.122 0.034
1261 � 146 0.856 0.093 0.467
6.72 � 0.21 <0.001 0.904 0.059
7.51 � 0.55 <0.001 0.988 0.108
6.81 � 1.30 <0.001 0.589 0.071

CHC, mean corpuscular hemoglobin concentration; MCV, mean corpuscular
Q48n width; P-LCR, platelet large cell ratio; PLT, platelet count; RBC, red blood
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Figure 5 Q41Pathological changes of the spleen. A:
Top panel: Representative H&E staining Q42of the
spleen shows a reduction in the number of mega-
karyocytes (arrows) in Jak1S645Pþ/� compared with
Jak1WT mice. Original Q43magnification, �20. Bottom
left panel: Quantification of megakaryocytes (MKs)
determined from hematoxylin staining of Jak1WT

spleen (n Z 8) and mutant spleen (n Z 11). For
statistics: Three identical areas within the red pulpa
were evaluated for MK numbers. A significant
decrease of MK was obtained [P Z 0.01905 for
females (F) and P Z 0.00024 for males (M)], as
determined by the Wilcoxon rank-sum test. Bottom
right panel: Thrombocytopenia was demonstrated
by a significant decrease of platelets counts (PTLs; in
103 cells/mL) in peripheral blood from Jak1S645Pþ/�

mice compared with Jak1WT mice determined at the
age of 11 months (PZ 0.0206 for females and PZ
0.0719 for males, as determined by the Wilcoxon
rank-sum test). B: The number of Russell bodies
demonstrated by PAS staining of the spleen was
increased in Jak1S645Pþ/� mice compared with
Jak1WT control animals (Rb; arrows). Original Q44

magnification, �40. Right panel: Quantification of
Russell bodies (RBs) determined from PAS staining
of female Jak1WT spleen (n Z 5) and female
Jak1S645Pþ/�mutant spleen (nZ 10). For statistics,
two identical areas within the red pulpa were eval-
uated. A duplication of the number of RBs in
Jak1S645Pþ/� mice was obtained (P Z 0.003), as
determined by the Wilcoxon rank-sum test.
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12-month-old male Jak1S645Pþ/� mice. Total protein, creat-
inine, and albumin in plasma showed sex- and age-related
alterations in Jak1S645Pþ/� mice.

Hematological analysis detected significantly increased red
blood cell counts accompanied by more pronounced aniso-
cytosis in first measurements of 4.5-month-old (data not
shown) and 6-month-old Jak1S645Pþ/� mice, indicated by
elevated red cell distribution width in mutant animals
compared with the corresponding controls. At the same time,
the mean corpuscular volume and cellular hemoglobin
content were decreased in these animals. The mean platelet
volume was decreased in mutant mice because of a reduction
of the large cell fraction, shown by a reduced platelet:large cell
ratio (Table 3). Thrombocytopenia was confirmed in 7- to 14-
month-old female and male Jak1S645Pþ/� mice (Figure 5A),
which was associated with increased platelet distribution
width. Taken together, the results obtained in Jak1S645Pþ/�
The American Journal of Pathology - ajp.amjpathol.org
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mice indicate a microcytic, erythropenic anemia with
increased anisocytosis and reticulocyte proportion.

To elucidate the hypophosphatemia and the elevated ALP
activities, we measured plasma levels of PTH in 12-
weekeold mice and of FGF23 in 20eweek-old mice.
PTH and FGF23 plasma concentrations were significantly
lower in Jak1S645Pþ/� mice. PTH measurements in female
mutant mice (n Z 9) revealed mean values of 45.605 �
27.83 pg/mL compared with 122.551 � 41.726 pg/mL in
Jak1WT mice (n Z 5) (P � 0.001). Male Jak1S645Pþ/� mice
(n Z 6) showed a mean of 37.097 � 9.369 pg/mL
compared with 87.709 � 21.709 pg/mL measured in
Jak1WT mice (n Z 9) (P � 0.001). FGF23 values were
a mean of 68.250 � 33.605 pg/mL for female Jak1S645Pþ/�

mice (n Z 12) compared with 166.556 � 46.101 pg/mL in
Jak1WT mice (n Z 9). Male Jak1S645Pþ/� mice showed
a median of 35.000 pg/mL (25% 28.000 pg/mL and 75%
9
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Figure 6 A: Determination of immunoglobulins in plasma samples reveals elevated levels of all immunoglobulin isotypes in Jak1S645Pþ/� mice (n Z 20)
compared with Jak1WT mice (n Z 20). These differences were more clear-cut in females than in males. Immunoglobulin concentrations are given in mg/mL,
except for IgE (ng/mL). *P < 0.05, **P < 0.01, as determined by the Mann-Whitney rank-sum test. B: Specific immunoglobulin levels against DNA. Specific
immunoglobulin titers against DNA show significantly higher values in the Jak1S645Pþ/� mice compared with the Jak1WT mice. **P Q45< 0.01, as determined by
the Mann-Whitney rank-sum test. C: Determination of Ly-6Ceexpressing cells within the CD8þ T-cell cluster in blood samples from Jak1S645Pþ/� mice
(n Z 20) and Jak1WT mice (n Z 20), given as percentage of CD8þ T cells, demonstrates significantly increased frequencies of Ly-6C CD8þ T cells in
Jak1S645Pþ/� mice of both sexes compared with Jak1WT mice. D: Determination of frequencies of CD71-expressing cells within the corresponding cell clusters
(B cells, T cells, and nonlymphocytes) in non-stimulated (uns.) and PMA/ionomycin-stimulated (stim.) blood samples from Jak1S645Pþ/� mice (n Z 8) and
Jak1WT mice (n Z 13) given as percentage of the corresponding parent gate. Frequencies of CD71-expressing cells within the B-cell, T-cell, and non-
lymphocyte clusters are significantly increased in non-stimulated samples from Jak1S645Pþ/� compared with Jak1WT mice. After 4 hours of stimulation with
PMA/ionomycin, we found increased frequencies of CD71-expressing cells with the T-cell and nonlymphocyte clusters compared with Jak1WT mice. Mutant
(Mut.), Jak1S645Pþ/�; WT, Jak1WT.
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47.250 pg/mL), compared with Jak1WT mice showing
a median of 155.000 pg/mL (25% 118.500 pg/mL and 75%
196.000 pg/mL) (P � 0.001 calculated by the Mann-
Whitney rank-sum test because of value distributions).
Because PTH and FGF23 are involved in phosphate
homeostasis and bone mineral metabolism, we further
analyzed an additional plasma parameter for the assessment
of bone metabolism using a CTX-1 ELISA. Indeed,
Jak1S645Pþ/� mice showed significantly increased values of
collagen type I fragments generated during osteoclastic bone
resorption compared with Jak1WT mice when measured in
3-, 6-, 9-, and 12-montheold mice. CTX-1, PTH, and
FGF23 levels are shown in Figure 7A and Supplemental
Table S1.

To study whether the decreased Pi plasma levels in
Jak1S645Pþ/� mice were the result of an increased Pi
excretion through the kidney, we performed urine analysis
in both mutant and WT mice at the age of 18 to 21 weeks.
The measurement of seven mutant and eight WT female and
of eleven mutant and nine WT male mice in metabolic cages
provided no changes in Pi, calcium, and creatinine excretion
between the two genotypes.
10
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Osteopenic Bone Phenotype of Jak1S645Pþ/� Mice

The strong hypophosphatemia, high ALP activities, and the
elevated CTX-1 levels are expected to be due to an impaired
bone metabolism in Jak1S645Pþ/� mice. Thus, parameters
related to disturbed bone mineralization were measured using
suitable imagine systems, such as pQCT and mCT analysis,
in 22- to 23-week- and 12-montheold mice. In pQCT
measurements, female and male Jak1S645Pþ/� mice showed
strong decreased values of almost all parameters analyzed at
the age of both 22 to 23 weeks (Tables 4 and 5) and 12
months (Tables 6 and 7) in femoral metaphysis and diaph-
ysis. The trabecular area was increased in all measurements
for both female and male Jak1S645Pþ/� mice.
First, mCT measurement of three female Jak1S645Pþ/� and

Jak1WT mice, aged 12 months, showed that mutant mice
lost almost all metaphyseal and diaphyseal trabeculae
compared with Jak1WT mice (Figure 7B). This measurement
confirmed the observations made by pQCT measurement
showing decreased values of trabecular density, trabecular
content, bone volume:tissue ratio, trabecular bone surface,
and trabecular number for trabecular bone. In cortical bone
ajp.amjpathol.org - The American Journal of Pathology
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Figure 7 A: Overview on statistically significant plasma value changes obtained in Jak1S645Pþ/� mice compared with their WT littermate controls at the age
of 12, 24, 36, and 52 weeks. Blue and red arrows denote male and female Jak1S645Pþ/� mice showing significantly increased or decreased alterations for each
parameter. Blank fields indicate no changes. Red arrow with one asterisk denotes tendency to decreased values (P Z 0.191). Red arrow with two asterisks
denotes tendency to decreased values (P Z 0.372). Blue arrow with one asterisk denotes tendency to decreased values (P Z 0.057). Blue arrow with two
asterisks denotes tendency to decreased values (PZ 0.057). Accordingly, blood values � SEM (SD) and P values are found in Supplemental Table S1. B: Bone
phenotype of Jak1S645Pþ/�: mCT analysis of 12-montheold Jak1S645P tibia. Representative three-dimensional reconstruction of Jak1WT control (top panel) and
Jak1S645Pþ/� tibia (bottom panel). Histomorphometric analysis of the trabecular portion (top panel) revealed decreased values in Jak1S645Pþ/� mice. In
addition, cortical parameters (bottom panel) exhibit significantly declined values in mutant tibial bones. Endosteal bone volume was calculated as follows:
Periosteal Volume � Cortical Bone Volume. ALB, albumin; BV/TV, bone volume/tissue volume; CA, inorganic total calcium; CHOL, total cholesterol; CREA,
creatinine; Cs.Th., cross-sectional thickness; GLS, glucose; nt, not tested; Tb.N., trabecular number; TG, triglyceride; TP, total protein; Trab.BS, trabecular bone
surface UA, uric acid. **P Q46< 0.01, ***P < 0.001 (analysis of variance).
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periosteal volume, cortical bone volume and cross-sectional
thickness were significantly decreased, and endosteal vol-
ume was increased in Jak1S645Pþ/� mice.

Genotyping

Linkage analysis using a genome-wide murine panel of 158
single-nucleotide polymorphism markers30 revealed a large
candidate region on distal chromosome 4 between the
The American Journal of Pathology - ajp.amjpathol.org
FLA 5.2.0 DTD � AJPA1389_proof
single-nucleotide polymorphism markers rs28056583 and
rs13469808 (86.81 to 117.55 Mb, mouse genome Build
37.1; University of California, Santa Cruz). After FACS-
based chromosome sorting, we sequenced 6.09 and 6.3 Gb
of the sorted mouse mutant and WT whole chromosomes,
respectively. A comparison of nonsynonymous single-
nucleotide variants (SNVs) between the mutant and the
control strain revealed six homozygous and two heterozygous
SNVs within the candidate region. Validation of the SNVs by
11
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Table 4 Bone-Related Quantitative Parameters (22- to 23-Week-Old Mice) Obtained by pQCT Measurement: Femoral Metaphysis

Parameter

Jak1S645Pþ/þ* Jak1S645Pþ/�* WT:mut P value ANOVA P value
(genotype:sex
ratio)Female (n Z 10) Male (n Z 10) Female (n Z 10) Male (n Z 10) FemaleQ49 Male

Total density (mg/cm3) 782 � 11 646 � 10 689 � 5 531 � 7 <0.0001 <0.0001 <0.0001
Trabecular density (mg/cm3) 302 � 5 316 � 7 275 � 6 250 � 7 <0.01 <0.0001 <0.0001
Cortical density (mg/cm3) 905 � 8 826 � 6 868 � 8 785 � 5 <0.01 <0.0001 <0.0001
Total content (mg) 2.58 � 0.04 2.28 � 0.04 2.05 � 0.05 1.60 � 0.05 <0.0001 <0.0001 <0.0001
Trabecular content (mg) 0.20 � 0.01 0.38 � 0.02 0.25 � 0.01 0.36 � 0.02
Cortical content (mg) 2.38 � 0.04 1.90 � 0.05 1.80 � 0.04 1.24 � 0.03 <0.0001 <0.0001 <0.0001
Total area (mm2) 3.31 � 0.07 3.53 � 0.05 2.97 � 0.07 3.01 � 0.07 <0.01 <0.0001 <0.0001
Trabecular area (mm2) 0.68 � 0.05 1.23 � 0.07 0.90 � 0.03 1.44 � 0.04 <0.01 <0.05 <0.001
Cortical area (mm2) 2.63 � 0.05 2.30 � 0.07 2.08 � 0.05 1.58 � 0.04 <0.0001 <0.0001 <0.0001

ANOVA, analysis of variance; mut, mutant.
*Data are presented as means � SEM.
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capillary sequencing of genomic DNA from phenotypic
mutant and WT mice confirmed the identified SNVs within
the Jak1, Skint5, Cyp4a30b, Eif2b3, and Grhl3 genes. Only
the Jak1 sequence variation (uc008tvk.1 c.1933T>C,
p.Ser645Pro) cosegregated with the phenotype in 18 pheno-
typic mutant mice and was not found in >20 control mice.

Discussion

The JAK-STAT pathway has proved to be essential for
many immunological processes playing a critical role in the
pathogenesis of autoimmune diseases and cancer.14,41

Activating mutations of the JAK family members have
been described numerously in patients with various hema-
tological malignancies, including JAK1 mutations identified
in 18% of patients with adult precursor T-acute lympho-
blastic leukemias and in a few acute myeloid leukemias.17,42

In particular, point mutations in the pseudokinase domain
are reported to be critical for the pathological basis of dis-
ease.43e45 However, the lack of successful mouse models
for mutation-activated JAK-induced diseases hampers the
understanding of disease pathological features.

Herein, we present an ENUmutagenesis-derived Jak1S645P

mouse model with an activating Jak1 mutation characterized
Table 5 Bone-Related Quantitative Parameters (22- to 23-Week-Old M

Parameter

Jak1WT* Jak1S6

Female (n Z 10) Male (n Z 10) Femal

Total density (mg/cm3) 1050 � 11 1000 � 12 927
Trabecular density (mg/cm3) 202 � 9 208 � 7 178
Cortical density (mg/cm3) 1170 � 4 1144 � 7 1107
Total content (mg) 2.04 � 0.05 2.12 � 0.04 1.61
Trabecular content (mg) 0.05 � 0.01 0.07 � 0.00 0.06
Cortical content (mg) 1.99 � 0.04 2.06 � 0.04 1.55
Total area (mm2) 1.94 � 0.06 2.13 � 0.04 1.74
Trabecular area (mm2) 0.25 � 0.02 0.33 � 0.02 0.34
Cortical area (mm2) 1.70 � 0.04 1.80 � 0.03 1.40

ANOVA, analysis of variance; mut, mutant.
*Data are presented as means � SEM.
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by strong morphological alterations of the skin, liver, spleen,
and bone, accompanied by significant Pi, ALP, CTX-1, PTH,
FGF23, and hematological plasma changes. By next-
generation sequencing techniques, we identified in mutant
mice a nonsynonymous sequence variation (c.1933T>C,
p.Ser645Pro) within the pseudokinase domain of the Jak1
gene not found in Jak1WT littermates. This mutation corre-
sponds to a somatic human mutation in the JAK1 gene
(p.Ser646Phe) reported in a patient with high-risk pediatric
acute lymphoblastic leukemia and was shown to trigger
a constitutive activation of the JAK/STAT pathway demon-
strated, for example, by increased phosphorylation of
STATs.46 The phenotypes observed in Jak1S645Pþ/� mice
have not been found in knockout Jak1�/� mice dying
prenatally,47 making heterozygous mice of this mouse line
a worthy model to study Jak1 function.
The spontaneous lesions of the skin developed in

Jak1S645Pþ/�mice had several histological changes described in
chronic inflammation, such as angiogenesis, collagen deposi-
tion, and granulation tissue formation. Interestingly, similar skin
lesions have been described in MRL/lpr mice, which develop
a systemic lupus erythematosus (SLE)elike phenotype, in-
cluding lymphadenopathy, splenomegaly, elevated serum
antinuclear autoantibodies, including antiedouble-stranded
ice) Obtained by pQCT Measurement: Femoral Diaphysis
45Pþ/�* WT:mut P value ANOVA P value

(genotype:sex
ratio)e (n Z 10) Male (n Z 10) Female Male

� 15 872 � 8 <0.0001 <0.0001 <0.0001
� 3 183 � 4 <0.05 <0.01 <0.001
� 11 1061 � 6 <0.0001 <0.0001 <0.0001
� 0.06 1.54 � 0.06 <0.001 <0.0001 <0.0001
� 0.00 0.07 � 0.01
� 0.06 1.47 � 0.05 <0.0001 <0.0001 <0.0001
� 0.05 1.77 � 0.06 <0.05 <0.001 <0.0001
� 0.01 0.38 � 0.02 <0.01 <0.05 <0.001
� 0.05 1.40 � 0.05 <0.001 <0.0001 <0.0001
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Table 6 Bone-Related Quantitative Parameters (12-Month-Old Mice) Obtained by pQCT Measurement: Femoral Metaphysis

Parameter

Jak1S645Pþ/þ* Jak1S645Pþ/�* WT:mut P value ANOVA P value
(genotype:sex
ratio)Female (n Z 9) Male (n Z 12) Female (n Z 5) Male (n Z 11) Female MaleQ51

Total density (mg/cm3) 791 � 43 627 � 40 669 � 69 473 � 60 <0.01 <0.001
Trabecular density (mg/cm3) 273 � 23 268 � 27 283 � 23 211 � 35 <0.001 <0.01
Cortical density (mg/cm3) 936 � 28 865 � 31 847 � 40 755 � 49 <0.001 <0.001
Total content (mg) 2.82 � 0.19 2.23 � 0.10 2.34 � 0.33 1.58 � 0.35 <0.01 <0.001
Trabecular content (mg) 0.21 � 0.04 0.38 � 0.05 0.32 � 0.08 0.36 � 0.06 <0.01 <0.01
Cortical content (mg) 2.61 � 0.22 1.85 � 0.12 2.03 � 0.37 1.22 � 0.30 <0.01 <0.001 <0.01
Total area (mm2) 3.56 � 0.12 3.57 � 0.20 3.50 � 0.34 3.32 � 0.35 NA NA
Trabecular area (mm2) 0.78 � 0.21 1.43 � 0.25 1.11 � 0.28 1.71 � 0.16 <0.05 <0.01
Cortical area (mm2) 2.79 � 0.23 2.14 � 0.12 2.39 � 0.41 1.61 � 0.27 <0.05 <0.001
Periosteal circumference (mm) 6.69 � 0.11 6.69 � 0.19 6.63 � 0.32 6.45 � 0.33 NA NA
Endosteal circumference (mm) 3.39 � 0.35 4.40 � 0.36 3.95 � 0.48 4.83 � 0.22 <0.05 <0.01

ANOVA, analysis of variance; mut, mutant; NA, not analyzed.
*Data are presented as means � SEM.
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DNA, IgG (majority IgG2a and IgG3), and immune complexe
mediated glomerulonephritis.3,48,49 Consistent with the skin
phenotype, the Jak1S645Pþ/� mice showed a global increase of
immunoglobulin isotype levels and autoDNA antibodies in
circulation. These features are typical findings in patients with
SLE,50 with a more pronounced increase in females,51 because
we also observed them in female Jak1S645Pþ/�mice mimicking
the human situation.

The molecular analysis of the JAK-STAT pathway in
skin lesions developed by Jak1S645Pþ/� mice revealed an
activation of Stat3. In SLE, activated Stat3 is reported
to cause an autocrine up-regulation of the IL-6eIL-6
receptoreStat3 axis,33 which triggers increased IL-6 pro-
duction traced to the epidermis.34 The phosphorylation of
gp130 occurs downstream of IL-6,26,36,37 which we also
observed in in Jak1S645Pþ/� mice. Studies in murine models
indicate an essential role for IL-6 in SLE,52 and develop-
ment of an SLE phenotype was linked to up-regulated IL-6
signaling, as shown in JunBDEP mice.34 Increased levels of
IL-6 have also been observed in serum of patients with SLE,
Table 7 Bone-Related Quantitative Parameters (12eMonth-Old Mice)

Parameter

Jak1S645Pþ/þ* Jak1

Female (n Z 9) Male (n Z 12) Fem

Total density (mg/cm3) 1117 � 41 1042 � 40 85
Trabecular density (mg/cm3) 212 � 34 201 � 28 17
Cortical density (mg/cm3) 1235 � 17 1179 � 24 109
Total content (mg) 2.67 � 0.20 2.57 � 0.14 1.8
Trabecular content (mg) 0.06 � 0.01 0.07 � 0.02 0.1
Cortical content (mg) 2.62 � 0.21 2.50 � 0.14 1.8
Total area (mm2) 2.39 � 0.14 2.47 � 0.12 2.2
Trabecular area (mm2) 0.27 � 0.06 0.35 � 0.07 0.5
Cortical area (mm2) 2.12 � 0.15 2.12 � 0.10 1.6
Periosteal circumference (mm) 5.48 � 0.16 5.57 � 0.13 5.2
Endosteal circumference (mm) 2.18 � 0.19 2.41 � 0.18 2.8

ANOVA, analysis of variance; mut, mutant.
*Data are presented as means � SEM.
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especially during disease activity.53,54 We observed that
Jak1S645Pþ/� mice showed a strong increase of IL-6 and
elevated phosphorylation of IL-6 receptor gp130 and Stat-3
in the dermis. These new findings emphasize that
Jak1S645Pþ/� mice might model human SLE.

Patients with SLE can also have increased serum IFNa
levels,55,56 and deficiency of IFNAR�/� protects mice from
lupus.57 An investigation of skin lesions revealed an
increased phosphorylation of the IFNa receptor, IFNAR,
in Jak1S645Pþ/� mice. Consistent with our data, recently,
Ramirez-Velez et al58 demonstrated a constitutive phos-
phorylation of IFNa-associated signaling proteins, in partic-
ular phosphorylation of JAK1, in serum of patients with SLE.

Jak1S645Pþ/� mice developed NRH of the liver and
showed elevated ALP activities in plasma. NRH was
described in autoimmune disease, in a high incidence in SLE
cases,59e63 and correlated with increased ALP activities and
thrombocytopenia in SLE. JAK-STAT signaling pathways
have been shown to play a crucial role in the development of
NRH in transgenic mice expressing IL-6 and IL-6 receptor.64
Obtained by pQCT Measurement: Femoral Diaphysis
S645Pþ/�* WT:mut P value ANOVA P value

(genotype:sex
ratio)ale (n Z 5) Male (n Z 11) Female Male

5 � 60 809 � 90 <0.001 <0.001
0 � 17 174 � 22 <0.05 <0.05
5 � 40 1031 � 62 <0.001 <0.001
9 � 0.32 1.65 � 0.44 <0.001 <0.001
0 � 0.02 0.09 � 0.02 <0.001 <0.05 <0.05
0 � 0.31 1.56 � 0.43 <0.001 <0.001
0 � 0.25 2.01 � 0.30 <0.001
7 � 0.09 0.51 � 0.08 <0.001 <0.001 <0.05
3 � 0.22 1.49 � 0.31 <0.001 <0.001
5 � 0.29 5.01 � 0.36 <0.001
7 � 0.18 2.76 � 0.18 <0.001 <0.001 <0.05
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Coherently, we observed increased phosphorylation of Stat3
in the liver downstream of the IL-6eJAKeSTAT axis.

In mice, the spleen is a primary hematopoietic organ
equivalent to human bone marrow.65,66 The architecture of
the spleen was not alternated in Jak1S645Pþ/� mice, con-
cluding that the Jak1S645Pþ/� mutation is not associated
with hematopoietic neoplasms, in contrast to what has been
reported for the human JAK1 mutation (S646F).42,46 In
Jak1S645Pþ/� mice, a slight increase in plasma cell number
was observed associated with a duplication of Russell
bodies. Consistent with this observation, Jak1S645Pþ/� mice
showed significantly increased levels of immunoglobulins
in the circulation. We speculate that, because of the acti-
vating mutation in Jak1, the spleen B cells are more
susceptible to IL-6 and, therefore, react with a moderate
increase in B-cell differentiation to plasma cells.67 B cells in
patients with SLE were reported to produce IL-6 and
respond to IL-6, leading to enhanced production of immu-
noglobulins.67,68 In aged lupus MRL/lrp mice, increased
serum levels of IL-6 were determined,69 and in aged lupus
NZBxNZB mice, IL-6 was reported to enhance the IgG anti-
DNA antibody production by splenic B cells.70

Analysis of the frequencies of leukocyte subpopulations
in peripheral blood revealed an increased frequency of
CD8þ T cells positive for the differentiation marker, Ly-6C.
The CD8þ T-cell specificity might partly be explained by
the fact that Ly-6C is not found on CD4þ T cells in Ly-6.1
background strains.71 Because Ly-6C has been reported to
be up-regulated after exposure to IFNa,72 it is tempting to
speculate that elevated levels of IFNa, as determined in
patients with SLE, could be responsible for up-regulation of
Ly-C6 in Jak1S645Pþ/� mice. The relationship between
increased Ly-6C on T cells for SLE has to be further
elucidated. Further analysis of cultivated peripheral blood
cells revealed a higher expression of CD71 and CD6939,40

on T cells and nonlymphocytes of Jak1S645Pþ/� mice,
suggesting an increased activation status of immune cells in
Jak1S645Pþ/� mice. Thrombocytopenia has been associated
with a severe familiar phenotype of SLE,73 postulating
autoreactive antibodies against platelets. In Jak1S645Pþ/�

mice, fewer megakaryocytes were determined, which corre-
lated with reduced frequencies of platelets in the periphery in
aged mutants. In addition, in this study, microcytic and
hypochromic red blood cell counts, with increased anisocy-
tosis, were measured, indicating irregular hematopoiesis.
SLE was associated with hemolytic anemia, in some patients
starting before other clinical symptoms.74

Interestingly, hypophosphatemia has been reported for
juvenile patients with SLE, indicating that decreased Pi levels
are associated with disease activity.75 Hypophosphatemia
with hypercalcemia was recently published in one case report
on juvenile SLE.76 It is still unclear whether the hypo-
phosphatemia in Jak1S645Pþ/� mice arose from primary or
secondary effects, but the strong phenotype was consistently
found in both young and old Jak1S645Pþ/� mice. In addition,
we found significantly decreased levels of PTH and FGF23 in
14
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Jak1S645Pþ/� mice. FGF23 is the key regulator of phosphate
homeostasis and acts as a phosphaturic hormone. It is an
inhibitor of renal phosphate reabsorption and regulates the
phosphate levels via enhanced excretion of Pi through the
kidney in hyperphosphatemic conditions.77 Despite strong
hypophosphatemia, no renal phosphaturia could be found in
Jak1S645Pþ/� mice. Because FGF23 is directly regulated by
the phosphate level in the serum,78 we assume that the low
FGF23 level in Jak1S645Pþ/� mice is caused by the low
phosphate level itself.
Because osteoporosis was also reported for patients with

SLE,79 the elevated ALP activities may derive from the bone
ALP isoform. To elucidate this observation, we measured
the bone resorption marker, CTX-1, and found significantly
increased values in Jak1S645Pþ/� mice, indicating that
Jak1S645Pþ/� mice have an impaired bone metabolism asso-
ciated with increased bone resorption. Indeed, Jak1S645Pþ/�

mice showed reduced morphometric bone parameters,
confirming a strong osteopenic phenotype. It is well known
that several inflammatory diseases, such as rheumatoid
arthritis, SLE, or inflammatory bowel disease, have been
associated with bone resorption.80 Increased osteoclasto-
genesis and bone resorption were reported to be induced by
IL-6 and IL-11 activating the gp-130eJAK1eSTAT3 axis,
whereas IL-6 was shown to inhibit bone formation.81e83 Also
worthmentioning is that IL-6etype cytokines stimulated ALP
activity, which could explain the elevated levels of ALP
observed in the Jak1S645Pþ/� mice.84 Although the causative
keymechanism is still unknown, it can be summarized that the
clear osteopenic phenotype found in Jak1S645Pþ/� mice is
consistent with observations made in patients with SLE and
has not been described in equivalent high degrees in other
SLE mouse models.
According to the American Rheumatism Association for

diagnosis of SLE, Jak1S645Pþ/� mice fulfill at least four of
the eleven diagnostic criteria required for disease classifi-
cation, which are inflammatory severe lesions in skin and
ears, hypergammaglobulinemia and highly elevated levels
of anti-DNA antibodies, NRH of the liver, splenomegaly,
and thrombocytopenia. In addition to the ARA Qcriteria, IL-6
and dysregulation of the JAK/STAT pathway are regarded
as critical factors in SLE pathogenesis.54,85 In addition,
increased IL-6 levels have been reported to induce devel-
opment of the SLE-like phenotype in murine models.34,69,70

The clinical outcome of SLE often is diverse, as it was
described for human triplets with SLE carrying the identical
mutation,86 and not every of the existing mouse models is
showing all LE criteria.87 Thus, the development of all SLE
criteria may be due to multigenetic effects.
In conclusion, the new ENU mutagenesis-derived point

mutation leading to the Jak1S645Pþ/� mouse line induces
multiple phenotypes of systemic autoimmune diseases, such
as SLE. This mouse line may serve as a useful in vivo model
for further analysis of pathophysiological features and ther-
apies for autoimmune diseases. Because several companies
are in late-stage clinical programs for the development of
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JAK kinase inhibitors to treat arthritis, psoriasis, lupus,
colitis, and multiple types of cancer, Jak1S645Pþ/� mice may
serve as a model for new therapeutic strategies.41,88
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Supplemental Figure S1 Normal architecture of the spleen and lymph nodes in Jak1S645Pþ/� mice. A: IHC analysis of the spleen showed normal
segregation of B lymphocytes in follicles and marginal zones (shown by B220 reactivity) and of T lymphocytes in the periarteriolar lymphoid sheaths (shown by
CD3 reactivity). Analysis of proliferation marker, Ki-67, did not indicate alteration between Jak1S645Pþ/� and Jak1WT mice. B: IHC analysis of the lymph node
showed normal distribution and frequencies of B and T lymphocytes and did not indicate changes in proliferation rates (as shown with Ki-67 staining). C: IHC
analysis of inflammatory ear lesions determined by Ki-67 staining showed increased proliferation rates in Jak1S645Pþ/� compared with Jak1WT mice. Original
magnifications: �10 (A and C); �2.5 (B); �100 (C).

Supplemental Figure S2 Determination of frequencies of main leukocyte subsets in blood samples from Jak1S645Pþ/� mice (n Z 20) and WT mice
(n Z 20), given as percentage of CD45þ cells, was not changed compared with Jak1WT mice, providing no evidence for genotype-related differences. Mut,
Jak1S645Pþ/�; WT, Jak1WT.
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